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We present new results regarding the long-range scalar field that emerges from the classical Kaluza unification of general relativity
and electromagnetism. The Kaluza framework reproduces known physics exactly when the scalar field goes to one, so we studied
perturbations of the scalar field around unity, as is done for gravity in the Newtonian limit of general relativity. A suite of interesting
phenomena unknown to the Kaluza literature is revealed: planetary masses are clothed in scalar field, which contributes 25% of the
mass-energy of the clothed mass; the scalar potential around a planet is positive, compared with the negative gravitational potential;
at laboratory scales, the scalar charge which couples to the scalar field is quadratic in electric charge; a new length scale of physics is
encountered for the static scalar field around an electrically-charged mass, Ls = μ0Q

2/M; the scalar charge of elementary particles is
proportional to the electric charge, making the scalar force indistinguishable from the atomic electric force. An unduly strong
electrogravitic buoyancy force is predicted for electrically-charged objects in the planetary scalar field, and this calculation
appears to be the first quantitative falsification of the Kaluza unification. Since the simplest classical field, a long-range scalar
field, is expected in nature, and since the Kaluza scalar field is as weak as gravity, we suggest that if there is an error in this
calculation, it is likely to be in the magnitude of the coupling to the scalar field, not in the existence or magnitude of the scalar
field itself.

1. Introduction

In 1919, Einstein received a paper from Kaluza [1] showing
that the field equations of general relativity, and the field
equations of electromagnetism, behave as if the gravitational
tensor field gμν, and the electromagnetic vector field, Aμ, are
components of a 5-dimensional (5D) tensor gravitational
field ~gab. Since a 5D metric tensor has 15 components, an
additional long-range scalar field potential ϕ is implied. Stan-
dard 4D physics is recovered when this scalar potential goes
to one, and that was Kaluza’s original assumption.

The 5D picture holds not only for the field equations, but
for the equations of motion too, as Kaluza originally showed.
When the geodesic equation is written in 5 dimensions, it is
found to contain the standard 4D geodesic equation, along
with the Lorentz force law of electromagnetism; there is an
additional term for the scalar force that is not identified in
nature. As in the field equations, the 4D limit of the equations
of motion is obtained when the scalar field goes to one.

Here, we build on the equations developed in a previous
work [2] to obtain expressions for the associated scalar force

under a range of conditions. Let us summarize first the con-
text of these considerations.

We are careful not to confuse the “Kaluza-Klein” theory
of compact dimensions with the strictly classical Kaluza
theory of 5D general relativity and its long-range scalar field
addressed here. After Kaluza’s paper, classical field equations
that properly incorporated the long-range scalar field were
developed to various degrees by independent research
groups: led by Einstein at Princeton (1930s-1940s), by
Lichnerowicz in France (1940s), Scherrer in Switzerland
(1940s), by Jordan in Germany (1950s), and by Dicke at
Princeton (1960s) [3, 4].

The review by Gonner [3] shows that the equations of the
classical Kaluza scalar field were developed by multiple Euro-
pean research groups in the mid-20th century, but none of
those results were published in English language journals.
The war caused further disruptions in the dissemination of
results obtained by the European groups.

Progress on analysis of the classical field equations accel-
erated in the 1980s with the availability of English transla-
tions [5] of work by Thiry [6] under Lichnerowicz. During
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the 1980s and 1990s, significant work was done on the classi-
cal Kaluza theory, including a general solution for the 5D
metric of a charged object [7], analogous to the Schwarzs-
child and Reissner-Nordstrom solutions.

A notable feature of the 5D ansatz introduced by Kaluza
was the cylinder condition, that no field component depends
on the fifth coordinate, and so its derivatives vanish. This was
seen by Kaluza as the mathematical expression of the absence
of a detectable fifth coordinate.

In 1926, Klein [8] adapted the Kaluza 5D ansatz to quan-
tum considerations and hypothesized a compact, micro-
scopic fifth dimension, thereby bringing Planck’s constant
and quantum considerations into a framework that is typi-
cally known as “Kaluza-Klein.” Klein’s suggestion turned
out to be a forced marriage of classical and quantum theory
that did not satisfactorily describe 4D physics, but it pro-
foundly influenced the direction of quantum field theory,
making compact small dimensions an accepted part of phys-
ics, in the Kaluza theory [9], and in higher-dimensional
theories [5]. Today, many researchers reflexively think of
the Kaluza fifth dimension as compact and microscopic.

It is important to bear in mind that this work is entirely
classical, a treatment of general relativity in 5 dimensions.
The entirety of the mathematics is simply to write general
relativity in 5 dimensions instead of 4, and to set to zero
derivatives with respect to the 5th dimension. When this is
done, 4D general relativity and classical electrodynamics
are reproduced perfectly. The debate ensues about what this
mathematics “means.” Does it mean that the 5th dimension
is “real”? Is it compact? Is it microscopic? Fortunately, since
we have force equations in this theory, the answer to these
philosophical questions are irrelevant to testable predictions.
Some of those predictions are provided here.

The results here cannot be constrained by particle acceler-
atormeasurements of subatomic structure, just as such exper-
iments cannot constrain general relativity or the Maxwell
equations. Indeed, the validity of a classical theory of charged
particles is confined only to results independent of elementary
particle structure [10]. Certainly, the Maxwell equations and
the Einstein equations describe macroscopic fields whose
underlying reality is quantum, yet still yield testable predic-
tions. So, too, dowe apply the classical 5D theory, in the hopes
that it can still yield testable predictions independent of
atomic structure. Rohrlich [10] assures us that classical theo-
ries can yield valid descriptions of atomic systems in those
cases where the result does not depend on assumptions of
the atomic structure, and where the results are convergent.

Even so, many of the references in the Kaluza literature
adopt the traditional classical field equations and the cylinder
condition, while opining in the text of a microscopic, compact
fifth dimension. Themath is still classical, but classical thinking
is abandoned. What are naturally interpreted as classical long-
range gravitational, electromagnetic, and scalar fields, are
reinterpreted to be the “n = 0” modes of a Fourier expansion
of fields, on a manifold with a compact 5th dimension [5].
Ad hoc quantum considerations are laid on the classical the-
ory, and Planck’s constant emerges amid new free parameters.

This seems to violate the spirit of a consistent classical
theory of charged particles, as enunciated by Rohrlich. Corre-

spondingly, we make no assumption that the fifth dimension
is compact, since that is not necessitated by the Kaluza field
equations or by the cylinder condition [11]. This work is
not the “Kaluza-Klein” theory, but the strictly classical
Kaluza theory of 5D general relativity. The conceptual frame-
work we adopt for the mathematics is that the fifth dimen-
sion is open and macroscopic, like the other four of
spacetime. No macroscopic classical experiment contradicts
that assumption, and classical theories can only be tested in
classical experiments. As we will see, the cylinder condition
produces a nontrivial constant of the motion irrelevant to
compact dimensions.

The unique nature of the fields in 5D general relativity
and their mutual coupling are revealed in the Kaluza
Lagrangian:

L = g1/2
c4ϕ
16πGgαβRαβ −

ϕ3

4μ0
gαμgβνFαβFμν

� �
, ð1Þ

where G is the gravitational constant, μ0 is the permeability
of free space, c is the speed of light, Rμν is the Ricci tensor,
Fμν ≡ ∂μAν − ∂νAμ is the electromagnetic field strength
tensor, g is the determinant of gμν, the metric tensor, and
the gravitational field equations are obtained from variation
with respect to gμν. ϕ is a new scalar field necessitated by
the 5D metric hypothesis. We can call this the “long-range
Kaluza scalar field.” It is clear that the 4D limit of the theory
occurs when ϕ⟶ 1.

The English language Kaluza literature of the late 20th
century (see Ref. [11] for a review) contains variations in
the field equations and Kaluza Lagrangian. The correct form
of the Kaluza Lagrangian was obtained by Refs. [12, 13], and
their result was verified using tensor algebra software [14].
Ref. [13] also obtains the correct curvature tensors, while
ref. [12] has some minor errors in the 5D Ricci tensors.

The scalar-electromagnetic couplings make the Kaluza
theory unique among scalar-tensor theories and markedly
different from the Brans-Dicke theory. The Kaluza Lagrang-
ian contains aspects of the Bekenstein scalar-electromagnetic
theory [15], with a variable vacuum permittivity, although
Bekenstein did not start from a Lagrangian, and wrote in
terms of a variable fine structure constant. The Kaluza
Lagrangian (1) also contains aspects of the Brans-Dicke
scalar-tensor Lagrangian [16, 17] and appears formally iden-
tical when the BD parameter ω = 0. In each case, the scalar
field can be viewed as a variable gravitational constant.

The correspondence between the BD theory and neutral-
matter 5-dimensional Kaluza general relativity cannot be
framed in terms of the BD free parameter ω. The BD ω cor-
responds to a scalar field kinetic term in the Lagrangian,
which is obviously not present in (1). It arises in the BD the-
ory to generalize conformal transformations of (1), written in
the “Jordan frame”, to a coordinate system in which the sca-
lar field vanishes from the Ricci tensor term, the “Einstein
frame.” Yet, this transformation does not change the physics,
because test particles still move on geodesics of the Jordan
frame. Formally, the BD ω term seems only to add an
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awkward, second scalar-field energy-momentum tensor to
the BD gravitational field equations.

