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We consider the following double phase problem with variable exponents: {

—div |V’ 2V + a(x)| VT2 V) = Af (x, u) in Q,
u=0, onoQ

By using the mountain pass theorem, we get the existence results of weak solutions for the aforementioned problem under some
assumptions. Moreover, infinitely many pairs of solutions are provided by applying the Fountain Theorem, Dual Fountain

Theorem, and Krasnoselskii’s genus theory.

1. Introduction and Statement of Results

In this paper, we deal with the existence and multiplicity of
solutions for the following double phase problem

~div ([VuPY2Vu + a(x) Va1 2Vu) = Af (x,u),  inQ,
( ) (Py)

u=0, onodQ,

(1)

where A > 0 is a real parameter, 2 ¢ R¥(N >2) is a bounded
domain with smooth boundary, p*(-) = Np(-)/(N - p()), p(*),
and g(+) are Lipschitz continuous in RY. Moreover,

q()

1 _
—= <1+ —, a: 0 —[0,+00), is Lipschitz continuous

p() N
(2)

and we also assume that the nonlinearity f satisfies the follow-
ing conditions:

(f))f : QxR— R is a Carathéodory function and
there exists C; > 0 such that

fot)] < Cy (1419, (3)

for all (x,t) € QxR, where a€C(Q),1<q"<a <a'<
p* ()Uz)}‘m&(f(x, t)/[t|7") =0, uniformly for a.e. x€Q.

( f3)tlim F(x, t)/]t|"" = +0co, uniformly for a.e. x € Q, where
—+00

F(x,t) = ﬂ}f(x, s)ds.(f,) There exists a constant C;, > 0 such
that

G(x,t) <G(x,5) + Cy, (4)

for any x€Q,0<t<s or s<t<0, where G(x,t) =tf(x, t)
—q"F(x,t).(f;) There exists Ty>0 such that f(x,t)/
|t 2t is nondecreasing in ¢ when t > T,, and nonincreas-
ing in t<-T, for all x e Q.(f;)f(x,—t)=—f(x,t), for all
x€Q and teR.

Remark 1. We point out that the condition (f,) is weaker
than (f}). It is not difficult to check that the condition (f})
is equivalent to the following condition (see [1]): (f}")
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G(x,t) is increasing in t>T, and decreasing in t<-T,
for all x € Q.
Hence, (f}) implies (f,).

Similar problems have been investigated and it is well
known they have a strong physical meaning because they
appear in the models of strongly anisotropic materials, see,
e.g., [2, 3]. The energy functionals of the form

uHJ S |Vu(x)dx,  H(x, 1) = ) + a(x)11), (5)
O

q(x) >p(x)>1, a()>0,
where the integrand % switches between two different ellip-
tic behaviors have been intensively studied in recent years,
see [2-11]. Recently, Mingione et al. have obtained the regu-
larity theory for minimizers of (5), see, e.g., [7].

When a(x)=1 and A=1, problem (P,) becomes a
(p(x), q(x))-Laplacian problem of the form

in,

{ —Ap(x)u(x) - Aq(x)u(x) =f(xu), ©)

u=0, onoQ,

where -A, u=—div (|Vul? <">72Vu). In particular, we
refer to [9] where the authors proved the existence of
one and three nontrivial weak solutions of (6), by the
mountain pass theory and Morse theory.

If p(x)=¢q(x), then a(x)=1. Vetro [12] studied the
following Dirichlet boundary value problem involving the
p(x)-Laplacian-like operator:

{ —A;(x)u(x) +|u(x) |P(x)—2u(x) =Af(x,u), inQ, )

u=0, onoQ,

where

|VM|P(X)

—A;(x)u:: div 1+ [VuP®=2vy |, (8)

1+ |[Vu[#®)

is the p(x)-Laplacian-like. They have established the exis-
tence and multiplicity results for the problem (7) when A
is sufficiently small.

