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In this paper, we introduce a generalization of rectangular b-metric spaces, by changing the rectangular inequality as follows: Dζ

ða, bÞ ≤ ζða, b, u, vÞ½Dζða, uÞ +Dζðu, vÞ +Dζðv, bÞ�, for all distinct a, b, u, v ∈ X: We prove some fixed point theorems, and we use
our results to present a nice application in the last section of this paper.

1. Introduction

It will not be an exaggeration if we say that Banach [1] in
1922 introduced in some way a new area in mathematics,
which is called fixed point theory, and that is due to the
fact that he proved the existence and uniqueness of a fixed
point for self-contractive mappings in metric spaces. Since
1922, mathematicians around the world start to generalize
his result either by changing the type of contractions or
by generalizing the type of metric spaces (see [2–19]). The
question here is what is the point of all these generaliza-
tions? Well, in fact, the answer to that is quite simple and
that is the larger the class of functions or metrics, the more
fields that results can be applied to, such as computer
sciences and engineering.

In this paper, and inspired by the work done in [20–27],
we introduce the notion of controlled rectangular b-metric
spaces as a generalization of the rectangular metric spaces
and rectangular b-metric spaces. In the second section, we
present some preliminaries; in the third section, we prove
our main result; in the fourth section, we present an applica-
tion of our result to polynomial equations; and in the closing
section, we give a conclusion with some open questions.

2. Preliminaries

The concept of rectangular metric spaces was introduced by
Branciari in [28] as follows.

Definition 1 [28] (rectangular (or Branciari) metric spaces).
Let X be a nonempty set. A mapping Δ : X2 ⟶ ½0,∞Þ is
called a rectangular metric on X if for any x, y ∈ X and all
distinct points u, v ∈ X \ fx, yg; it satisfies the following
conditions:

(R1) x = y if and only if Δðx, yÞ = 0
(R2) Δðx, yÞ = Δðy, xÞ
(R3) Δðx, yÞ ≤ Δðx, uÞ + Δðu, vÞ + Δðv, yÞ
In this case, the pair ðX, ΔÞ is called a rectangular metric

space.

In [29], George et al. introduced the concept of b-rect-
angular metric spaces as follows.

Definition 2 [29] (rectangular b-metric spaces). Let X be a
nonempty set. A mapping B : X2 ⟶ ½0,∞Þ is called a rect-
angular b-metric on X if there exists a constant a ≥ 1 such
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that for any x, y ∈ X and all distinct points u, v ∈ X \ fx, yg; it
satisfies the following conditions:

(Rb1) x = y if and only if Bðx, yÞ = 0
(Rb2) Bðx, yÞ = Bðy, xÞ
(Rb3) Bðx, yÞ ≤ a½Bðx, uÞ + Bðu, vÞ + Bðv, yÞ�
In this case, the pair ðX, BÞ is called a rectangular metric

space.

As a generalization of rectangular b-metric spaces,
Abdeljawad et al. in [30] introduced the concept of extended
Branciari b-distance spaces as follows.

Definition 3 [30]. For a nonempty set S and a mapping ω : S
× S⟶ ½1,∞Þ, we say that a function Bdist : S × S⟶ ½0,∞Þ
is called an extended Branciari b-distance if it satisfies

(i) Bdistðx, yÞ = 0 if and only if x = y

(ii) Bdistðx, yÞ = Bdistðy, xÞ
(iii) Bdistðx, yÞ ≤ ωðx, yÞ½Bdistðx, uÞ + Bdistðu, vÞ + Bdistðv, yÞ�

for all x, y ∈ S and all distinct u, v ∈ S \ fx, yg. The couple of
the symbols ðS, BdistÞ denotes an extended Branciari b-dis-
tance space (shortly, Bdist-metric space).

Now, we present the definition of controlled rectangular
b-metric spaces.