More importantly, a 4D conformal transformation of the
5D metric would impact the other terms in the Kaluza
Lagrangian. This is because the identification of the 4Dmetric
and electromagnetic potentials relies on the presence of a scalar
field. A transformation of the scalar field implicates a transfor-
mation of the other fields in 5D. Put another way, the identifi-
cation of the electromagnetic field in 5D is tantamount to the
Jordan frame. We are free to work in the 5D Einstein frame,
as in Ref. [12], but we find the Jordan frame more intuitive.

Treatment of the 5D sources in the field equations varies
in the literature. Kaluza and subsequent authors typically
assumed weak specific charges in the source terms, to avoid
conceptual issues or deviations from standard physics at high
specific charges. By specific charge, we mean the ratio of elec-
tric charge to mass of a body. In classical theory, charge is a
specific quantity that can go smoothly to zero, and the charge
carriers are not quantized, consistent with the demand that
the classical predictions be independent of the particle struc-
ture. The prior work [2] established a comprehensive treat-
ment of source terms for all specific charges.

Although the 5D geodesic equation has been long known
and well-studied [7, 13, 18, 19], the corresponding energy-
momentum tensor was obtained only recently [2]. General
covariance of the 5D field equations, and the requirement
that the source term be a 5D tensor to match the 5D Einstein
tensor, is essential to establishing the correct 5D energy-
momentum tensor corresponding to the 5D geodesic equa-
tion. When 5D covariance of the source terms is established,
unique “saturation” effects emerge in the source terms. The
saturation effects are such that the coupling of a test body
to either the gravitational, electric, or scalar forces can vary
with its specific charge.

In this work, we examine the field equations and source
terms developed in [2] and the coupled equations of gravity,
the electric field, and the scalar field. We recover the intrigu-
ing result, originally described by Dicke [20, 21], that the
scalar field coexists with the Newtonian gravitational field,
but may masquerade as gravity. Furthermore, the mass-
energy of the Kaluza scalar field contributes to the total effec-
tive mass wemeasure through Kepler’s laws, so that planetary
gravitating mass comprises rest mass “clothed” by scalar field.

We provide an identification of scalar charge and relate
it to electric charge and rest mass. We encounter a new
physical length scale of the scalar field of a body of mass
M and electric charge Q, Ls = μ0Q

2/M, that is also new to
the Kaluza literature.

We find that the Kaluza theory implies an electrogravitic
buoyancy force around planet-sized masses for electrically-
charged test bodies. This is because the planetary scalar field
is positive and acts uniformly outward on scalar charges, while
the scalar charge is itself quadratic in the electric charge. The
predicted magnitude for the effect is large, perhaps too large
to be true. Yet, if so, it would provide the first experimental
falsification of a prediction stemming from the Kaluza
hypothesis. Until now, the theory has always reproduced
known classical physics in the limit of a constant scalar field,
and the Kaluza theory has limited freedom of parameters.

We find that the saturation effects in the source terms
introduced in [2] act to alter the nature of the scalar coupling
in high specific charge environments, so that the Kaluza sca-
lar field may masquerade as the electric force in the parame-
ter regimes of atomic systems. Furthermore, it appears that
the scalar potential goes to zero for point particles, suppress-
ing the scalar force altogether for atomic systems.

In the following development, we consider solutions to the
field equations obtained in ref. [2] and identify gravitational,
electric, and scalar charges. We provide static, spherically-
symmetric solutions for the scalar, electric, and gravitational
potentials around charged, massive bodies. Three limits in
the solutions are encountered for different values of specific
charge of the sources: neutral, weak charge states, and strong
charge states. From the potentials and the charges, the scalar,
electric, and gravitational forces between charged bodies are
established. An electrogravitic buoyancy force is identified.

2. Overview of Field Equations with Sources

Let us summarize some key general results from [2] that
establish the 5D field equations in the presence of sources.
Then, we will obtain solutions for successive cases of neutral,
weakly-charged, and strongly-charged matter.

The gravitational field equations for gμν in the presence
of electromagnetic and scalar fields, and matter, are ([2]
equation (21)):

Gμν = ϕ−1Tϕ
μν +

8πG
μ0c

4 ϕ
2TEM

μν + 8πG
c3ϕ

dτ
ds

ρ

g1/2 gμα

dxα

dt
Uν, ð2Þ

where ρ is the mass density of the sources,Uν is the covariant
4-velocity of the sources, ds is the 5D length element, dτ is
the 4D proper time, and t is the ordinary time coordinate.
Also,

Tϕ
μν ≡ ∇μ∇νϕ − gμν∇α∇

αϕ ð3Þ

is the Kaluza scalar field energy-momentum tensor, and

TEM
μν ≡ gαβFμαFνβ −

1
4gμνFαβF

αβ ð4Þ

is the electromagnetic energy-momentum tensor. Greek
indices range over the 4 coordinates of spacetime.

The Kaluza modification (2) to the Einstein equations
comes in the scalar field energy-momentum, in the scalar
field coupling to electromagnetic energy momentum, and in
the term in dτ/ds in the material energy momentum. The
Kaluza scalar field behaves like a variable gravitational con-
stant, as in the Brans-Dicke scalar-tensor theory, except with
respect to its coupling to electromagnetic energy momentum.

The term in dτ/ds relates the 4D and 5D length elements
of a body; a key result of this work will be our expression for it
in terms of ϕ.

The electromagnetic field equations for Aμ in the pres-
ence of gravitational and scalar fields, and electrically charged
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matter, are ([2] equation (25)):

∇ν ϕ3Fνμ� �
= μ0

ρ

g1/2
kc~U5

dxμ

dt
: ð5Þ

The quantity ρkc~U5 is identified with the electric charge
density, reproducing the expected source for the Maxwell
equations. We shall define ~U5 shortly. The Kaluza modifica-
tion to the Maxwell equations comes in the scalar field, which
acts as a variable dielectric constant, similar to the Bekenstein
theory [15]. As an aside, the quantity ϕ3Fμν emerges as an
invariant under conformal transformations [12].

The constant k is the characteristic electrogravitic scale
parameter of the Kaluza theory, given in MKS units as [2]:

kc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGε0

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πG/μ0c2

p
≃ 1:7 × 10−10C/kg: ð6Þ

It is closely related to the ADM mass [22].
The scalar field equation for ϕ in the presence of gravita-

tional and electromagnetic fields, and electrically charged
and neutral matter, is ([2], Eqs. (24) and (26))

−3∇α∇
αϕ = μ0k

2c
ρ

g1/2
~U
2
5

ϕ2
ds
dt

−
8πG
c

dτ
ds

ρ

g1/2
dτ
dt

−
3
4 ϕ

3k2FαβF
αβ:

ð7Þ

This equation is new to physics. Therefore, our inferences
about it rely on its mathematical emergence alongside the
electromagnetic and gravitational fields, which we can con-
strain with known physics. Note that equation (7) for ϕ is
dynamical, even though ϕ enters only algebraically in the
Lagrangian (1). Charged matter and neutral matter enter as
sources for ϕ with the opposite sign.

Note also that (7) contains the trace of the field equations
(2). In the absence of electric charge and electromagnetic
fields, the Kaluza scalar field will act to neutralize the scalar
curvature R = Rμνg

μν by enforcing R = 0 against whatever
sources of matter exist in spacetime. The scalar field will play
a role in the total energy budget of spacetime, and in this way,
masquerade as gravity [16], as we will see shortly.

Now let us turn to the 5D interval ds. The 5D proper
velocity is defined by

~U
a ≡

dxa

ds
, ð8Þ

where xa is a 5-vector of coordinates and where small roman
indices range over the 5 coordinates of spacetime plus the
fifth coordinate x5.

We now consider anew the 5D length element given by
equation (8) of ref. [2]:

εa~a
2ds2 = ~gabdx

adxb = gμνdx
μdxν + εϕϕ

2 dx5 + kAνdx
ν� �2,
ð9Þ

where ~a is a constant. In the 5D length element (9), the

parameters εa, εϕ = ±1. They represent that the 5D hypothe-
sis does not fix the sign, timelike, or spacelike of the 5D
length element, εa, or of the fifth metric component, εϕ.

Variation of the εa and εϕ can lead to differing effects in
the electric charge and mass compared to what we will report
here. We find that a nonimaginary mass requires that εa = +1
and εϕ = +1, implying that both the 5D length element and
the signature of the fifth dimension in the metric are timelike.
We avoid imaginary-mass solutions because of their absence
from planetary and laboratory physics.

Results in the Kaluza literature often indicate the signa-
ture of the fifth dimension is spacelike. However, the form
of the Kaluza Lagrangian (1) seems to suggest that the signa-
ture of the fifth coordinate is timelike [14]. An experimental
investigation [23] also lends support to that conclusion, by
testing for the existence of a rest frame for motion along
the fifth coordinate. We therefore adopt εa = εϕ = +1 in the
following, but the alternative results can to some extent be
inferred from results reported here.