In the particular case of p(x)=p,q(x) =¢, such prob-
lems have been recently studied in, e.g., [13-16]. The exis-
tence and multiplicity of weak solutions of problem (P,)
with A =1 has been established in Liu and Dai [13]. In
[15], by using the Morse theory, Perera and Squassina
obtained a nontrivial weak solution of problem (P,). In
[14], by utilizing the Nehari method, Liu and Dai obtained
three ground state solutions. Usually, the authors in those
references considered the nonlinearities f(x,t) satisfying
the Ambrosetti-Rabinowitz type condition ((AR) in short):
ie., there exist L>0, 8>¢q, such that for [f|>L and a..
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x €],
0 <OF(x,t) < tf(x, ). 9)

Under some appropriate assumptions, one can con-
sider a much weaker condition on f(x,t)

lim F(x,u)

m |u)|q = +oouniformly in x. (10)

This means that F is g-superlinear at infinity. But the
(AR) condition is useful and natural to ensure the moun-
tain pass geometry and the Palais-Smale condition ((PS) in
short). So it have attracted much interest in recent litera-
ture, see for example [13, 15, 17-19] and the references
therein. However, in this paper, we consider the problem
(P,) in the case when the nonlinearity F is q'-super-
linear at both infinity and origin (see conditions (f,) and
(f;))- These conditions are weaker than the (AR) condi-
tion. For example, Papageorgiou, Vetro, and Vetro [16]
investigated the following (p,2)-equation with combined
nonlinearities:

inQ,

{ —A,u(x) = Au(x) = Af (x, u) + g(x, u), (1)

u=0, onodQ,

where 1>0,2 < p<+00,QCRY, be a bounded domain
with a C*-boundary 9. Using the critical point theory,
critical groups, and flow invariance arguments, the authors
obtained at least five nontrivial smooth solutions of (11)
when f is (p — 1)-superlinear near +co but does not satisfy
the (AR) condition.

Now, a natural question is whether the results contained
in [13] can be generalized to the variable exponents (p(x), q
(x)) case. Moreover, can we assume that the nonlinearity f
satisfies a more natural and weaker (¢q* — 1)-superlinear con-
dition near +oo instead of the (AR) condition?

Inspired by the above works, we will answer these
questions. For a detailed motivation of our context and
additional references, we refer to the introduction of
[8, 20]. To the best of our knowledge, there are very
few papers related to the existence of solutions of prob-
lem (P,) with variable exponents. This paper was moti-
vated by the interest in applications of the variable
exponent Orlicz-Sobolev spaces. Before stating our main
results, we introduce some notations.

1.1. Notations and definitions. Throughout this paper, we
define the class

C,(Q)={peC(Q), p(x) >1forallx e Q}. (12)
For any p € C, (Q), we denote

p=ess sgpp(x), p~=ess infp(x), (13)

N
XeRVN x€R
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and we denote by p, « p, the fact that

ess inf (p,(x) —p,(x)) > 0. (14)
xeRN
The letters C,C;i=1,2,---, denote positive constants

which may vary from line to line but are independent of the
terms which will take part in any limit process. The notion

of weak solution for problem (P,) is that u € W™ (Q) is
a solution of (P,) if

J (|Vu|p(")’2 + a(x)|Vu|‘1(")’2> Vu - Vvdx = J f(x, u)vdx,
1) o

Vv e Wy (Q).
(15)

It is formulated in a suitable Orlicz-Sobolev space
Wy” (Q) that will be introduced in Section 2. It is easy
to see that solutions of (P,) correspond to the critical
points of the energy functional I, defined by

I(u) = JQ (p(lx) |VulP®) + 28 |Vu|q<x>>

(16)
cdx - /\J F(x, u)dx,Yu € Wy (Q),
o

where F(x,t) = Lt)f(x, s)dx.
Now, we present the main results of this paper as follows:

Theorem 2. Suppose (f,) — (f,) are satisfied. Then problem

(P,) has at least one nontrivial weak solution in W™ (Q)

for all A > 0.