Definition 4. Let X be a nonempty set, a function ζ : X4 ⟶
½1,∞Þ, and Dζ : X

2 ⟶ ½0,∞Þ: We say that ðX,DζÞ is a con-
trolled rectangular b-metric space if all distinct a, b, u, v ∈ X;
we have

(1) Dζða, bÞ = 0 if and only if a = b

(2) Dζða, bÞ =Dζðb, aÞ
(3) Dζða, bÞ ≤ ζða, b, u, vÞ½Dζða, uÞ +Dζðu, vÞ +Dζðv, bÞ�

Next, we present the topology of controlled rectangular b
-metric spaces.

Definition 5. Let ðX,DζÞ be a controlled rectangular b-metric
space.

(1) A sequence fang is called Dζ-convergent in a con-
trolled rectangular b-metric space ðX,DζÞ, if there
exists a ∈ X such that limn→∞Dζðan, aÞ =Dζða, aÞ

(2) A sequence fang is called Dζ-Cauchy if and only if
limn,m→∞ρðan, amÞ exists and is finite

(3) A controlled rectangular b-metric space ðX,DζÞ is
called Dζ-complete if for every Dζ-Cauchy sequence
fang in X, there exists ν ∈ X, such that limn→∞Dζ

ðan, νÞ = limn,m→∞ρrðan, amÞ =Dζðν, νÞ

(4) Let a ∈ X define an open ball in a controlled rectan-
gular b-metric space ðX,DζÞ by Bζða, ηÞ = fb ∈ X ∣
Dζða, bÞ < ηg

Notice that rectangular metric spaces and rectangular b
-metric spaces are controlled rectangular b-metric spaces,
but the converse is not always true. In the following example,
we present a controlled rectangular b-metric space which is
not a rectangular metric space.

Example 1. Let X = Y ∪ Z, where Y = f1/m ∣m is a natural
numberg and Z be the set of positive integers. We define
Dζ : X

2 ⟶ ½0,∞Þ by

Dζ a, bð Þ =

0, if and only if a = b,
2β, if a, b ∈ Y ,
β

2 , otherwise,

8>>><
>>>:

ð1Þ

where β is a constant bigger than 0: Now, define ζ : X4 ⟶
½1,∞Þ by ζða, b, u, vÞ =max fa, b, u, vg + 2β: It is not difficult
to check that ðX,DζÞ is a controlled rectangular b-metric
space. However, ðX,DζÞ is not a rectangular metric space;
for instance, notice that Dζð1/2, 1/3Þ = 2β >Dζð1/2, 2Þ +
Dζð2, 3Þ +Dζð3, 1/3Þ = 3β/2:

3. Main Results

Theorem 6. Let ðX,DζÞbe a controlled rectangular b-metric
space and T a self-mapping on X: If there exists 0 < δ < 1, such
that DζðTx, TyÞ ≤ δρðx, yÞand supm>1limn→∞ζðxn, xn+1,
xn+2, xmÞ ≤ 1/δ, then T has a unique fixed point in X:

Proof. Let x0 ∈ X and define the sequence fxng as follows:
x1 = Tx0, x2 = T2x0,⋯, xn = Tnx0,⋯. Now, by the hypothe-
sis of the theorem, we have

Dζ xn, xn+1ð Þ ≤ δDζ xn−1, xnð Þ
≤ δ2Dζ xn−2, xn−1ð Þ ≤⋯ ≤ δnDζ x0, x1ð Þ:

ð2Þ

Note that if we take the limit of the above inequality as
n⟶∞, we deduce that Dζðxn, xn+1Þ⟶ 0 as n⟶∞.
Now, consider Di =Dζðxn+i, xn+i+1Þ. Thus, for all n ≥ 1, we
have two cases.

Case 1. Let xn = xm for some integers n ≠m. So, if for m > n,
we have Tm−nðxnÞ = xn. Choose y = xn and p =m − n. Then,
Tpy = y; that is, y is a periodic point of T. Thus, Dζðy, TyÞ
=DζðTpy, Tp+1yÞ ≤ kpDζðy, TyÞ: Since δ ∈ ð0, 1Þ, we get Dζ

ðy, TyÞ = 0, so y = Ty; that is, y is a fixed point of T.

