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In this research, under some appropriate conditions, we approximate stationary points of multivalued Suzuki mappings through
the modified Agarwal-O’Regan-Sahu iteration process in the setting of 2-uniformly convex hyperbolic spaces. We also provide
an illustrative numerical example. Our results improve and extend some recently announced results of the current literature.

1. Introduction

LetM = ðM, ρÞ be a metric space and Y be a nonempty subset
of M. For a ∈M, set

ρ a, Yð Þ = inf ρ a, bð Þ: b ∈ Yf g,
R a, Yð Þ = sup ρ a, bð Þ: b ∈ Yf g:

ð1Þ

Let CðYÞ represent the set of all nonempty compact sub-
sets of Y . The function ℍ defined by

ℍ S,Wð Þ =max sup
u∈S

ρ u,Wð Þ, sup
v∈W

ρ v, Sð Þ
� �

,

 for each S,W ∈C Yð Þ,
ð2Þ

satisfies all the properties of the metric and is often called the
Hausdorff metric on CðYÞ. Recall that a multivalued map-
ping F : Y ⟶CðYÞ is called the Suzuki mapping [1] if for
each a, b ∈ Y ,

1
2 ρ a, Fað Þ ≤ ρ a, bð Þ⇒ℍ Fa, Fbð Þ ≤ ρ a, bð Þ: ð3Þ

The class of Suzuki mappings and its extensions in the
setting of single-valued mappings are widely studied by many
authors (see, e.g., [2–7] and references therein). Here, we will
only focus on the multivalued version of Suzuki mappings.
We can easily observe that if F is nonexpansive, that is,
ℍðFa, FbÞ ≤ ρða, bÞ for all a, b ∈ Y , then F is also a Suzuki
mapping. Nevertheless, the following example shows that
the converse of this statement may not hold in general.

Example 1. Let Y = ½1, 4� and F : Y ⟶CðYÞ be defined by

Fa =
1f g, for a ≠ 4,
1:9, 2½ �, for a = 4:

(
ð4Þ

When a ∈ ð3, 4Þ and b = 4, then we have nothing to prove,
because in this case, we have the following:

1
2 ρ a, Fað Þ = a − 1

2 > 1 > ρ a, bð Þ,
1
2 ρ b, Fbð Þ = 1 > ρ a, bð Þ:

ð5Þ
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When a < b and ða, bÞ ∈ ðY × YÞ − ðð3, 4Þ × f4gÞ. In this
case, F is nonexpansive, and hence, F is a Suzuki mapping.

By setting a = 3:5 and b = 4, we have ℍðFa, FbÞ = 1 >
0:5 = ρða, bÞ. Hence, F is not nonexpansive.

An element q in Y is called a stationary point (or called an
endpoint) of F whenever fqg = Fq and is called a fixed point
of F whenever q ∈ Fq. Throughout the paper, the notations
SðFÞ and FðFÞ will represent the set of all stationary points
and the set of all fixed points of F, respectively. Recall that a
multivalued mapping F : Y ⟶CðYÞ is called quasinonex-
pansive provided that ℍðFa, FqÞ ≤ ρða, qÞ for each a ∈ Y
and q ∈FðFÞ. Existence of stationary points for different
types of multivalued mappings is studied in [8–15]. The fol-
lowing statements hold:

(i) SðFÞ ⊆FðFÞ
(ii) q ∈FðFÞ if and only if ρðq, FqÞ = 0
(iii) q ∈ SðFÞ if and only if Rðq, FqÞ = 0

In 2005, Sastry and Babu [16] published a paper on the
strong convergence of the fixed point for multivalued nonex-
pansive mappings using modified Mann and Ishikawa itera-
tive processes in the setting of Hilbert spaces. In the year
2008, Panyanak [17] showed that the results of Sastry and
Babu [16] can be extended to the slightly general context
of uniformly convex Banach spaces. Song and Wang [18]
improved the results of Panyanak [17]. For more details in
this direction, see [19, 20] and others. In the year 2018,
Panyanak [21] published a paper on the approximation of
stationary points of multivalued nonexpansive mappings in
the framework of Banach spaces using the modified Ishi-
kawa iterative process. In 2019, Ullah et al. [22] quickly
noted that the results of Panyanak [21] can be extended to
the general context of CAT(0) spaces. In 2020, Laokul and
Panyanak [23] used the Ishikawa iterative process for find-
ing stationary points of multivalued Suzuki mappings in 2-
uniformly convex hyperbolic spaces. Recently, Abdeljawad
et al. [24] used the modified Agarwal-O’Regan-Sahu iterative
process for finding stationary points of multivalued nonex-
pansive mappings in Banach spaces. Very recently, Ullah
et al. [25] extended the results of Abdeljawad et al. [24] to
the general context of 2-uniformly convex hyperbolic spaces.
The modified Agarwal-O’Regan-Sahu iteration process reads
as follows:

w1 ∈ Y ,
sn = 1 − βnð Þwn ⊕ βnun,
wn+1 = 1 − αnð Þun ⊕ αnvn, n ≥ 1,

8>><
>>:

ð6Þ

where un ∈ Fwn such that ρðwn, unÞ =Rðwn, FwnÞ and vn
∈ Fsn such that ρðsn, vnÞ =Rðsn, FsnÞ. The purpose of this
work is to prove, under some appropriate conditions, the
strong and Δ convergence results of stationary points for a
wider class of multivalued nonexpansive mappings so-
called multivalued Suzuki mappings using iterative process
(6) in the general setting of 2-uniformly convex hyperbolic

spaces. In this way, we improve and extend the correspond-
ing results proved in [21–25].

Now we recall some basic definitions and results, which
will be used in the sequel.

Definition 2 [26]. A hyperbolic space is a metric space ðM, ρÞ
endowed with a functionH : M ×M × ½0, 1�⟶M such that
for all a, b, z,w ∈M and i, s ∈ ½0, 1�, we have

ðH1Þρðz,Hða, b, iÞÞ ≤ ð1 − iÞρðz, aÞ + iρðz, bÞ
ðH2ÞρðHða, b, iÞ,Hða, b, jÞ = ∣i − j ∣ ρða, bÞ
ðH3ÞHða, b, iÞ =Hðb, a, 1 − iÞ
ðH4ÞρðHða, z, iÞ,Hðb,w, iÞÞ ≤ ð1 − iÞρða, bÞ + iρðz,wÞ

If a, b ∈M and i ∈ ½0, 1�, we use the notation ð1 − iÞa ⊕ ib
for Hða, b, iÞ. It follows from ðH1Þ that

ρ a, 1 − ið Þa ⊕ ibð Þ = iρ a, bð Þ,
ρ b, 1 − ið Þa ⊕ ibð Þ = 1 − ið Þρ a, bð Þ:

ð7Þ

The set∅≠ Y ⊆M is called convex if for any a, b ∈ Y , one
has ½a, b� = fð1 − γÞa ⊕ γb : γ ∈ ½0, 1�g ⊆ Y .

Definition 3. A hyperbolic space ðM, ρ,HÞ is said to be uni-
formly convex if for every real number r > 0 and ϵ ∈ ð0, 2�,
we can choose a σ ∈ ð0, 1� such that for each a, b, z ∈M with
ρða, zÞ ≤ r, ρðb, zÞ ≤ r, and ρða, bÞ ≥ 2ϵ, one has

ρ
1
2 a ⊕

1
2 b

� �
≤ 1 − σð Þr: ð8Þ

A function η : ð0,∞Þ × ð0, 2�⟶ ð0, 1� providing such
σ = ηðr, ϵÞ for given r ∈ ð0,∞Þ and ϵ ∈ ð0, 2� is called a mod-
ulus of uniform convexity. The function η is called monotone
provided that it is nonincreasing in r for each fixed ϵ.

Definition 4. Let ðM, ρÞ be a uniformly convex hyperbolic
space. For every r ∈ ð0,∞Þ and ϵ ∈ ð0, 2�, set

φ r, ϵð Þ = inf 1
2 ρ

2 a, zð Þ + 1
2 ρ

2 b, zð Þ − ρ2
1
2 a ⊕

1
2 b, z

� �� �
,

ð9Þ

where the infimum is taken over each a, b, z ∈M such that
ρða, zÞ ≤ r, ρðb, zÞ ≤ r and ρða, bÞ ≥ rϵ. We say that ðM, ρÞ
is 2-uniformly convex if

cM = inf φ r, εð Þ
r2ε2

: r ∈ 0,∞ð Þ, ϵ∈ 0, 2ð �
� �

> 0: ð10Þ

Remark 5. Notice that uniformly convex Banach space and
CAT(0) spaces as well as CAT(κ) spaces (κ > 0 and diam
ðMÞ ≤ ððπ/2 − ϵÞ/κ1/2Þ for some ϵ ∈ ð0, π/2Þ are 2 -uniformly
convex hyperbolic spaces (see [23, 27, 28]).