Theorem 3. Suppose (f,), (f;) — (f,) are satisfied. Then there
exists Ay > 0 such that for all A € (0, A), problem (P,) has at
least one solution u, and

li = . 17
lim ] = +00 (17)

Theorem 4. Suppose (f,) — (f5) are satisfied. Then problem
(P,) has infinitely many solutions in W5 (Q) for all 1> 0.

Theorem 5. Suppose (fs) and the following con-
dition (fg)f : QxR — R is a Carathéodory function, and
there exist positive constants d,,, d; such that

ol tF1 < f(x, 1) < dy P, (18)

for all x € Qand t >0, where B € C(Q) such that 1< f(x) <
p*(x) with " <p~. Then problem (P,) has infinitely many
solutions in W™ (Q) for all A > 0.

Theorem 6. Suppose (f,), (f;) — (f;) are satisfied. Then for
all >0, problem (P)) has infinitely many solutions
{u,},en W5 (Q) such that lim,_ T, (u,) = co.

n—00

Theorem 7. Suppose (f,), (f;) — (f5) are satisfied. Then for
all 0< A< alqt, problem (P,) has infinitely many solutions
V3 enWo (Q) such that I)(v,) < 0lim,_ I, (v,) =0.
Remark 8. Note that our Theorems 2-7 answer the above
questions. To be precise, Theorems 2, 4, 6, and 7 extend the
main results of [13] to the variable exponents (p(x),q(x))
case. Compared with [13], the main difficulty is that since
both p(x) and ¢q(x) are nonconstant functions, then (P,)
has a more complicated structure, due to its nonhomogene-
ities and to the presence of the nonlinear term.

Remark 9. In Theorem 5, we obtain infinitely many solutions
by using Krasnoselskii’s genus theory. Moreover, we consider
continuous functions f = f(x, u) satisfying the growth condi-
tion

Aol < (,0) < dy Jul P, (19)

The rest of this paper is organized as follows. In Section 2,
we state some preliminary notations and the main lemmas.
In Section 3, we prove the Theorems 2 and 3. The proofs of
Theorems 4-5 are given in Section 4. By using the Fountain
Theorem and the Dual Fountain Theorem, infinitely many
pairs of solutions are provided in Section 5.

2. Preliminaries

In order to discuss the problem (P, ), we need some theories
on generalized Orlicz spaces and Sobolev spaces. For more
details, we refer to the references [20-23]. The variable expo-

nent Lebesgue space LP*)(Q) is defined by

20 Q)= { u is a measurable real valued function

JQ|u(x) Pt dx<+oo‘ }
(20)

endowed with the Luxemburg norm

p(x)
Jull, = inf /\>0:J dx<1y. (21)
Q

Note that, if p is a constant function, the Luxemburg
norm |[u/[,, coincide with the standard norm |[u[|, of the
Lebesgue space LP(2). Then, (L/*) (), [|ull,(.)) becomes a
Banach space, and we call it the variable exponent Lebesgue
space. It is easy to check that the embedding Lf- M (Q)-
1/ (Q) is continuous, where 0 < [2|<co and p1sP, are var-
iable exponents such that p; <p, in Q.

The following property of spaces with variable exponent
is essentially due to Fan and Zhao [24].

u(x)

Lemma 10. The space (L’ (Q), [*ll ) is a separable, uni-
formly convex Banach space, and its dual space is o (Q)
where (1/p(x)) + (1/p' (x)) = 1. For any u € IPY)(Q) and v €
o (Q), we have



1 1
<=+

=\ W ||u||p(-)HV||p,(~)' (

22)

J uvdx
0

The Musielak-Orlicz space L (Q) is defined by

L%(Q) = {u : O — R measurable : J H(x, |u|)dx<+oo},

(23)

endowed with the norm
- - u
||u| ,, = inf {A>0.pJK(A)$1}, (24)

where # is defined in (5). The space L% (Q) is a separa-
ble, uniformly convex, and reflexive Banach space. We

denote by L10)(Q) the space of all measurable functions
u: Q— R with the seminorm