The free parameter ~a in the 5D length element must be
fixed by correspondence to known physics. In fact, this is
the only free numerical parameter in 5D general relativity.
As with the εa and εϕ, differing choices of ~a can lead to differ-
ent effects in the couplings than reported here.

We recall the cylinder condition, that no fields depend on
the fifth coordinate. Applying a standard result of general
relativity, we see that the absence of a dependence of the
metric on the fifth coordinate, ∂5~gab = 0, implies that that
the fifth covariant component of ~U

a
is a 5D constant of the

motion ([2] equation (9)):

~U5 = ~g5b ~U
b = ϕ2 ~U

5 + kAν
~U
ν

� �
= constant: ð10Þ

This is a standard result of the Kaluza theory. The cylin-
der condition implies a nontrivial constant of the motion,
and this reinforces our choice to adopt a classical perspective
and treat the cylinder condition as an imposed boundary
condition, somewhat akin to a time-independent boundary
condition that would imply a conserved energy. There is no
suggestion here of a compact fifth dimension.

The constant (10) is related to ~a through (9):

~a2 = cdτ
ds

	 
2
+

~U
2
5

ϕ2
, ð11Þ

where the proper time τ is defined as gμν ≡ c2dτ2.
At this point, we turn toward new results by noting first

from (1) that ϕ⟶ 1 in the 4D limit. Therefore, we con-
template a Newtonian-style perturbation expansion of ϕ
such that

ϕ ≃ 1 + ξ +O ξ2
� �

, ξ≪ 1: ð12Þ

We will verify at the end that ξ≪ 1.
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Let us now fix the constant ~a from (11). In the limit that
~U5 ⟶ 0, then cdτ/ds⟶ 1. Similarly, we know that asymp-
totically from (12), ϕ⟶ 1. Therefore,

~a2 ≡ 1 + ~U
2
5: ð13Þ

We see that ð1 + ~U
2
5Þds2 plays the same role in 5D as c2dτ

does in 4D, an invariant length element, with a characteristic
velocity.

Now let us use (12) and (13) to rewrite (11):

cdτ
ds

	 
2
= 1 + ~U

2
5 1 − ϕ−2
� �

= 1 + 2ξ~U2
5 +O ξ2

� �
≃ 1 + 2ξ~U2

5:

ð14Þ

This is a new expression in the Kaluza theory and one
whose implications we will pursue here. It acts as a coupling
coefficient and manifests interesting saturation effects in the
coupling to fields. For neutral bodies, ~U5 = 0, and dτ/ds = 1.
Yet, for electrically charged matter, the coupling becomes a
function of the scalar field perturbation ξ.

The 5D geodesic equation yields a force equation in terms
of 4D quantities ([2] equation (12))

dτ
ds

dUν

dτ
+ Γν

αβU
αUβ

	 


= k~U5g
νμFμαU

α + ~U
2
5

ds
dτ

	 

∂αϕð Þ
ϕ3

gνα −
UνUα

c2

� �
,

ð15Þ

where the 4D proper velocity of a particle is

Uμ ≡
dxμ

dτ
: ð16Þ

We see in (15) the 3 terms corresponding to the 3 forces:
gravitational, electromagnetic, and scalar. The scalar force
operates orthogonal to the 4-velocity of a test body, account-
ing for Dicke’s statement that scalar forces accelerate at
constant energy.

This completes our summary of the governing equations
for scalar fields and forces. In subsequent sections, we obtain
solutions for 3 different parameter regimes.

3. Cosmological Scalar Field

Early in development of the Kaluza scalar field theory, it was
realized that Kaluza’s original assumption that ϕ⟶ 1 was
incompatible with the scalar field equation (7). When sources
ρ⟶ 0, an unnatural constraint is implied for the electro-
magnetic field, FαβFαβ = 0. Conversely, the existence of
ambient electromagnetic fields will influence ϕ, driving it
away from 1. Yet, we may ask how ϕ⟶ 1 in a self-
consistent fashion.

Our analysis of ϕ must recognize the hierarchy of length
scales at issue. It is similar in this respect to gravity. On labo-

ratory length scales and locally in any gravitational field, the
gravitational field is the Minkowski metric. On cosmological
length scales, the gravitational field is the Robertson-Walker
metric, and on noncosmological timescales, the Robertson-
Walker metric of the universe approximates the Minkowski
metric. Yet, aroundmassive objects, we encounter other grav-
itational fields, such as the Schwarzschild metric or the Kerr
metric, on much shorter length scales.

All of these gravitational fields exist simultaneously, and
they overlap in space and time. How are they distinguished?
By the length scale or timescale under consideration. Just as
the gravitational field can be viewed as either strongly curved
or flat, depending on the length scale under consideration, so
it is with the Kaluza scalar field. That is, regions of local scalar
field variation where FαβFαβ ≠ 0 can coexist with scalar fields

on different length scales, for which FαβFαβ = 0.
Indeed, this is the case when we consider scalar field

cosmology. We recall that long-range scalar field research
was founded on the study of a variable gravitational constant,
which is cosmological by definition. Therefore, if ϕ⟶ 1
cosmologically, if it is to be identified with the gravitational
constant in the Lagrangian (1), then the value of Fμν in that
limit must also be cosmological.

We find that the scalar field equation (7) for the cosmo-
logical conditions of a Lambda-Cold-Dark-Matter universe
implies a cosmological scalar field ϕc:

ϕ3c =
μ0ρcc

2

3B2
c

, ð17Þ

where ρcc
2 is the cosmological energy density and Bc is a

cosmological magnetic field. Clearly, this involves the ratio
of a matter energy density to a bulk cosmological magnetic
energy density.

The scalar field equation does allow a consistent, constant
scalar field solution that can be identified cosmologically with
the gravitational constant. Yet, it also seems to imply and
require a cosmological magnetic field to support the Kaluza
scalar field. The implied values of Bc, above 10−10 T, seem
consistent with intergalactic or primordial magnetic field
values. At these levels, Bc is negligible in the cosmological
energy budget, and it will be lost in the cosmic background
radiation component. Yet, the cubic dependence of ϕc on
those parameters results in a very weak dependence, and sta-
bility of ϕ around 1 for a range of cosmological parameters.

Therefore, ϕ is set to ~ 1 by cosmological parameters. It
can be approximately constant over large length scales.
Variations from the flat space value are observed around plan-
etarymasses and local bulk electromagnetic fields, just as with
gravity. That is how the scalar field will be approached here.

4. Identification of the Scalar Charge

The equation of motion (15) has been studied by various
researchers, including [13, 18, 19]. The term in brackets on
the RHS of (15) that is quadratic in Uα arises from the trans-
formation of derivatives with respect to s, to derivatives with
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respect to τ, and using (10). This is indeed the form expected
for a scalar field force [24].

The term linear in ~U5 in (15) must be identified with the
electric charge, Q, of a body of rest mass M, to correspond
with the Lorentz force law; this identification is standard in
the Kaluza literature. The coefficient of the gravitational
terms in (15) is identified with mass, and the coefficient of
the scalar field term is identified as the Kaluza scalar charge.

We therefore identify the three charges associated with
the three forces: mass for gravity, electric charge for electro-
magnetism, and a new scalar charge for the scalar force.
Multiplying (15) through by Mc and using (14):

M
cdτ
ds

≃M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2ξ~U5

2
q

≡ ~M⟶mass, ð18Þ

Mck~U5 ≡Q⟶ electric charge, ð19Þ

Mc~U
2
5
ds
dτ

≃
Mc2 ~U

2
5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + 2ξ~U2
5

q ≡ ~S = Q2

~Mk2
⟶ scalar charge:

ð20Þ
The assignments of mass (18) and charge (19) are com-

mon in the Kaluza literature, e.g., [13, 18]. The expression
for the scalar charge is more variable in the Kaluza literature;
(20) is a new result, as is the ξ dependence of (18).

The expression for mass (18) implied by (19) is seen to
have a peculiar dependence on the electric charge and the
long-range scalar field ϕ. This is to be expected. It is charac-
teristic of long-range scalar fields that, if they interact with a
particle, the particle mass must be a function of the scalar
field [20, 21]. In this theory, the scalar field brings to life a
mass variation for charged bodies. However, since ξ≪ 1,
the variation is small for all charged systems. Nomacroscopic
experiment should show this effect.

An effective mass of the form (18) is common in the
Kaluza literature, but with variation in form. The form used
in (18)matches closely ref. [18] and is similar in nature to that
in ref. [13]. Ref. [12] uses an entirely different form. The work
presented here is unique in its parameterization of the Kaluza
scalar field in terms of ξ, via (12), and will lead to unique
results. Previous research on the Kaluza scalar field has not
considered the implications of aNewtonian-like perturbation.

The form of (18) is positive-definite, due to our choice of
εa in (9). It ascribes an increase in mass to interaction with
the scalar field. Choosing the opposite sign of εa would lead
to a decrease in mass, but also potentially to imaginary mass.
The concept of imaginary mass has a place in physis, but we
wish to avoid it here on the grounds that planetary masses are
understood to be real numbers, and there is no accepted
interpretation of the gravitational field of an imaginary mass.