Definition 6. Let fwng be any bounded sequence in a com-
plete 2-uniformly convex hyperbolic space M and ∅≠
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Y ⊆M. The asymptotic radius of fwng relative to Y is rðY ,
fwngÞ = inf flim supn→∞ρðwn,wÞ: w ∈ Yg. Moreover, the
asymptotic center of fwng relative to Y is the set AðY ,wngÞ
= fw ∈ Y : lim supn→∞ρðwn,wÞ = rðY ,wnÞg.

Definition 7. Let Y be a nonempty closed convex subset in a
complete 2-uniformly convex hyperbolic space M and w ∈
Y . Let fwng be any bounded sequence in M. We say that
fwngΔ -converges to w if AðY , fzngÞ = fwg for each subse-
quence fzng of fwng. In this case, we write Δ‐limn→∞wn =
w and call w the Δ‐lim of fwng.

Now, we collect some basic facts about multivalued
Suzuki mappings, which can be found in [29–31].

Proposition 8. Let Y be a nonempty subset of a complete 2-
uniformly convex hyperbolic space and F : Y ⟶CðYÞ.

(i) If F is a Suzuki mapping with a nonempty fixed point
set, then F is quasinonexpansive

(ii) If F is a Suzuki mapping, then the following holds:

ρ a, Fbð Þ ≤ 3ρ a, Fað Þ + ρ a, bð Þ for all a, b ∈ Y : ð11Þ

The following facts are also needed.

Lemma 9 (see [17]). Let αn, βn ∈ ½0, 1Þ be such that limn→∞
βn = 0 and ∑ αnβn =∞. Let fγng be a sequence of nonneg-
ative real numbers such that ∑ αnβnð1 − βnÞγn <∞. Then,
fγng has a subsequence which converges to 0.

The following lemma is a characterization of 2-uniformly
convex hyperbolic spaces.

Lemma 10 (see [23]). Let ðM, ρÞ be a 2 -uniformly convex
hyperbolic space. Then,

ρ2 1 − ξð Þa ⊕ ξb, pð Þ ≤ 1 − ξð Þρ2 a, pð Þ + ξρ2 b, pð Þ − 4cMξ 1 − ξð Þρ2 a, bð Þ,
ð12Þ

for each ξ ∈ ½0, 1� and a, b, p ∈M.

Lemma 11 (see [23]). Let Y be a nonempty closed convex sub-
set of a2-uniformly convex hyperbolic space M and F : Y
⟶CðYÞ be a Suzuki mapping. Suppose that fwng is a
bounded sequence in Y such that limn→∞Rðwn, FwnÞ = 0
and fρðwn, eÞg converges for every e ∈ SðFÞ, then ωωðwnÞ ⊆
SðFÞ. Here, ωωðwnÞ = ∪AðY , fzngÞ where the union is taken
over all subsequences fzng of fwng. Furthermore, ωωðwnÞ is
a singleton.

2. Convergence Theorems in 2-Uniformly
Convex Hyperbolic Spaces

Throughout the section, M will stand for a complete 2-
uniformly convex hyperbolic space with monotone modulus
of uniform convexity.

The following lemma is crucial.

Lemma 12. Let Y be a nonempty closed convex subset of M
and F : Y ⟶CðYÞ be a Suzuki mapping with SðFÞ ≠∅.
Let fwng be the sequence defined by (6). Then, limn→∞ρðwn,
qÞ exists for all q ∈ SðFÞ.

Proof. Let q ∈ SðFÞ. By Proposition 8(i), we have

ρ wn+1, qð Þ ≤ 1 − αnð Þρ un, qð Þ + αnρ vn, qð Þ
= 1 − αnð Þρ un, Fqð Þ + αnρ vn, Fqð Þ
≤ 1 − αnð Þℍ Fwn, Fqð Þ + αnℍ Fsn, Fqð Þ
≤ 1 − αnð Þρ wn, qð Þ + αnρ sn, qð Þ ≤ 1 − αnð Þρ wn, qð Þ

+ αn 1 − βnð Þρ wn, qð Þ + βnρ un, qð Þ½ �
= 1 − αnð Þρ wn, qð Þ + αn 1 − βnð Þρ wn, Fqð Þ½

+ βnρ wn, Fqð Þ� ≤ 1 − αnð Þρ wn, qð Þ
+ αn 1 − βnð Þρ wn, qð Þ + βnℍ Fwn, Fqð Þ½ �

≤ 1 − αnð Þρ wn, qð Þ + αn 1 − βnð Þρ wn, qð Þ½
+ βnρ wn, qð Þ� = 1 − αnð Þρ wn, qð Þ
+ αnρ wn, qð Þ = ρ wn, qð Þ:

ð13Þ

Hence, fρðwn, qÞg is a nonincreasing sequence, which
implies limn→∞ρðwn, qÞ exists for every q ∈ SðFÞ.