1/q(x)
o= (] o) <o 25)
’ Q
It is easy to check that the embeddings
LI)(Q) L7 ()P (Q) nLIO(Q), (26)

are continuous. Since p A (u/||u||#) =1 whenever u#0,
we have

min { a5, 5 < ) + 1,
<max {ul5 . vuer” ().
(27)

The related Sobolev space W% (Q) is defined by
W Q)= {uel”(Q): [Vu| e L (Q)},  (28)
equipped with the norm

[ull = 1|2l e + 11V 24]] (29)
where ||Vul|,, =|||Vull|,,. The completion of C°(Q2) in

WL (Q) is denoted by W§” () and it can be equiva-
lently renormed by

[[ull = 1|Vl (30)

via a Poincaré-type inequality, cf ([6], Proposition
2.18(iv)), under assumption (2). The spaces W' (Q)
and W7 (Q) are uniformly convex, and hence reflexive,
Banach space. By (27), We have
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; p(x) P(x)
min { [/, %)} < Va3 + |Vl
< max {Hu||1’(">, ||u||q<">}, Vue W (Q).

(31)

We point out that if r € C, () and r(x) < p*(x) for all
x€Q, then W' (Q)-L')(Q) is continuous. This
embedding is compact if

inf {p*(x) —r(x)} >0. (32)

x€Q

Let us now define J(-): W5 (Q) — R as

e[ (v 4 %) g gy
g6 = [ (Grevar » g ) o)

and we denote the derivative operator by A, that is
A=] W (Q) — (W (Q))", with

(A(u), v) = J (|Vu|"<">’2 +a(x) |Vu|‘1(">’2> Vi Vvdsx,
(0

U, ve Wé%(Q)
(34)

Here, (W}¥(Q))" denotes the dual space of
Wi (Q), and (-,-) denotes the paring between WL
(Q) and (WL*(Q))". In the following lemma, we
summarize some properties of A, useful to study our
problem. When p(x)=p,q(x)=q, we refer to ([13],
Proposition 3.1).

Lemma 11 (see [19], Lemma 3.4). Under the condition (2), A
is a mapping of type (S,), that is, if u, —u in Wy (Q)
and lim sup(A(u,) — A(u),u, —u) <0, then u,— u in

n—+00

WH(Q).
Lemma 12 (see [19], Lemma 3.2). Under the condition (f,),

I, is well defined on W5 (Q), and I, e CL{(W5" (Q),R)
with Fréchet derivate given by

<1;(u), v> = JQ (|Vu|"<")_2 +a(x) |Vu|q<x)_2) Vu

- Vvdx - AJ f(x,u)vdx, u,ve WH (Q).
o

(35)

Firstly, we show the functional I, satisfies the (C),
condition.

Lemma 13. If hypotheses (f,),(f;), and (f,) hold, then I,
satisfies the (C), condition.
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Proof. For every c€R, let {u,} c Wy"(Q) be a (C), -
sequence, that is,

IA(un)———»c,and||fA(un)Hoygz“)D*(l+HunH)———>0,asn-——eco.

(36)

We claim that {u,} is bounded in W™ (Q). In fact,
suppose by contradiction that |lu,[|— + 0o, as n — co.
Let v, =u,/|u,ll,n > 1. Up to a subsequence, we may assume
that

v,— v, ae.in (O,

v, — v, weakly in Wy 7 (Q), )
37
v, — v, strongly in L7 (Q2),

v, — v, strongly in L*™) (Q).

We know that v satisfies the following alternative: v = 0 or
v # 0. In what follows, we will show that under the condition
lu, |l— + o0, v satisfies neither v = 0 nor v # 0. This is a con-
tradiction. Thus, {u,} is bounded.