Electric charge is identified in (19) with a 5D constant of
the motion, ~U5, and is functionally invariant for all charge
states. The constant ck (6) forms a characteristic charge-to-
mass ratio. It is better known as the ADM mass [22] when
combined with the quantum of electric charge. The preced-
ing analysis may indicate why no particle with the ADM
mass exists. It is not a breakdown of the classical theory,

but is a misappropriation of an intrinsic quantity, a universal
charge-to-mass ratio.

Note from (10) that a term of ~U5 depends on particle 4-
velocity. Therefore, the 5D invariant electric charge Q∝ ~U5
can be understood as a sort of canonical electric charge,
analogous to the canonical momentum of a particle in an
electromagnetic field. However, the motional charge is
proportional to kAμ, which is typically very small, perhaps
too small to measure.

The scalar charge expression (20) takes more variable
forms in the literature, because there is no mapping to known
physics of the Kaluza scalar force. Its form was very much an
open question in the monopole solution by ref. [7]. The
Kaluza scalar field perturbation ξ≪ 1, and so for many elec-
trically charged objects, the scalar charge is ∝Q2/M.

For highly charged objects, when ~U5 ≫ ξ−1, the scalar
charge saturates to a value linear in Q:

saturated scalar charge⟶ Mc2 ~U5ffiffiffiffiffi
2ξ

p , ~U5 ≫ ξ−1: ð21Þ

That is, the scalar coupling becomes proportional to the
electric charge for high-specific-charge objects such as
elementary particles. This means that the scalar force merges
with the electric force, and the scalar force can masquerade as
the electric force. A similar electrical-masquerading effect is
also seen for the saturated gravitational force.

saturatedmass⟶M ~U5
ffiffiffiffiffi
2ξ

p
, ~U5 ≫ ξ−1: ð22Þ

The implication of these results will be developed in
greater detail below.

These charges, and the associated source terms in the
gravitational, electromagnetic, and scalar field equations,
can also be understood in terms of fluxes of an energy-
momentum-charge 5-vector. It is analogous to how the
energy-momentum tensor for 4D dust can be understood
as the flux of an energy-momentum 4-vector. In that case,
the energy corresponds to a momentum in time, in that it
arises from a change in the time coordinate, just as momen-
tum arises from a change in the space coordinate.

The spacetime flux of the 5th component of the 5-
velocity corresponds to the electric current 4-vector. The
change along the 5th coordinate of the 5th component of
the 5-velocity corresponds to the scalar charge. The 5th com-
ponent of the 5-velocity corresponds to the energy bound
into charge, just as the time component of the 5-velocity
describes the energy bound into the rest mass. So, we can
rephrase the identifications (18), (19) and (20):

(i) Gravitational source current ∝ ~MUμUν

(ii) Electromagnetic source current ∝QUμ

(iii) Scalar source current ∝Q2/ ~M
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5. Calculation of Scalar Fields

In this section, we solve the general field equations (2), (5) and
(7) for time-independent, spherically-symmetric solutions.
The Kaluza scalar field is treated as a small perturbation, like
the gravitational field. The gravitational, electric, and scalar
fields are obtained for nonrelativistic sources. Due to the
dependence of the scalar charge (20) and mass (18) on the
electric charge, 3 successive limits of specific charge are inves-
tigated: neutral matter, achievable laboratory specific charge,
and specific charge characteristic of atomic systems.

The general field equations given above for gravitational,
electromagnetic, and scalar field are solved now under a
series of typical constraints, which we enumerate here for
convenience:

(1) Spherical symmetry: fields depend spatially only on a
radial coordinate, r

(2) Time independent: time derivatives vanish

(3) Magnetic fields vanish, so FαβFαβ = −2E2/c2 when
electric charges are present

(4) Sources are at rest

(5) Test particle speeds v≪ c

(6) Consider weak perturbations of the gravitational
field, gμν ≃ ημν + hμν, hμν ≪ 1. With regard to
gravity, this is a Newtonian limit

(7) Consider weak perturbations of the scalar field, such
that ϕ ≃ 1 + ξ, ξ≪ 1

(8) The metric signature is ð+, − , − , − Þ
Constraint no. 5 implies dt/dτ ≃ 1. It also implies that the

gravitational force term in the geodesic equation (15) is dom-
inated by Γν

tt , the time-time components of the connection.
These are of course the components of relativistic gravity that
accounts for the Newtonian limit.

Constraints nos. 2, 6, and 8 imply ∇μ∇μ = −∇2, where ∇2

is the ordinary 3-space Laplacian operator.
Under the assumptions above, our task to solve the coupled

gravitational, electromagnetic, and scalar field equations
reduce to solving coupled equations for 3 scalar potentials:

(i) The scalar perturbation ψ of the time-time compo-
nent of the metric, gtt ≃ 1 + ψ

(ii) A radial electric field EðrÞ, given by the radial gradi-
ent of the Coulomb potential

(iii) The perturbation ξ of the Kaluza scalar field, ϕ ≃ 1 + ξ

We will conduct our analysis by investigating first
integrals of the field equations. We will apply the field
equations at planetary and atomic scales. Our application
to atomic scales will follow the prescription for classical pre-
dictions which do not rely on atomic structure, and which
are well behaved when an artifical size parameter goes to
zero [10]. We examine volume integrals of the sources and

relate our findings back to Newton’s law of gravity and
Coulomb’s law.

Let us first establish a general result which will be of use
throughout these calculations. We write the Ricci tensor
suggestively in terms of a divergence:

−Rμν ≡ −Rα
μαν = ∂νΓ

α
μα − ∂αΓ

α
μν + Γβ

μαΓ
α
βν − Γβ

μνΓ
α
αβ

= −g−1/2∂α g1/2Γα
μν

� �
+ ∂μ∂ν ln g1/2 + Γβ

μαΓ
α
βν,

ð23Þ

where the second equality follows from a common identity
for Γα

αβ in terms of the determinant g of the metric. The first
term is then the covariant divergence of Γα

μν, as if it were a set
of ten 4-vectors, each of index μν.

5.1. Scalar Field of a Planet. Now we consider the simplest
case of an electrically-neutral body of mass M, anticipated
to be of planetary magnitude. This corresponds to the case
~U5 = 0. Electric charge and electric fields vanish, so the prob-
lem reduces to two unknowns: the metric perturbation, ψ,
and the scalar field perturbation, ξ. In this case, the mass
(18) reduces to the rest mass M, and the electric and scalar
charges (19) and (20) are zero.

We make a typical linearized expansion about the
Minkowski metric, but in spherical coordinates. Recall that
the diagonal components of the Minkowski metric ημν are

ðc2,−1, −r2, −r2 sin2θÞ, so that in this linearization, ημν is
not constant.

As usual, the time-time component of the metric, gtt ≃
1 + ψ, where ψ≪ 1. The other components of the metric will
also have perturbations, and we choose to work in standard
form of the static, isotropic metric. In this form, there is no
perturbation to the angular components of the Minkowski
metric; the perturbations are only to the components ηtt
and ηrr [25]. Without solving the field equations for the rr
perturbation, we can safely assume it will be of the same
order of magnitude as ψ. Therefore, we can write the
perturbed determinant of the metric:

g1/2 = r2 sin θ 1 + ψð Þ + O ψ2� �
: ð24Þ

Let us start with the scalar field equation (7) under the
foregoing assumptions. The Kaluza scalar field has the pecu-
liar quality of acting to neutralize the scalar curvature R in
spacetime arising from the presence of neutral matter. Recall
that we are linearizing such that ϕ ≃ 1 + ξ:

∇2ξ = 1
g1/2

∂i g1/2∂iξ
� �

= −
8πG
3c2

ρ

g1/2
+ O ξ2
� �

: ð25Þ

Now, we are in a position to integrate (25) for the scalar
perturbation ξ. As is usual in a linear treatment, the metric
and scalar potential are only carried to zeroth order in the
source terms [27]. Therefore, in this calculation, we can
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define the total rest mass M in these coordinates simply as

M ≡
ð
ρd3x: ð26Þ

Using the definition (26), let us now integrate (25) over
all space and apply the Stokes theorem to obtain

∂ξ
∂r

����
planet

= −
2
3
GM
r2c2

: ð27Þ

Here is the interesting result that the Kaluza scalar field
perturbation is the same size as the metric perturbation. As
Dicke [20, 21] noted, the strength of the scalar field is as weak
as gravity, in that ξ≪ 1 like ψ≪ 1. For the purposes of a
bouyancy concept, we realize that the scalar potential is as
large as the gravitational potential. We shall see if the forces
are as well.

The magnitude of ξ in (27) is consistent with the assump-
tion (12). It is perhaps counter-intuitive that the dimension-
less Newtonian gravitational potential ψN ~ GM⊕/R⊕c

2 at the
surface of the earth is ~ 10−10, a vanishingly small number.
Yet, its gradients create forces of engineering significance
because of a coupling into mass energy Mc2, which is a large
number. We are contemplating something similar for the
Kaluza scalar field.

Equation (27) is a main result of this work, but is familiar
from Brans and Dicke (BD) [16] for ω = 0. The correspon-
dence is because the BD theory has essentially the same equa-
tion for the scalar field, (7), based on their observation that
the simplest covariant equation for the BD scalar field
involves the D’Alembertian equated to the trace of the matter
energy-momentum tensor.