Case 2. Suppose that Tnx ≠ Tmx for all integers n ≠m. Let
n <m be two natural numbers; to show that fxng is a
Dζ-Cauchy sequence, we need to consider two subcases:
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Subcase 1. Assume that m = n + 2p + 1: By property (R_3) of
the controlled rectangular b-metric spaces, we have

Dζ xn, xn+2p+1
� �

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

� Dζ xn, xn+1ð Þ +Dζ xn+1, xn+2ð Þ�

+Dζ xn+2, xn+2p+1
� ��

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

Dζ xn, xn+1ð Þ
+Dζ xn, xn+1, xn+2, xn+2p+1

� �
Dζ xn+1, xn+2ð Þ

+ ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

� Dζ xn+2, xn+3ð Þ +Dζ xn+3, xn+4ð Þ�

+Dζ xn+4, xn+2p+1
� ��

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

Dζ xn, xn+1ð Þ
+ ζ xn, xn+1, xn+2, xn+2p+1

� �
Dζ xn+1, xn+2ð Þ

+ ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

Dζ xn+2, xn+3ð Þ
+ ζ xn, xn+1, xn+2, xn+2p+1

� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

� Dζ xn+3, xn+4ð Þ + ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3,ð
� xn+4, xn+2p+1ÞDζ xn+4, xn+2p+1

� �
≤⋯:

ð3Þ

Thus,

Dζ xn, xn+2p+1
� �

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

Dζ xn, xn+1ð Þ
+ ζ xn, xn+1, xn+2, xn+2p+1

� �
Dζ xn+1, xn+2ð Þ

+ ζ xn, xn+1, xn+2, xn+2p+1
� �

ζ xn+2, xn+3,ð
� xn+4, xn+2p+1ÞDζ xn+2, xn+3ð Þ + ζ xn, xn+1,ð
� xn+2, xn+2p+1Þζ xn+2, xn+3, xn+4, xn+2p+1

� �

� Dζ xn+3, xn+4ð Þ+⋯+ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

⋯ ζ xn+2p−2, xn+2p−1,
�

� xn+2p, xn+2p+1ÞDζ xn+2p, xn+2p+1
� �

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

D0 + ζ xn, xn+1, xn+2,ð
� xn+2p+1ÞD1 + ζ xn, xn+1, xn+2, xn+2p+1

� �
ζ xn+2,ð

� xn+3, xn+4, xn+2p+1ÞD2 + ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

D3+⋯+ζ xn, xn+1,ð
� xn+2, xn+2p+1Þζ xn+2, xn+3, xn+4, xn+2p+1

� �
×⋯ ×⋯

� ζ xn+2p−2, xn+2p−1, xn+2p, xn+2p+1
� �

D2p

= ζ xn, xn+1, xn+2, xn+2p+1
� �

D0 +D1½ � + ζ xn, xn+1,ð
� xn+2, xn+2p+1Þζ xn+2, xn+3, xn+4, xn+2p+1

� �
D2 +D3½ �

+⋯+ζ xn, xn+1, xn+2, xn+2p+1
� �

ζ xn+2, xn+3, xn+4,ð
� xn+2p+1Þ ×⋯ ×⋯ζ xn+2p−2, xn+2p−1, xn+2p, xn+2p+1

� �

� D2p−1 +D2p
� �

:

ð4Þ

Therefore,

Dζ xn, xn+2p+1
� �

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

δn + δn+1
� ��

� Dζ x0, x1ð Þ� + ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

δn+2 + δn+3
� ��

� Dζ x0, x1ð Þ�+⋯+ζ xn, xn+1, xn+2, xn+2p+1
� �

� ζ xn+2, xn+3, xn+4, xn+2p+1
� �

×⋯ ×⋯

� ζ xn+2p−2, xn+2p−1, xn+2p, xn+2p+1
� �

� δn+2p−2 + δn+2p−1
� �

Dζ x0, x1ð Þ� �

≤ ζ xn, xn+1, xn+2, xn+2p+1
� �

δn + δn+1
� ��

+ ζ xn, xn+1, xn+2, xn+2p+1
� �

ζ xn+2, xn+3,ð
� xn+4, xn+2p+1Þ δn+2 + δn+3

� �
+⋯+ζ xn,ð

� xn+1, xn+2, xn+2p+1Þζ xn+2, xn+3, xn+4,ð
� xn+2p+1Þ ×⋯ ×⋯ζ xn+2p−2, xn+2p−1,

�

� xn+2p, xn+2p+1Þ δn+2p−2 + δn+2p−1
� ��Dζ x0, x1ð Þ

= 〠
p−1

l=0

Yl
i=0

ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� δn+2l + δn+2l+1
h i

Dζ x0, x1ð Þ

= 〠
p−1

l=0

Yl
i=0

ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� 1 + δ½ �δn+2lDζ x0, x1ð Þ:
ð5Þ

Now, using the fact that δ < 1, the above inequalities
imply the following:

Dζ xn, xn+2p+1
� �

< 〠
p−1

l=0

Yl
i=0

ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� 2δn+2lDζ x0, x1ð Þ:
ð6Þ

Since supm>1limn→∞ζðxn, xn+1, xn+2, xmÞ ≤ 1/δ, we deduce

lim
n,p→∞

Dζ xn, xn+2p+1
� �

< 〠
∞

l=0

Yl
i=0

ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� 2δn+2lDζ x0, x1ð Þ ≤ 〠
∞

l=0

1
δl+1

2δn+2lDζ x0, x1ð Þ

≤ 〠
∞

l=0
2δn+l−1Dζ x0, x1ð Þ:

ð7Þ

Note that the series ∑∞
l=0 2δn+l−1Dζðx0, x1Þ converges by

the ratio test, which implies that Dζðxn, xn+2p+1Þ converges as
n, p⟶∞.
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Subcase 2. m = n + 2p. First of all, note that

Dζ xn, xn+2ð Þ ≤ δDζ xn−1, xn+1ð Þ
≤ δ2Dζ xn−2, xnð Þ ≤⋯≤ δnDζ x0, x2ð Þ,

ð8Þ

which leads us to conclude that Dζðxn, xn+2Þ⟶ 0 as n⟶
∞. Similar to Subcase 1, we have

Dζ xn, xn+2p
� �

≤ ζ xn, xn+1, xn+2, xn+2p
� �

� Dζ xn, xn+1ð Þ +Dζ xn+1, xn+2ð Þ�

+Dζ xn+2, xn+2p
� ��

≤ ζ xn, xn+1, xn+2, xn+2p
� �

Dζ xn, xn+1ð Þ
+ ζ xn, xn+1, xn+2, xn+2p

� �

� Dζ xn+1, xn+2ð Þ
+ ζ xn, xn+1, xn+2, xn+2p

� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

� Dζ xn+2, xn+3ð Þ +Dζ xn+3, xn+4ð Þ�

+Dζ xn+4, xn+2p
� ��

≤ ζ xn, xn+1, xn+2, xn+2p
� �

� Dζ xn, xn+1ð Þ
+ ζ xn, xn+1, xn+2, xn+2p

� �

� Dζ xn+1, xn+2ð Þ
+ ζ xn, xn+1, xn+2, xn+2p

� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

� Dζ xn+2, xn+3ð Þ
+ ζ xn, xn+1, xn+2, xn+2ð Þ
� ζ xn+2, xn+3, xn+4, xn+2p
� �

� Dζ xn+3, xn+4ð Þ
+ ζ xn, xn+1, xn+2, xn+2p

� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

� Dζ xn+4, xn+2p
� �

≤ ζ xn, xn+1, xn+2, xn+2p
� �

D0

+ ζ xn, xn+1, xn+2, xn+2p
� �

D1

+ ζ xn, xn+1, xn+2, xn+2p
� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

D2

+ ζ xn, xn+1, xn+2, xn+2p
� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

D3+⋯
+ζ xn, xn+1, xn+2, xn+2p

� �

� ζ xn+2, xn+3, xn+4, xn+2p
� �

×⋯ ×⋯ζ xn+2p−3, xn+2p−2, xn+2p−1, xn+2p
� �

D2p

+
Y2p−2

i=0
ζ xn+2i, xn+2i+1, xn+2i+1, xn+2p
� �

� Dζ xn+2p−2, xn+2p
� �

:

ð9Þ

Hence,

Dζ xn, xn+2p
� �

= 〠
p−1

l=0

Yl
i=0

ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� δn+2l + δn+2l+1
h i

Dζ x0, x1ð Þ

+
Y2p−2

i=0
ζ xn+2i, xn+2i+1, xn+2i+1, xn+2p
� �

� Dζ xn+2p−2, xn+2p
� �

= 〠
p−1

l=0

Yl
i=0

� ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� 1 + δ½ �δn+2lDζ x0, x1ð Þ +
Y2p−2

i=0

� ζ xn+2i, xn+2i+1, xn+2i+1, xn+2p
� �

� Dζ xn+2p−2, xn+2p
� �

≤ 〠
p−1

l=0

Yl
i=0

� ζ xn+2i, xn+2i+1, xn+2i+2, xn+2p+1
� �

� 1 + δ½ �δn+2lDζ x0, x1ð Þ +
Y2p−2

i=0

� ζ xn+2i, xn+2i+1, xn+2i+1, xn+2p
� �

δn+2p−2

� Dζ x0, x2ð Þ:
ð10Þ

Since supm>1limn→∞ζðxn, xn+1, xn+2, xmÞ ≤ 1/δ, we deduce

lim
n,p→∞

Dζ xn, xn+2p
� �

≤ lim
n,p→∞

〠
p−1

l=0

1
δl+1

1 + δ½ �δn+2lDζ x0, x1ð Þ

+ δ2p−1δn+2p−2Dζ x0, x2ð Þ

= lim
n,p→∞

〠
p−1

l=0
1 + δ½ �δn+l−1Dζ x0, x1ð Þ

+ δn−1Dζ x0, x2ð Þ

≤ 〠
∞

m=0
1 + δ½ �δmDζ x0, x1ð Þ + δmDζ x0, x2ð Þ:

ð11Þ

By using the ratio test, it is not difficult to see that the series

〠
∞

m=0
1 + δ½ �δmDζ x0, x1ð Þ + δmDζ x0, x2ð Þ, ð12Þ

converges. Hence, Dζðxn, xn+2pÞ converges as n and p go
toward ∞ Thus, by Subcases 1 and 2, we deduce that the
sequence fxng is a Dζ-Cauchy sequence. Since ðX,DζÞ is a
Dζ-complete extended rectangular b-metric space, we deduce
that fxng converges to some ν ∈ X:We claim that ν is a fixed
point of T: Note that there exists an integer N such that
xN = ν. Due to Case 2, Tnx ≠ ν for all n >N. Similarly,
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Tnx ≠ Tν for all n >N. Hence, we are in Case 1, so ν is a
fixed point of T.

Also, there exists an integer N such that TNx = Tν. Again,
necessarily, Tnx ≠ ν and Tnx ≠ Tν for all n >N . Thus, T
ν = ν. Therefore, we may assume that for all n, we have
xn∈fν, Tνg:

Dζ ν, Tνð Þ ≤ ζ ν, Tν, xn, xn+1ð Þ Dζ ν, xnð Þ�

+Dζ xn, xn+1ð Þ +Dζ xn+1, Tνð Þ�
≤Dζ ν, Tν, xn, xn+1ð Þ
� Dζ ν, xnð Þ +Dζ xn, xn+1ð Þ +Dζ Txn, Tνð Þ� �

≤ ζ ν, Tν, xn, xn+1ð Þ
� Dζ ν, xnð Þ +Dζ xn, xn+1ð Þ + δDζ xn, νð Þ� �

:

ð13Þ

Now, taking the limit as n⟶∞, we deduce that Dζ

ðν, TνÞ = 0; that is, Tν = ν and ν is a fixed point of T as
desired.