If v=0, then v, — 0 ae. x€, as n—> co. Since
I)(tu,) is continuous in f € [0,1], for each #, there exists
t,€1[0,1)(n=1,2,---) such that

IA(tnun) :fg&ﬁll(tun)' (38)

It is easily seen that t, >0 and I, (t,u,) >c>0=1,(0) =
I,(0u,). If t, < 1, then (d/dt)I,(tu,)|,_, =0, which implies

<5%%%y%%>=a (39)

Moreover, if t, = 1, then, from(36) we have (I, (u,), u,)
=0,(1). So, we always have

(I (tat)s s, ) = 0,(1). (40)

Let y, be a sequence of positive real numbers such that
y; > 1 for any k and klim Y, = +oo. Then |y v, =y, > 1 for
—+00

any k and n. Fix k, using (f,), (37), and the Lebesgue domi-
nated convergence theorem we deduce that

limJ F(x, yv,)dx=0. (41)

n—oo0 0

Recall that ||u, | — + 00 as n — 00. So, we have [|lu, [ >y,
or 0 <y, /|lu,l<1 for n large enough. Hence, from (31) and
(38), we deduce that

5
Ltu) 2T (5w, ) =1
A( nun) =2 ”u ” Uy A(kan)
Yi(x) )ﬂ(x)
= Loy [P0 4 Lk g(x) |V, |1 — AE(x, p,v,
.LQ@' A = AF(s e,
X dx > ﬁ’i —/\JQF(x, PV, )dx,
(42)

for any n large enough. By combing this inequality with (41),
as 1, k—+00, we have

limsupl, (t,u,) = +00. (43)

n—00

On the other hand, using condition (f,) and (40), for all n
large enough, we obtain

= (it ) o)

- e
Gt

1
o \4(x)
1
/\J [—+f(x, t,u,)t,u, — F(x, tnun)] dx
old
L/,
I - —(1I ,
AR CTARS)
AC, Q| AC, | Q|
et ————
q q

IA(tnun) = Il(tnun) -

q(x)
V(t,u,)| dx

+
(44)
+

yasn — OQ.

From (43) and (44), we obtain a contradiction. This shows
that v # 0, and thus,

v, (x) — v(x) # 0a.e. in Q. (45)
Let O, = {x € Q: v(x) #0}. It implies that

lu, (x)] — +00, inQ,, asn — co. (46)

Using condition (f;), we obtain

Flouy(x) o Fou, (3) [, (0]

n=0 Ju, (I = Ju, ()], ()1
E(x, u, (x))

= lim —2> "/ 7 =
nlirpm ) [V, (x)|T =+00, x€Q,.

(47)

Also by (f,) and (f;), we can get a constant C, > 0 such
that

F(x,t)>-C,, V(x,1)€QxR. (48)



6
Thus, we get
M > (49)
llae, 1
From (31), we see that
€= IA(un(x)) + On(l)
1 a(x)
= — \Vu PY + 22wy 195 AF(x, u >
[, (o 7l + 3 71 < )
1 .
~dx+o0,(1)2 T llu, IP - J AF(x,u,)dx +0,(1),
Q
(50)
which implies
JQF(X, u,)dx > /\—;Jr o, 1P - % +0,(1) — 400, asn— co.
(51)

Similarly, from (31), we also get

c=I(u,(x))+0,(1) < %”u”"(f - JQ/\F(x, u,)dx +o0,(1),
(52)

which implies

lla, 1 2p7c+Ap’J F(x,u,)dx—o0,(1) >0, (53)
o

for n large enough.
We claim that |2, | = 0. Indeed, suppose by contradiction
|, | # 0, then by (47)-(53) and Fatou’s lemma, we obtain

+00=J liminf (M \vn(x)|q+ + i)

, oo\ () |7 N, 17

L F(x,u,(x)) + C,
< liminf v My T+ =
5ﬂwh<www*”®'+mW> .
J F(x, u,(x))
a, llu, ()17

o IQF(x,un(x))dx !
Slrlgligp*c+/\p*fQF(x, u,)dx—o,(1) ~ Ap~’

= liminf
n—+00

which yields a contradiction. Therefore the sequence {u,} is
bounded in W5” (€). Thus, there is a subsequence (which
we still denote by {u,}) that converges weakly to some u €
WL7 (Q) and strongly in L*0)(Q). It is easy to check from
(f,) and Hoélder’s inequality that
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lkﬂ%%ﬂ%—ww

<C(ll1 + |un|a(x)—1"a,(')||un — ”||a(.) —50.