Now let us consider the gravitational field equations (2).
The Kaluza scalar field in the absence of electric sources acts
to maintain the scalar curvature R at zero, per (7). Then, we
can write the gravitational field equation for Gtt in (2), under
the listed constraints:

Gtt = Rtt = ∇2ξ + 8πG
c2

ρ + O ψ2� �
= 16πG

3c2 ρ + O ψ2� �
+ O ξ2
� �

,

ð28Þ

where we used the scalar field equation (25) in the last step
and where we are now carrying terms linear in both ψ and ξ.

Note that only the components Γ
μ
tt enter Newtonian

dynamics. Therefore from (23), we need only to evaluate
Rtt to get an equation for ψ. For Rtt , the last two terms on
the RHS of (23) vanish. The term in g1/2 vanishes with the
time derivatives. We assert, without showing here, that the
term quadratic in the connections is of second order in the

metric perturbations, Γβ
tαΓ

α
βt = 0 + Oðψ2Þ. Therefore,

Rtt = g−1/2∂i g
1/2Γi

tt

� �
+ O ψ2� �

: ð29Þ

It is clear, then, that a spherical volume integral of Rtt will

pick off only the radial component Γr
tt of Γ

i
tt . Therefore,ð

Rttg
1/2d3x ≃

ð
∂i g

1/2Γi
tt

� �
d3x =

þ
Γr
ttr

2dΩ: ð30Þ

We evaluate this component for the perturbed metric
to find

Γr
tt =

1
2 ∂rψ + O ψ2

� �
: ð31Þ

The gravitational field equation (28) can now be readily
integrated over all space, using (30), (31) and (26), to obtain

∂ψ
∂r

����
planet

= 8
3
GM
r2c2

: ð32Þ

Let us now compare key features of the two potentials, ψ
(32) and ξ (27). One is that the magnitude of the scalar poten-
tial is 1/4 the gravitational potential. Another is that the signs
are opposite, with ξ > 0, whileψ < 0, as usual. This means that
the scalar potential associated with the mass M is repulsive,
and this is the origin of the electrogravitic bouyancy concept
derived below.

A third feature is that the expression (32) for the gravita-
tional field in the presence of a scalar field differs from the
usual Newtonian result, ψN = 2GM/rc2. The difference
between these two is that in the Kaluza picture, the effective
gravitational mass-energy of a planet includes a contribution
of mass-energy from the Kaluza scalar field bound to the
mass. There is, therefore, a mass “clothed” by the scalar field,
and which accounts for Keplerian dynamics, and a “bare”
mass. Therefore, we can make the identification

GMð Þclothed =
4
3 GMð Þbare: ð33Þ

The Kaluza scalar field stores 1/3 the mass-energy as the
matter it is bound to, and the total gravitating mass-energy is
increased above the bare mass by this amount. We keep the
factorG because a redefinition ofM in these terms is indistin-
guishable from a redefinition of G.

In his analysis of long range scalar fields [20, 21], Dicke
discussed how the scalar force would “masquerade” as gravity.
He specifically meant that the action of the scalar force would
be indistinguishable from gravity. The Kaluza scalar field
masquerades here as gravity, although in a different sense than
Dicke meant. Here, in terms of the potentials, the action of
scalar field mass energy is indistinguishable from the action
of material mass energy, insofar as Keplerian dynamics is
determined by the gtt component of the metric.

The similarity to Dicke’s conception of a long-range
scalar field breaks down when we consider the nature of
matter coupling to that field.

5.2. Scalar Fields in the Lab. Now we consider the Kaluza
long-range scalar field around a body of massM and electric
chargeQ, anticipated to both be of magnitudes that are acces-
sible in laboratory experiments.
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This corresponds to the case ~U5 =Q/Mck≪ ξ−1. As in
the neutral matter case, cdτ/ds ≃ 1, and the mass (18) reduces
to the rest mass M. There is now an electric charge Q and a
scalar charge S =Q2/Mk2.

Let us start with the Maxwell equations, (5):

g−1/2∂r g1/2ϕ3Er/c
� �

= μ0ρck~U5, ð34Þ

where Er is the radial component of the electric field. Recall
that ϕ3g1/2 = r2 sin θ + OðψÞ + OðξÞ. For the electric field
equation, we will write explicit terms to zeroth order in the
perturbations, but still keep track of the ordering.

Let us introduce the total charge integral Q, analogous to
the mass integral in (26):

Q ≡
ð
ρck~U5d

3x: ð35Þ

Let us use this definition of the electric charge to integrate
(34) over all space and use the Stokes theorem to obtain

Er = 1
4πε0

Q
r2

+ O ψð Þ + O ξð Þ: ð36Þ

This is clearly the typical Coulomb expression. The
perturbation in ψ is a normal Newtonian perturbation to
the relativistic Maxwell equations.

A perturbation effect from the Kaluza scalar field would
be new. Yet, because of the presumed small size of ξ, its
effects are likely to be minor and masked as an effective
dielectric constant, as in the Bekenstein theory of scalar-
electromagnetic coupling [15]. Or they might be difficult to
distinguish also from curvature effects in ψ, which are of
the same magnitude.

Let us now consider the Kaluza scalar field perturbation
described by (7) for this case:

3
g1/2 ∂r g1/2∂rξ

� �
= μ0k

2c2
ρ

g1/2
~U
2
5

ϕ2
−
8πG
c2

ρ

g1/2

+ 3k2
2c2 ϕ

3E2 + O ξ2
� �

:

ð37Þ

We can use the zeroth order expression for the electric
field from (36) in (37). We see that it is essentially the usual
electrostatic mass, ME , defined as the integral of the electro-
static energy density over all space:

MEc
2 ≡
ð 1
2 ε0E

2d3x: ð38Þ

Now let us define the scalar charge integral S, as we did
for mass (26) and electric charge (35).

S ≡ c2
ð
ρ~U

2
5d

3x: ð39Þ

Such an expression for the scalar charge is unique and has

no analog in conventional physics. Its units are energy. It can
be understood as the integral of the specific charge squared
per unit rest mass of the source. For a uniform source, we
can write

S = Q2

Mk2
ð40Þ

consistent with (20). We also see that this implies the
coupling coefficient for the scalar charge in (37) is μ0k

2 = 16
πG/c4.

Now, we can use these expressions to integrate the Kaluza
scalar field equation (37) over all space, to find

∂ξ
∂r

= μ0
12π

Q2/M
r2

−
2G
3c2

M
r2

+ 4G
c2

ME

r2
+ O ξ2
� �

: ð41Þ

The expression (41) for the scalar field perturbation has
some interesting features. One is that neutral matter sources
have the opposite sign as charged matter and as electric fields.
That is, electric charge and electric fields are attractive
sources of the Kaluza scalar field, while neutral matter is a
repulsive source of the scalar field, much like positive and
negative electric charges can act as attractive or repulsive
sources of the electric field.

Here also is a key result of this work, that a third electro-
gravitic length scale, μ0Q

2/M, appears alongside the two
length scales that characterize the Reissner-Nordstrom met-

ric, GM/c2 and ðQ2G/ε0c4Þ1/2. A third electrogravitic length
scale would seem to implicate new physics not anticipated
in electrodynamics and general relativity.

The term in Q2 in (41) will dominate laboratory scalar
fields. A typical laboratory capacitance might be 10−10 farad,
and typical lab voltages are 103 volts. Therefore, laboratory
charges Qlab ~ 10−7 coulombs. For sizes of order 1 meter and
masses of order 1 kilogram, the term in the scalar charge is
of order 10−22. This is much smaller than the planetary scalar
potential, of order 10−10, yet much larger than the mass term
in (41), of order 10−27. The term in the electrostatic massME
is even smaller. Therefore, we can approximate the laboratory
Kaluza long-range scalar field of a charged, massive object:

∂ξ
∂r

����
lab

≃
μ0
12π

Q2/M
r2

: ð42Þ

The scalar potential (42) can be compared with the weak
field solution of Chodos and Detweiler [7], which is similar
quantitatively to findings reported here, but is the opposite
sign because those authors choose the 5th coordinate signa-
ture to be spacelike. In that case, the scalar field behaves like
gravity and is attractive. That is also true of Ferrari’s sign
choice [13].

Let us now consider the gravitational field equation (2),
specifically the Rtt component. It has sources in matter,
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electromagnetic field, and scalar field energy.