First, we establish our Δ-convergence theorem.

Theorem 13. Let Y be a nonempty closed convex subset of M
and F : Y ⟶CðYÞ be a Suzuki mapping with SðFÞÞ≠∅.
Let αn, βn ∈ ½a, b� ⊂ ð0, 1Þ and fwng be the sequence defined
by (6). Then, fwngΔ -converges to a stationary point of F.

Proof. Fix q ∈ SðFÞ. By Lemma 10, we have

ρ2 sn, qð Þ ≤ 1 − βnð Þρ2 wn, qð Þ + βnρ
2 un, qð Þ

− 4cMβn 1 − βnð Þρ2 wn, unð Þ
≤ 1 − βnð Þρ2 wn, qð Þ + βnℍ

2 Fwn, Fqð Þ
− 4cMβn 1 − βnð Þρ2 wn, unð Þ

≤ 1 − βnð Þρ2 wn, qð Þ + βnρ
2 wn, qð Þ

− 4cMβn 1 − βnð Þρ2 wn, unð Þ
≤ ρ2 wn, qð Þ − 4cMβn 1 − βnð Þρ2 wn, unð Þ:

ð14Þ

Thus,

ρ2 wn+1, qð Þ ≤ 1 − αnð Þρ2 un, qð Þ + αnρ
2 vn, qð Þ

− 4cMαn 1 − αnð Þρ2 un, vnð Þ
≤ 1 − αnð Þℍ2 Fwn, Fqð Þ + αnℍ

2 Fsn, Fqð Þ
− 4cMαn 1 − αnð Þρ2 un, vnð Þ

≤ 1 − αnð Þρ2 wn, qð Þ + αnρ
2 sn, qð Þ

− 4cMαn 1 − αnð Þρ2 un, vn,ð Þ
≤ 1 − αnð Þρ2 wn, qð Þ + αnρ

2 sn, qð Þ
≤ ρ2 wn, qð Þ − 4cMαnβn 1 − βnð Þρ2 wn, unð Þ:

ð15Þ
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Since cM > 0, it follows that

〠
∞

n=1
a2 1 − bð Þρ2 wn, unð Þ ≤ 〠

∞

n=1
αnβn 1 − βnð Þρ2 wn, unð Þ <∞:

ð16Þ

Thus, limn→∞ρ2ðwn, unÞ = 0 and hence

lim
n→∞

R wn, Fwnð Þ = lim
n→∞

ρ wn, unð Þ = 0: ð17Þ

By Lemma 12, fρðwn, eÞg converges for all e ∈ SðFÞ. By
Lemma 11, ωωðwnÞ is a singleton and is contained in SðFÞ.
This shows that fwngΔ-converges to a point of SðFÞ.

Definition 14 (see [21]). Let Y be a nonempty subset ofM and
F : Y ⟶CðYÞ. F is said to satisfy condition J if there is a
nondecreasing function λ : ½0,∞Þ⟶ ½0,∞Þ with the
properties λð0Þ = 0, λðrÞ > 0 for r > 0 and Rða, FaÞ ≥ λðρ
ða, SðFÞÞÞ for all a ∈ Y . F is called semicompact if for each
sequence fwng in Y satisfying limn→∞Rðwn, FwnÞ = 0, one
can find a strongly convergent subsequence fwnk

g of fwng.
Moreover, a sequence fwng in M is called a Fejér monotone
with respect to Y provided that ρðwn+1, zÞ ≤ ρðwn, zÞ, for
each z ∈ Y and n ≥ 1.

The following facts are in [31].

Proposition 15. Let Y be a nonempty closed subset of M
and fwng be a Fejér monotone sequence with respect to Y .
Then, fwng converges strongly to a point of Y if and only if
limn→∞ρðwn, YÞ = 0.

The following theorem is based on the semicompactness
of F.

Theorem 16. Let Y be a nonempty closed convex subset of M
and F : Y ⟶CðYÞ be a Suzuki mapping with SðFÞ ≠∅.
Suppose αn, βn ∈ ½0, 1Þ be such that ∑ αnβn =∞ and βn ⟶
0. If F is semicompact, then fwng generated by (6) converges
strongly to a stationary point of F.