(55)

Then

(A ), =) = (1'(w,), 1, ~ u)

(56)
+ Ajﬂf(x, u,)(u, —u)dx — 0.

So u,, — u follows from Lemma 11.

3. Proofs of Theorems 2 and 3

First, we will show the functional I, satisfies the mountain
pass geometry [25].

Lemma 14. Assume hypotheses (f;) — (f;) hold. Then the
functional I satisfies the following properties:

(i) There exist p,6>0 such that I,(u)=8 for any
ue W (Q) with |ul=p

(ii) There exists a e W5 (Q) \ B, such that I (n) < 0.

Proof. Let us check (i). For any u € Wy (Q)\ {0} and £ > 0
small, it follows from (f,) — (f,) that there exists C, > 0 such
that

F(x,t) <e[t|T +C,|t|*™), forall (x,t) e QxRN. (57)
Thus, for u € W(l)’%(Q) and |lu|<1, we have

= [ (2w 4 4% 191 AR ) ) d
1) = [ (g7 + G P = ¢ ).

. dx—AJ <s|u\q+ + C£|u|“<x))dx,
o

1

q

> —[ull” — ACsellull” — AC,Cyllul®,

(58)

by the Sobolev embedding W§” (Q)—LT (Q) and W™
(Q)=L*)(Q). Since g*<a~ and & arbitrarily small,
there exist p >0 and & > 0 such that I, (1) >8> 0 for [ul =
p- Hence item (i) holds.

Let us check (ii). From (f;), for any M > 0, we can choose
a constant C; > 0 such that

F(x,t) = M|t|T —Cs, V(x,t)€QxR. (59)
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Then, for w € Wy () and t > 0, we deduce that
() '
I(tw) fﬂ(llp(x)’V(tw) | P) + (a(x)/q(x))|V(tw)|q )dx—/\fQ (M\tw|q —CS)dx
lim - < lim - ,
t—+oo 4 t—+00 t1
1 (%) 14(x) . .
< lim _+J Ve + LTG0 _ i AMjft” +AC (60)
t=reo tT J o \p(¥) q(x)

1 +
.deJ (p— |Vw|P(") + @Www(x) - AM|w| >dx.
Io)

(x) q(x)

If M is large enough such that

JQ (P% |Vw

conclusion (ii) follows.

P 4 % Va1 — AM|w|q*> dx<0, (61)

Proof of Theorem 2. Since the functional I) has the mountain
pass geometry and satisfies the (C), condition, the mountain
pass theorem [25] gives that there exists a critical point
ue Wy” (Q). Moreover, I(u)=c>a>0=1(0), so u is a
nontrivial solution.

Lemma 15. Assume (f,) holds. Then there exist positive con-
stants my and p, such that /\lir{;m,\ =+00 and Iy >my >0

when |lul = p,.

Proof. Let u € W™ (Q) with |lul|>1. It follows from (f,) that
there exists C; > 0 such that

|F(x, 1) SC6<|t|"‘("> + 1), (62)
forall (x,¢t) e 2 xR, q* <a(x) < (p*)”. Hence, we obtain

I (u) 2 JQ (D% VufP®) + % |Vu|‘1(x)>
-dx—/\C6J (\u|“<X> + 1) (63)

]- — +
ez ul” =G u] - AC ).