Rtt −
1
2 ηttR ≃ Tϕ

tt +
8πG
μ0c

4 T
EM
tt + 8πG

c2ϕ
ρ

g1/2 : ð43Þ

The scalar field will act to maintain the scalar curvature R
according to (7):

R = −μ0k
2c2

ρ

g1/2ϕ

~U
2
5

ϕ2
−
3k2
2c2 ϕ

2E2: ð44Þ

The tt component of the scalar field energy-momentum
tensor is

Tϕ
tt = ∇2ξ + O ξ2

� �
= μ0

3 k2c2
ρ

g1/2
~U
2
5

ϕ2
−
8πG
3c2

ρ

g1/2

+ k2ϕ3E2

2c2 + O ξ2
� �

,
ð45Þ

where the second equality follows from (37).
The term in (2) in the tt component of the electromag-

netic energy-momentum tensor is

8πG
μ0c

4 ϕ
2TEM

tt = 8πG
c4

ϕ2
1
2 ε0E

2: ð46Þ

The field equation for ψ is obtained when we combine
(2), (44), (45), (46), (29) and (31):

1
g1/2

∂r g1/2∂rψ/2
� �

= ρ

g1/2ϕ
16πG
3c2 −

μ0
6 k2c2

~U
2
5

ϕ2

 !
: ð47Þ

The terms in the electric field have canceled.
Now, integrate (47) over all space and use Stokes theorem

with (26) and (39) to obtain

∂ψ
∂r

����
lab

= 8
3
GM
r2c2

−
μ0
12π

S
r2

≃ −
μ0
12π

S
r2
: ð48Þ

The mass expression in (48) is seen in the neutral matter
case, (32), but here, the M is understood to be of laboratory
dimensions. As discussed for (41), the term in M is of order
10−27 and negligible in the laboratory, as we expect for labora-
tory gravitational effects. Since the term in S is larger, it seems
to imply the scalar charge can swamp the matter charge in the
sourcing of the gravitational field. Yet, these considerations
are for laboratory scale only. It still appears no laboratory
charge could outweigh the Kaluza scalar field of a planet.

The scalar charge acts negatively as a source of gravita-
tional field in (48). The terms in M and S are also in the
expression for ξ, (41). In that expression, matter creates a
repulsive potential as we saw previously, and the scalar
charge is an attractive potential. Therefore, the scalar charge
and mass act oppositely as sources of the gravitational and
Kaluza scalar fields. A scalar charge source creates equal

and opposite perturbations of the metric and of the scalar
field, as seen by comparing (48) and (42).

Note that (41) and (48) sum to

∂ψ
∂r

+ ∂ξ
∂r

≃
2GM
r2c2

+ O ξ2
� �

+ O ψ2� � ð49Þ

which is the ordinary Newtonian potential in terms of the
bare mass.

5.3. Atomic Scalar Fields. We have seen that planetary ξ ~ 1
0−10, consistent with the perturbation expansion (12).
Laboratory-generated ξ ~ 10−22, much smaller still. Achiev-
able laboratory values of ~U5 ~ 103, as defined in (19). The

terms in ξ~U
2
5 in (18) and (20) are therefore negligible for all

values of ~U5 < 105. This means that the saturated limits (22)
and (21) of (18) and (20) are achieved only for very high
charge-to-mass ratios. Such ratios are only found in atomic
systems: the electron ~U5je ~ 1021 and the proton ~U5jp ~ 1018.
It appears the saturated limits (21) and (22) are appropriate
for atomic systems.

Following Rohrlich, we direct the classical theory at
elementary charged particles only insofar as we can make
predictions that are independent of particle structure, since
that is outside the domain of validity of the classical theory.
Yet, the classical theory can be used to address atomic sys-
tems in a structure-independent way. In practical terms, it
means assuming a structure of characteristic size r0 and then
letting r0 ⟶ 0. If the resultant quantity is finite and well
behaved, it is a valid calculation. If the result is infinite, then
it indicates a failure in the application of the theory. One
example of such failure, as pointed out by Rohrlich, is the
model of a point particle. If the classical model is a charged
sphere, then the electric field energy goes to infinity as the
sphere size goes to zero, and therefore, the point particle is
not a valid classical model of a charged particle.

In the limit that ~U
2
5 ≫ ξ−1, mass (18)⟶M ~U5

ffiffiffiffiffi
2ξ

p
, (22),

and scalar charge (20) ⟶Mc2 ~U5/
ffiffiffiffiffi
2ξ

p
, (21). Now there is a

formal convergence in that the mass, electric charge, and
scalar charge are all proportional to ~U5 and to the electric
charge. The 3 forces masquerade as the Coulomb electric
force at ultra-high specific charge states. We will calculate ξ
and then double check that our assumptions are satisfied,
and the saturation limit is correct.

The Coulomb electric force in this limit is the same as the
previous case, given by (36) to zeroth order in the perturba-
tions. There is no saturation effect present in the Maxwell
equations (5) or in the electric charge (19).

Consider now the Kaluza long-range scalar field equation
(7) once more, similar to (37), but with saturated charges:

3
g1/2

∂r g1/2∂rξ
� �

= μ0k
2c2

ρ

g1/2
~U
2
5ffiffiffiffiffi
2ξ

p −
8πG
c2

ρ

g1/2
ffiffiffiffiffi
2ξ

p

+ 3k2
2c2 ϕ

3E2 + O ξ2
� �

:

ð50Þ
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The second term on the RHS is of first order in ξ relative
to the first term, and so can be ignored, consistent with our
approximation of the sources of perturbations to only zeroth
order in those perturbations [27].

Now let us integrate (50) from a minimum radius r0,
which we nominally take to be 10−10 meters. The first term
on the RHS of (50) has a dependence on ξ, which we take
to be the value of ξ evaluated at the particle. We assume no
structure inside r0 and so take ξ0 to be the constant value of
ξ inside r0. It therefore forms a boundary value on the source
term in the integral. Using (35) and (36), we find

∂ξ
∂r

≃
μ0
12π

kcffiffiffiffiffiffiffi
2ξ0

p Q
r2

+ μ0
2π

G
c2r0

Q2

r2
≃

μ0
12π

kcffiffiffiffiffiffiffi
2ξ0

p Q
r2
: ð51Þ

We find that the term in Q2 is of order 10−20 smaller than
the term linear in Q at r0 ~ 10−10 m, and so we ignore it.
Eventually, the Coulomb term diverges as r0 goes to zero,
but that is not particular to the Kaluza theory.

Now solve for ξ0 by evaluating (51) at r0 to find

ξ0 =
μ0Qkc

12
ffiffiffi
2

p
πr0

	 
2/3
: ð52Þ

For typical atomic parameters, ξ0 ~ 10−17, still ≪1 in the
high charge states of atomic systems. Therefore, the atomic
value of the Kaluza scalar field from an elementary particle
is given by

∂ξ
∂r

����
atomic

≃
μ0Qkc

12
ffiffiffi
2

p
π

	 
2/3 r1/30
r2

: ð53Þ

Note this scalar potential behaves gravitationally in that
like charges attract, but it appears opposite charges repel,
even as it is apparently proportional to electric charge in
this limit.

We see from this analysis that, as r0 ⟶ 0, ξatomic ⟶ 0.
Therefore, the theory seems to imply a structure-
independent stability of the Kaluza scalar field for point
particles. This is because the scalar field enters in the denom-
inator of the source term in (50). As the scalar field strength
increases, it reduces the magnitude of its own source.

Now let us consider the gravitational field equation for ψ
and the saturated mass (22). We consider the time-time com-
ponent of the gravitational field equations (2), the time-time
component of the scalar field energy-momentum tensor (3)
given by (7), and the time-time component of the electro-
magnetic energy-momentum given by (46), to obtain an
equation very similar to the low-charge equation for ψ (47):

1
g1/2 ∂r g1/2∂rψ/2

� �
= ρ

g1/2ϕ
16πG
3c2

~U5
ffiffiffiffiffi
2ξ

p
−
μ0
6

k2c2ffiffiffiffiffi
2ξ

p ~U5
ϕ2

 !
,

ð54Þ

where the electric terms again have cancelled. The term in G
from the usual matter source is order ξ smaller than the term

in μ0, the scalar source term in ψ. Therefore, we can drop the
term inG to this approximation and keep only the term in μ0.
Then, the gravitational potential at atomic scale is given by

∂ψ
∂r

����
atomic

≃ −
μ0
12π

Q
r2

kcffiffiffiffiffiffiffi
2ξ0

p : ð55Þ

Once more, we have set ξ0 to be the value of ξ at the
boundary of the source r0, and then a limit is taken as
r0 ⟶ 0. We see that the gravitational field is actually repul-
sive in this limit and opposite to the scalar potential, which is
attractive. However, the scaling of the two potentials ξ and ψ
is the same in the saturated limit, and both obey (53). It
appears that the saturated gravitational potential goes to zero
as r0 ⟶ 0, along with the saturated scalar potential.

Having completed an evaluation of the scalar, electric,
and gravitational fields for charged and neutral sources, let
us turn to the implications for those fields on the motion of
test bodies.

6. Scalar Forces

In this section, we combine the previous expressions for
charges and potentials to obtain the forces between massive,
charged objects. As done for the potentials, we consider the 3
cases of neutral, weakly charged, and strongly charged sys-
tems. A unique electrogravitic, buoyant force is discovered.

6.1. Lift in the Planetary Scalar Field. Consider now the
motion of an electrically-charged test particle of mass m

and charge Q, where ~U5
2 ≪ ξ−1, obeying the equation of

motion (15), moving in the planetary, neutral-matter poten-
tials described in (27) and (32). The particle will of course
couple to the gravitational field irrespective of its charge or
mass, according to the equivalence principle, and there is
no ambient electric field to couple with. The scalar charge
(20) is given by (40), but now with the rest mass as m. The
mass (18) is just m.