Proof. In view of (16),

〠
∞

n=1
αnβn 1 − βnð Þρ2 wn, unð Þ <∞: ð18Þ

By Lemma 9, there exists subsequences, namely, fwnt
g

and funtg of fwng and fung, respectively, such that limt→∞
ρ2ðwnt

, unt Þ = 0. Hence,

lim
t→∞

R wnt
, Fwnt

� �
= lim

t→∞
ρ wnt

, unt
� �

= 0: ð19Þ

By the semicompactness of the mapping F, one can find a
strongly convergent subsequence fwnt

g of fwng with the

strong limit, say z. We shall prove that z ∈ SðFÞ. By Proposi-
tion 8(ii), we have

ρ z, Fzð Þ ≤ ρ z,wnt

� �
+ ρ wnt

, Fz
� �

≤ ρ wnt
, z

� �
+ 3ρ wnt

, Fwnt

� �
+ ρ wnt

, z
� �

= 2ρ wnt
, z

� �
+ 3ρ wnt

, Fwnt

� �
⟶ 0:

ð20Þ

Hence, z ∈ Fz. By Proposition 8(i),

ℍ Fwnt
, Fz

� �
≤ ρ wnt

, z
� �

⟶ 0: ð21Þ

Now, we let v ∈ Fz and choose ynt ∈ Fwnt
such that ρðv,

ynt Þ = ρðv, Fwnt
Þ: From (19) and (21), we have

ρ z, vð Þ ≤ ρ z,wnt

� �
+ ρ wnt

, ynt
� 	

+ ρ ynt , v
� 	

= ρ z,wnt

� �
+ ρ wnt

, ynt
� 	

+ ρ v, Fwnt

� �
≤ ρ z,wnt

� �
+R wnt

, Fwnt

� �
+ℍ Fwnt

, Fz
� �

⟶ 0:
ð22Þ

Hence, v = z for all v ∈ Fz, that is, fzg = Fz. Therefore, z
∈ SðFÞ. By Lemma 12, limn→∞ρðwn, zÞ exists. Hence, z is
the strong limit of fwng.

Example 17. Let Y and F be as in Example 1. Then, F is a
Suzuki mapping with SðFÞ = f1g. Semicompactness of F fol-
lows from the compactness of Y . For each n ≥ 1, we let αn =
1/2 and βn = 1/n. The, limn→∞βn = 0 and ∑ αnβn =∞.
Hence, by Theorem 16, the sequence of the modified
Agarwal-O’Regan-Sahu iteration defined by (6) converges
strongly to 1. However, we cannot directly apply any result
in [22, 24, 25] because, in this situation, F is not nonexpansive.

The following theorem requires condition J .

Theorem 18. Let Y be a nonempty closed convex subset of M
and F : Y ⟶CðYÞ be a Suzuki mapping with SðFÞ ≠∅.
Suppose αn, βn ∈ ½a, b� ⊂ ð0, 1Þ. If F satisfies condition J , then
fwng generated by (6) converges strongly to a stationary point
of F.

Proof. From (17), we have

lim
n→∞

R wn, Fwnð Þ = 0: ð23Þ

Since F satisfies condition J , we have

R wn, Fwnð Þ ≥ λ ρ wn, S Fð Þð Þð Þ: ð24Þ

So, from (23), we get

lim
n→∞

λ ρð wn, S Fð Þð Þ = 0: ð25Þ
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Since the function λ is nondecreasing and λð0Þ = 0 and
λðrÞ > 0 for every r > 0. Hence,

lim
n→∞

ρ wn, S Fð Þð Þ = 0: ð26Þ

Closeness of SðFÞ follows from the quasinonexpansive-
ness of F. In the view of Lemma 12, we have fwng which is
a Fejér monotone with respect to SðFÞ. By Proposition 15,
fwng converges strongly to an element of SðFÞ.

Example 19. Let Y and F be as in Example 1. Then, F is a
Suzuki mapping with SðFÞ = f1g and satisfies the condition
J . For each n ≥ 1, we let αn = βn = 1/3. Then, by Theorem 18,
the sequence of modified Agarwal-O’Regan-Sahu iteration
defined by (6) converges strongly to 1. However, we cannot
directly apply any result in [22, 24, 25] because, in this situa-
tion, F is not nonexpansive.

3. Conclusions

Under some appropriate conditions, we have proven that the
sequence of the modified Agarwal-O’Regan-Sahu iterative
process defined by (6) converges to a stationary point of a
multivalued Suzuki mapping. We have used a 2-uniformly
convex hyperbolic space, which is more general than the uni-
formly convex Banach spaces, CAT(0) spaces, and some
CAT(κ) spaces. Moreover, the class of multivalued Suzuki
mappings properly includes the class of multivalued nonex-
pansive mappings as shown by Example 1. Our iterative pro-
cess is independent of but better than the Ishikawa iterative
process. Hence, our presented results extend and improve
the corresponding results in [21–25].
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