Let p) =A" where s€ (0,1/(a* —p*)). Hence, we get
p, >1 for A small enough. Therefore, substituting [lu| =
py=A"" in (63), we see that

I(u)> qé)rsp' ~ AT~ AG|9). (64)

Let us define my=(1/g")A™F - CA™" —AC4|Q).
From se€ (0,1/(a™ —p*)), we get that there exist A, small

enough such that m, >0 for all A€(0,4,) and m; — +
00 as A — 0%,

Proof of Theorem 3. By Lemma 13, I satisfies the (C), condi-
tion. Now in view of Lemma 13 and Lemma 15 and Lemma
14(ii) we can apply the mountain pass theorem to obtain a
nontrivial critical point u, for I such that

Ly(uy) =c=my. (65)

On the other hand, from (62), we have

1 a(x)
) L(p(x)' ™
[ + 1 - +
. @ _ P q
dx+/\C6JQ<|u| +1>dx,sp_ ma { Juy |7y |}

+ ACy max {||uk||“+u}t“_} +AC,|0-
(66)

Taking the limit A — 0% in (66) and using Lemma 15,
one has Alirgllu,\ll = +00.

4. Proofs of Theorems 4 and 5

Lemma 16. Assume the hypotheses (f,) — (f;) hold. Then the
functional I, satisfies the following properties:

(i) There exist constants p,d > 0, such that I,(u) > for
any u € Wé’%(Q) with |lul = p

(ii) For each finite dimensional subspace X ¢ W5 (Q),
there exists an R=R(X) such that I, <0, onX\

Bp(X).

Proof. As in the proof of Lemma 14, it is immediate to see
that the case (i) is true. Let e € X and |le|] = 1 be fixed. From
(59), we obtain



= | (L v P® + ) 19001909 AR (. te
)= (5 vear + S 9o - Ak 1))

tq +
drs - —AMGtT + |2,

(67)

for all norms on X are equivalent. Then, we can choose M
large enough such that 1/p~ — AMC, < 0. Therefore, we see
that I, (te) — —00, as n —> 00, and the step is proved by
taking v, = t,e with t, > R large enough.

Proof of Theorem 4. According to our assumption (f), I, is
an even functional. By the Lemma 13, I, satisfies the (C),
condition. Together with the Lemma 16, we can apply a Z,
version of the mountain pass theorem (see [25], Theorem
9.12) to obtain an unbounded sequence of weak solutions
of problem (P,).

We finalize the section presenting a relation between
the genus of K and the number of solutions of the
problem (P,), where K is a k-dimensional linear subspace
K c CP(Q) of W5 (Q). We invoke Clark’s Theorem in
[25], Theorem 9.1. The next result is a compactness result
on problem (P,) which we will use later.

Lemma 17. Assume that condition (f,) holds, then

(i) I, is bounded from below
(ii) I, satisfies the (PS) condition.

Proof. (i) Using (f), and for [u[>1, A > 0, we obtain

I(u) = JQ Q;% |VaufP™ + % |Vu|q(x>)

Ad 1 . "
cdx - _IJ |ulP) dx, > q—+||u||P — Cpollull? .
(0]

(68)

Hence, I, is coercive following immediately from the
above expression and 37 < p~. Therefore, I, is bounded from
below.

(ii) Suppose {u,} is a (PS). sequence for I,. Thus
I,(4,) — ¢ and I;(u,) — 0 in (Wy"(Q))" as n— +
0. It follows from (i) that {u,} is bounded in W7 (Q).
Up to a subsequence, we may assume that

a.e.in (2,

weakly in W57 (Q), (69)

u, — u,
u, —u,

u, —> u, stronglyin LFO(Q).