Consider then the radial component of (15):

m
dUr

dt
+ 4
3
GMm
r2

= Q/mð Þ2
16πGε0

2
3
GMm
r2

+ O
U2

c2

	 


+ O ψ2� �
+ O ξ2
� �

:

ð56Þ

The quantity M in the preceding analysis is understood
to be the bare mass of the planet. Let us convert to the
clothed mass Mcl from (33), corresponding to the mass
measured in gravitational experiments, and now ignore the
second-order terms:

m
dUr

dt
+ GmMcl

r2
≃

Q/mð Þ2
16πGε0

GmMcl

2r2 : ð57Þ

The scalar force in (57) acts counter to the Newtonian
gravity and in proportion to the gravitational weight of the
test body. Yet, its coupling is quasi-electric. Therefore, we
consider this an “electrogravitic” bouyancy effect. Against
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the gravitational weight, the electric charge appears as an
opposing weight. In fact, we can define an electrogravitic
mass, whose upward force is equal to the weight of the mass:

mEG = Q2/m
32πGε0

: ð58Þ

The electrogravitic constant (6) sets a charge-to-mass
scale of 10−10 C/kg. In laboratory settings, charges are conve-
niently expressed in terms of capacitance C and electric
potential V , Q = CV . Typical capacitances for meter-sized
objects are 10−10 farad. An object of mass 10 kg, charged
to 1000 V, would feel a scalar force of 104 times its weight.

This scalar force is quite different than the one contem-
plated by Dicke, because the Kaluza scalar coupling is electro-
static. The field equations for the scalar field are the same, but
the scalar charge is different. Indeed, the Brans-Dicke scalar
field is explicitly barred from the force equations and enters
the field equations only. Therefore, the Kaluza scalar force
would not masquerade as gravity as Dicke anticipated.
Dicke viewed the scalar field as attractive to mass, like grav-
ity and coupling to mass, like gravity. The electric coupling
of the Kaluza theory leads to vastly larger scalar forces than
Dicke anticipated based on his field equations, and opposite
in direction.

6.2. Forces between Neutral Masses. Now let us consider the
forces between 2 neutral massive bodies of bare rest mass
M1 and M2, separated by a distance r. Their electric charge
is zero, so there is no electric interaction. However, there
are both gravitational and scalar forces.

Except for the effect of the clothed mass discussed above,
the gravitational force between massive bodies abides the
conventional Newtonian limit. The gravitational potential
ψM of a bare mass M is given by (32)

ψM = −
8
3
GM
rc2

= −
2GMcl

rc2
: ð59Þ

Themass (18) reduces to the bare rest massM. Therefore,
the gravitational force between the two bodies is

Fg =
4
3
GM1M2

r2
= GM1clM2

r2
: ð60Þ

This illustrates that the potential depends on the clothed
mass, but the coupling depends on the bare mass.

The scalar potential of bare mass M is given by (27):

ξM = 2
3
GM
rc2

: ð61Þ

In this case, the scalar charge (20) is zero, because ~U5 = 0.
Therefore, the scalar force between neutral masses is zero.

The Kaluza scalar field contributes indirectly to the grav-
itational interaction through its own energy density, but no
scalar force manifests between neutral masses. This is similar
to the Brans-Dicke theory, except they posit from the outset

that the scalar field can have no effect on the motion of mate-
rial bodies.

6.3. Forces between Weak Charges. Consider now two

charges, Q1 and Q2, of mass M1 and M2, and such that ~U
2
5

≪ ξ−1 for both. They will experience mutual gravitational,
electric, and scalar forces.

The scalar potential generated by Q1 is given by (42)

∂ξ
∂r

����
1
≃

μ0
12π

Q2
1/M1
r2

: ð62Þ

Meanwhile, the scalar charge of Q2 is given by (40), Q2
2/

M2k
2. Therefore, the scalar force between Q1 and Q2 is

Fr
S =

−1
16πGε20

Q2
1

M1

Q2
2

M2

1
r2
: ð63Þ

This means that the scalar force is attractive between
charges, irrespective of sign. In this way, it is like gravity.
Let us compare it to the usual Coulomb force:

Fr
E =

1
4πε0

Q1Q2
r2

: ð64Þ

The ratio of the two forces is seen to be

Fr
S

Fr
E
= 1
3

Q1/M1ð Þ Q2/M2ð Þ
16πGε0

: ð65Þ

For achievable laboratory charge-to-mass ratios of order
10−7 C/kg, the ratio of forces can be of order 105, which is
extremely large. Here is a verifiable difference from Cou-
lomb’s law, in that the additional scalar force can be large
in laboratory environments.

Ferrari [13] also examined deviations from Coulomb’s
law in the Kaluza picture. He considered time-independent
scalar and electric forces between charged objects, and found
a significant variation from the Lorentz force law, as we are
finding in (65). However, Ferrari made significantly different
assumptions than used here, and his results may have been
compromised by them.

Ferrari obtained his solution by assuming all fields could
be expanded in powers of the two length scales he identified
in the system: GM/c2 and Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G/4πε0c4

p
. Yet, the solution

seen in (42) indicates there is a third length scale, μ0Q
2/M.

Ferrari also seems to miss the scalar field contribution to
gravitational mass seen in (33). Finally, Ferrari notes some
discrepancies between his results and conventional limits.
Therefore, while the general prediction of deviations from
the Coulomb force between charges due to a scalar interac-
tion was predicted by Ferrari, the magnitudes and mathemat-
ical scaling of these results appear to be different.

The general result of scalar-induced deviations from
Coulomb’s law seen by various researchers seems to invite
an experimental investigation. The experimentalist should
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note this is not a deviation in the 1/r2 geometric part of Cou-
lomb’s law, but a deviation in the magnitude of the force.

6.4. Forces between Strong Charges.We previously recognized
that only atomic particles satisfy the requirement for strong
charges, ~U5 ≫ ξ−1. Let us then consider bodies of charge Q1
and Q2 and masses M1 and M2.

For atomic sources of mass and electric charge, the elec-
tric field and electric force have their usual form as in (36),
and no modifications need be discussed.

The saturated gravitational (55) and scalar (51) potentials
are equal and opposite. The saturated gravitational charge is
a factor ξ smaller than the saturated scalar charge. Therefore,
the attraction between charges is approximately the scalar
attraction:

Fr
S+ ∝

Q1Q2
ε0r2

1ffiffiffiffiffiffiffiffi
ξ1ξ2

p : ð66Þ

In the saturated regime characteristic of atomic systems,
the scalar force masquerades as the electric force, similar to
the way Dicke anticipated it would masquerade as the gravi-
tational force. Yet, as shown in (53), the scalar potential
would appear to go to zero as the source goes to a point
particle, so that the scalar interaction is strongly suppressed
for atomic systems.

As we pass from outer atomic scales of 10−10 m and
approach point particles, the electrostatic energy must be
considered. Since the Kaluza scalar field is attractive for like
charges, akin to gravity, then it might provide a stabilizing
influence in the energy budget of the point particle, as shown
already by ref. [22] for Coulomb electric fields.

For the purposes of a classical theory, Fr
S+ ⟶ 0 as

r0 ⟶ 0. The vanishing of the scalar force at atomic scales
is accompanied by a masquerading of the electric force in
that regime, in that the scalar charge could become linear
in electric charge at certain high specific charge states.

7. Tuning the Scalar Coupling to Zero

We have encountered forces from the Kaluza scalar field that
are apparently large, according to the mathematics, yet the
field equations otherwise reproduces 4D physics. It seems
unlikely that effects of the magnitude described here will be
validated in the laboratory, for they should have already been
discovered by now, if they exist. The reason is the large rela-
tive size of the scalar charge compared to the gravitational
and electromagnetic charge in the force equation (15).

We might therefore ask whether we can somehow tune
the theory to zero out the scalar interaction. We have seen
that the atomic scalar interaction appears to vanish by virtue
of the preceding analysis, leaving only macroscopic and
laboratory-scale effects. To zero out the scalar force, either
the field must be zero or its coupling to charge must be zero.

It is very difficult to hide the effects of the Kaluza long-
range scalar field in the field equations. A conformal trans-
formation to the Einstein frame would eliminate explicit
force terms from the equations of motion, but particle geode-
sics in the Einstein frame still reflect the scalar influence,

compared to its absence in the Jordan frame. And we are
already investigating tiny perturbations of the scalar field
around 1. Also, the early arguments by Dicke, and the results
here, show that the Kaluza scalar field can masquerade as
gravity in the absence of other couplings. Therefore, we con-
sider it more likely that the scalar charge is somehow zeroed
out in a way our analysis has not grasped so far.

The only free parameters in the Kaluza picture are in the
invariant length element (9), ~a, and the choices of the 5D sig-
nature. The fundamental relation is given by (11), and we

assigned the value ~a2 = 1 + ~U
2
5 as the only natural choice,

given that 4D physics is recovered in the limit that ϕ⟶ 1,
and given that we desire the scalar mass function (18) cdτ/
ds to be positive.