Finally, to show uniqueness assume, there exist two fixed
points of T say ν and μ such that ν ≠ μ: By the contractive
property of T , we have

Dζ ν, μð Þ =Dζ Tν, Tμð Þ ≤ δDζ ν, μð Þ <Dζ ν, μð Þ, ð14Þ

which leads us to a contradiction. Thus, T has a unique fixed
point as required.

Theorem 7. LetðX,DζÞbe a complete extended rectangular b
-metric space and T a self-mapping on X satisfying the follow-
ing condition; for alla, b ∈ X, there exists 0 < δ < 1/2 such that

Dζ Ta, Tbð Þ ≤ δ Dζ a, Tað Þ +Dζ b, Tbð Þ� �
: ð15Þ

Also, if

sup
m>1

lim
n→∞

ζ xn, xn+1, xn+2, xmð Þ ≤ 1/δ, ð16Þ

and for allu, v ∈ X, we have

lim
n→∞

ζ u, v, xn, xn+1ð Þ ≤ 1 ; ð17Þ

then, T has a unique fixed point in X:

Proof. Let x0 ∈ X and define the sequence fxng as follows:

x1 = Tx0, x2 = Tx1 = T2x0,⋯, xn = Txn−1 = Tnx0,⋯: ð18Þ

First of all, note that for all n ≥ 1, we have

Dζ xn, xn+1ð Þ ≤ δ Dζ xn−1, xnð Þ +Dζ xn, xn+1ð Þ� �

⇒ 1 − kð ÞDζ xn, xn+1ð Þ ≤ δρ xn−1, xnð Þ
⇒Dζ xn, xn+1ð Þ ≤ δ

1 − δ
Dζ xn−1, xnð Þ:

ð19Þ

Since 0 < δ < 1/2, one can easily deduce that 0 < δ/ð1 − δÞ
< 1: So, let μ = δ/ð1 − δÞ. Hence,

Dζ xn, xn+1ð Þ ≤ μDζ xn−1, xnð Þ
≤ μ2Dζ xn−2, xn−1ð Þ ≤⋯≤ μnDζ x0, x1ð Þ:

ð20Þ

Therefore,

Dζ xn, xn+1ð Þ⟶ 0 as n⟶∞: ð21Þ

Also, for all n ≥ 1, we have

Dζ xn, xn+2ð Þ ≤ δ Dζ xn−1, xnð Þ +Dζ xn+1, xn+2ð Þ� �
: ð22Þ

Thus, by using the fact thatDζðxn, xn+1Þ⟶ 0 as n⟶∞,
we deduce that

Dζ xn, xn+2ð Þ⟶ 0 as n⟶∞: ð23Þ

Now, similar to the proof ofCases 1 and 2 of Theorem6,we
deduce that the sequence fxng is aDζ-Cauchy sequence. Since
ðX,DζÞ is a Dζ-complete extended rectangular b-metric space,
we conclude that fxng converges to some ν ∈ X: Using the
argument in the proof of Theorem 6, we may assume that for
all n ≥ 1, we have xn∈fν, Tνg. Thus,

Dζ ν, Tνð Þ ≤ ζ ν, Tν, xn, xn+1ð Þ
� Dζ ν, xnð Þ +Dζ xn, xn+1ð Þ +Dζ xn+1, Tνð Þ� �

≤ ζ ν, Tν, xn, xn+1ð Þ
� Dζ ν, xnð Þ +Dζ xn, xn+1ð Þ +Dζ Txn, Tνð Þ� �

≤ ζ ν, Tν, xn, xn+1ð Þ
� Dζ ν, xnð Þ +Dζ xn, xn+1ð Þ + δDζ xn, Txnð Þ + δDζ ν, Tνð Þ� �

:

ð24Þ

Taking the limit of the above inequalities, we get

Dζ ν, Tνð Þ ≤ 0 + 0 + 0 + δDζ ν, Tνð Þ� �
<Dζ ν, Tνð Þ: ð25Þ

Thus,Dζðν, TνÞ = 0which implies thatTν = ν, and hence,
ν is a fixed point of T: Finally, to show uniqueness, assume
there exist two fixed points of T say ν and μ such that ν ≠ μ:
By the contractive property of T, we have

Dζ ν, μð Þ =Dζ Tν, Tμð Þ ≤ δDζ ν, μð Þ <Dζ ν, μð Þ, ð26Þ

which leads us to a contradiction. Thus, T has a unique fixed
point as required.

4. Application

In closing, we present the following application for our
results.
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Theorem 8. For any natural numberκ ≥ 3, the equation

sκ + 1 = κ4 − 1
� �

sκ+1 + κ4s, ð27Þ

has a unique real solution.

Proof. First of all, note that if ∣s∣ > 1, Equation (3.1) does not
have a solution. So, let X = ½−1, 1�, and for all s, r ∈ X, let Dζ

ðs, rÞ = ∣s − r∣ and ζðs, r, u, vÞ =max fs, r, u, vg + 2: It is not
difficult to see that ðX,DζÞ is a Dζ-complete controlled
rectangular b-metric space. Now, let

Ts = sκ + 1
κ4 − 1ð Þsκ + κ4

: ð28Þ

Notice that since κ ≥ 2, we can deduce that κ4 ≥ 6: Thus,

Dζ Ts, Trð Þ = sκ + 1
κ4 − 1ð Þsκ + κ4

−
rκ + 1

κ4 − 1ð Þrκ + κ4

����
����

= sκ − rκ

κ4 − 1ð Þsκ + κ4ð Þ κ4 − 1ð Þrκ + κ4ð Þ
����

����

≤
s − rj j
κ4

≤
s − rj j
6 = 1

6Dζ s, rð Þ:

ð29Þ

Hence,

Dζ Ts, Trð Þ ≤ δDζ s, rð Þ, δ = 1
6 : ð30Þ

On the other hand, notice that for all s0 ∈ X, we have

sn = Tns0 ≤
2
κ4

: ð31Þ

Thus,

sup
n≥1

lim
i→∞

ζ si, si+1, si+2, snð Þ = 2
κ4

≤ 2 < 6 = 1
δ
: ð32Þ

Finally, note that T satisfies all the hypothesis of Theorem
6. Therefore, T has a unique fixed point in X, which implies
that Equation (3.1) has a unique real solution as desired.

Example 2. The following equation

s100 + 1 = 99999999s101 + 100000000s, ð33Þ

has a unique real solution.

Proof. The proof is a direct consequence of Theorem 6, by
taking κ = 100:

5. Conclusion

In closing, we would like to bring to the readers’ attention to
the following open questions:

Question 1. Let ðX,DζÞ be a controlled rectangular b-metric
space and T a self-mapping on X: Also, assume that for all
distinct s, r, Ts, Tr ∈ X, there exists δ ∈ ð0, 1Þ such that

Dζ Ts, Trð Þ ≤ δζ s, r, Ts, Trð ÞDζ s, rð Þ: ð34Þ

What are the other hypotheses we should add so that T
has a unique fixed point in the whole space X?

Question 2. Let ðX,DζÞ be a controlled rectangular b-metric
space and T a self-mapping on X: Also, assume that for all
distinct s, r, Ts, Tr ∈ X, there exists δ ∈ ð0, 1Þ such that

Dζ Ts, Trð Þ ≤ ζ s, r, Ts, Trð Þ Dζ s, Tsð Þ +Dζ r, Trð Þ� �
: ð35Þ

What are the other hypotheses we should add so that T has a
unique fixed point in the whole space X?
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