Chodos and Detweiler [7] also discuss tuning the scalar
interaction to zero by an appropriate choice of ~a2, so that
the difference between the matter terms in (7) goes to zero.
They find no good explanation for why that should be so,
nor do we. But if that does account for the observed absence
of the scalar interaction, the Kaluza scalar field should still
clothe planetary masses.

Instead of choosing (13), we might instead set ~a2 in (11)

such that ~U
2
5/ϕ2 ~ 0 in (11), but this is tantamount to setting

~U5 = 0, if a 4D limit is to be obtained in (1) as ϕ⟶ 1. And
then correspondence with the Lorentz force law is lost. In
other words, it is difficult to tune ~a to make the scalar charge
(20) go to zero without also driving the electric charge (19) to
zero. If such large force effects are not validated, this may be
the first testable classical falsification of the 5D hypothesis
that electromagnetism and gravity are aspects of a 5D metric.

We might also consider the signature in the metric of the
fifth coordinate, εϕ in (9). If we flip the sign on ϕ2, then we
might be able to convert the planetary scalar field to a nega-
tive value, like gravity, and the electrogravitic force would
be attractive. Yet, it would not change the magnitude of the
effect, and such an effect should still be seen if it exists.

8. Energy Considerations

Let us consider a feature of the Kaluza scalar field that was
anticipated by Dicke: the action of the scalar field on a body
produces acceleration at constant energy. The energy is also
constant for the Newtonian approximation to gravity.
Although the Newtonian gravitational field can accelerate test
particles, terms quadratic in speed are ignored, and the energy
including rest energy is essentially constant by approximation.

Energy under action of the Kaluza scalar field is constant
for a more fundamental reason. The equation of motion (15)
shows that if ∂tϕ = 0, then dUt/dτ = 0 from the scalar field,
and therefore, the energy is constant. More generally, the
scalar field gradient must be orthogonal to the particle 4-
velocity. However, the scalar field is conservative like the
gravitational field. Dicke anticipated the energy gained by
acceleration under the scalar field would be offset by a loss
of rest mass energy from interaction with the scalar field.
Here, we find the energy of acceleration is offset by a loss of
scalar field potential energy.
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Let us consider the 5D energy for the time-independent
case. Then, the covariant time component ~Ut is constant
and given by

~Ut = constant = gtt ~U
t + kAt

~U5 + gti ~U
i

= gtt
cdτ
ds

cdt
dτ

, ≃ 1 − GMcl

rc2
+ GMcl

rc2
mEG

m

	 


+ O ψ2� �
+ O ξ2
� �

,

ð67Þ

where we are using the clothed mass Mcl of the planet,
and where we used (14), (32), (33), and (58), with cdt/dτ ≃
1 as usual.

The Kaluza scalar field potential is an additional term in
the test particle energy budget, along with rest energy and
gravitational potential energy:

total energy⟶mc2 −
GMclm

r
+ GmEGMcl

r
: ð68Þ

An ADM-like analysis [22] of the Kaluza scalar field
potential energy might be suggested, to investigate any stabi-
lizing effect on a point particle, such as that found for the
electric field. However, we note that (68) only applies to
macroscopic bodies. Behavior at strong charge states charac-
teristic of elementary particles was considered above, and
these are the charge states that would be subjected to an
ADM-like analysis.

Another feature of the scalar field anticipated by Dicke is
that any interaction with a scalar field must result in a varia-
tion in rest mass. This point was further investigated by ref.
[26]. They found that conformal transformations, interac-
tions with a scalar, can be interpreted as “apparent” gravita-
tional fields because the rest mass includes the potential
energy in such a field, just as given in (67). The rest mass of
a particle is relative, then. Yet, a special value can be singled
out in the same way we single out the rest mass associated
with the Minkowski metric.

9. Conclusions

The tensor gravitational potential gμν and the vector electro-
magnetic potential Aμ behave mathematically as if they are

components of a 5Dgravitational potential ~gab, but that implies
the existence of a third field, a scalar potential ϕ in 4D. The
Kaluza scalar field is a long-range scalar field, presumably asso-
ciated with a spin 0 massless boson, as the gravitational field is
presumably associated with a spin 2 massless graviton. The
gravitational, electric, and scalar charges and potentials for
the 3 cases of neutral, weakly-charged, and strongly-charged,
sources are tabulated for convenience in Table 1.

The absence of a detectable 5th dimension is enforced as
a boundary condition on the fields such that derivatives ∂5
~gab = 0. Far from being an unnatural or ad hoc simplifica-
tion, this reveals a nontrivial constant of the motion corre-
sponding to electric charge. With this identification, the
geodesic equation in 5D provides the 4D gravitational and
electromagnetic forces, augmented with a scalar force that
couples to scalar charge. In new results here, we find the
scalar charge of a body of electric charge Q and mass M is
proportional to Q2/M. That the scalar charge can be
expressed in terms of the gravitational charge (mass) and
electric charge is because the 5D length element of a particle
is a constant of the motion.

The expression (42) for the scalar potential when ~U5 ≪
ξ−1 can be compared with the monopole solution found by
Ferrari [13]. Ferrari found a clever solution by assuming that
there were only 2 length scales characterizing an electrically-

charged mass: GM/c2 and ðQ2G/4πε0c4Þ1/2. Yet, the solution
seen in (42) indicates there is a third length scale, μ0Q

2/M,
that is not anticipated by the other two length scales from
gravity or electric forces. The third length scale is an electro-
gravitic length scale characteristic of the scalar charge (20).
Therefore, the solution by Ferrari, while predicting a signifi-
cant force from the scalar interaction, does not capture the
unique scaling of the scalar interaction. Nor was this length
scale discerned by Chodos and Detweiler [7] in their static
monopole solution.

When these considerations are applied to massive
charged and neutral bodies, for the simplified cases of static,
spherically-symmetric fields and nonrelativistic sources, it is
found that neutral mass is clothed in the Kaluza scalar field.
The mass of planets determined from Kepler’s laws, and the
component gtt of the metric, is a clothed mass that includes
contributions from the bare mass and its associated scalar
field. The magnitude of this scalar field is the same as

Table 1: Limiting values of scalar, electric, and gravitational potentials and charges, for bodies of electric chargeQ and bare massM; for static
fields, ψ≪ 1, ξ≪ 1, nonrelativistic matter and spherical symmetry. The clothed mass is 4M/3. Only leading terms in potentials are shown.

The term in electric field energy, MEc
2, is large for ~U

2
5 ≫ ξ−1, but is omitted for clarity. ξ0 ≡ ξðr0Þ, ξ⟶ 0 as r0 ⟶ 0.

Charge state
(neutral, lab, atomic)

Scalar Electric Gravitational
Charge Potential, ξ Charge Potential Charge Potential, ψ

Q = 0 0
2
3
GM
rc2

0 0 Mc2 −
8
3
GM
rc2

Q2/M2

Gε0
≪ ξ−1

c2Q2/M
16πGε0

−
μ0
12π

Q2

Mr
Q

1
4πε0

Q
r

Mc2
μ0
12π

Q2

Mr

Q2/M2

Gε0
≫ ξ−1

c2Q/
ffiffiffiffiffi
2ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGε0

p −
μ0
12π

Q
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGε0
ξ0

s
Q

1
4πε0

Q
r

c2Q
ffiffiffiffiffi
2ξ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16πGε0

p μ0
12π

Q
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8πGε0
ξ0

s
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calculated in the Brans-Dicke theory for ω = 0, but the nature
of the Kaluza scalar field is much different, in both its cou-
plings and its field equation.

The force equations imply that electrically-charged
objects immersed in the Kaluza scalar field of planets should
experience an electrogravitic lift that is effectively a buoyancy
force. Dicke noted that long-range scalar fields have the
peculiar property of providing acceleration at constant
energy. He anticipated that the energy would come from var-
iation of rest mass. We find acceleration at constant energy
here, except the variation in rest mass can be understood as
a variation of potential energy in the scalar field, as described
by Rohrlich and Witten. The upward momentum provided
by the buoyant lifting force is compensated by the ambient
scalar field and by recoil of the field that ultimately couples
to recoil of the earth.

A saturation effect exists in the gravitational and electric
charges at the high specific charge states characteristic of ele-
mentary particles. We find that this saturation effect alters
the gravitational and scalar charges such that they go over
to dependence on electric charge, possibly masquerading as
the electric force in such regimes, before going to zero in
the limit of point particles.

Some of the scalar forces predicted for laboratory charges
are quite large and should have been seen already if they exist.
Yet, it is difficult to tune the theory to drive the scalar forces
to zero, without compromising identification with standard
physics in other areas. This should therefore be considered
the first testable classical falsification or verification of the
hypothesis of five-dimensional general relativity.

Yet, there are reasons to expect a long-range scalar field
in nature, and such fields can go undetected or masquerade
as gravity. The Kaluza scalar field is appropriately weak, and
its cosmological prediction of the gravitational constant
variation seems to accord with measurement. Therefore,
we might consider that some part of our analysis in the
coupling of matter to scalar fields is in error. The absence
of an electrogravitic buoyancy effect would not falsify the
existence of a scalar field, but perhaps only our treatment
here of the coupling to it.
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