Since I)(u,) — 0 and u, — u — 0 in W5” (Q), (see [26],
Proposition 3.5), we get that
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lim <I)’u(”n): u, — u> =0. (70)
n—+00
It is easy to check from (f,) and Holder’s inequality that

B(x)-1
<Cplu,

.kﬂ%wﬂw—wﬂ

g ()l — ullgey — 0, asn — oo,

(71)

where B'(-) = B(-)/B(-) = 1. Then
—u)y= <I'(un), u, — u>

+)LJ f(x u,)(u, —u)dx — 0, asn — co.
Q

(A(uy), 1y

(72)
So u,, — u follows from Lemma 11.

Proof of Theorem 5. Consider K is a k-dimensional linear
subspace K ¢ CP(Q) of W5™ (Q). We claim 1], <0 if [Jul
<r<1 is sufficiently small. Indeed, by the equivalence of
norms on K, there exists a constant C,, > 0 such that C,,|lu

¥ < IS |ulP™) dx for u € K with [[ul|<1. Therefore, by (fo)s

Iy(u) < JQ Qy% |VulP) + % Wq(x))

1 — + +
cdx - %J ulf®dx < —[JullP” - AC 5 llull?” < [lull?
B Ja p

1 —_pt
(e e

for u € K with [ull<1. If r € (0,1) is small enough, we have
that

(73)

1 — Rt
Frp # )y, <0. (74)

The last inequality shows I, |, <0 for all u € S ={ueK
:llull =r}. It is clear that K is isomorphic to R* and S’: is
homeomorphic to S in R¥. Hence, we obtain y(S¥) = k.
In the proof of Lemma 17, it was already established that
I, € CY(X,R) is bounded from below, satisfies the (PS)
condition, and I,(0) =0. Clearly, (f;) implies I, is even.
Consequently, by Clark’s Theorem in [25] (Theorem
9.1), I, possesses at least k distinct pairs of nontrivial solu-
tions. Since k is arbitrary, we obtain infinitely many non-
trivial solutions.

5. Proofs of Theorems 6 and 7

In this section, we will show that (P,) has infinitely many
pairs of solutions by using the Fountain Theorem and Dual
Fountain Theorem. Firstly, we need to recall some
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preliminary results. Since W57 (Q) is a reflexive and separa-

ble Banach space, there are e;C W (Q) and ej C
(WS (Q))" such that
W(l)’%(Q) = span{ej Dj=1,2 },
(Wé’%(Q))* = span{e]’-‘ sj=12- }, (75)

. 1, i=j,

ee )=

<’ ’> {0, i#].
Then, we define

L -
X;=span{e;}, Y= @, X;, Z; = & 5. X;.

(76)
We will apply the following Fountain Theorem ([25],
Theorem 3.6).

Lemma 18. Assume that X is a Banach space, and let ¢ € C'
(X, R) be an even functional. If, for every k € N, there exists
Py > 1y > 0 such that

(A)) b= inf ¢(u) — +00,k — +00,
uez,
llull=ry
(A)) ay= max ¢(u)<0, (77)
ueyY,
lull=p,

(A3)  gsatisfies the (C), condition for every ¢ > 0.

Then ¢ has an unbounded sequence of critical values.

To prove Theorems 6 and 7, the following lemma is
needed.
Lemma 19. Assume that a(x) € C,(Q), q* < a(x) < (p*)", for
any x € (). Let

Bi= sup lullee,
lull=1 (78)
uez,

then lim f3, =0.

k—+00

Proof. Obviously, 0< f3,, <, and so B, — >0. Let u;
€ Z, satisfy

1
lagl = 1, 0.< B—llugll < (79)

T

Then, there exists a subsequence of {u; } (which we still
denote by {u,}) such that u;, — u, and

<e;,u>: lim <e;’“k>=0,j=1,2,---, (80)

k—+00

which implies =0, and thus, u;, — 0. Since W(l)’% Q)
SL(Q), then w, — 0 in L*0(Q). Hence, we get

Proof of Theorem 6. Let X=WH”(Q). According to
f(x,—t)==f(x,t), I, isan even functional. As the proof
of Lemma 13, it follows from (f;), (f;), and (f,) that I, sat-
isfies the (C), condition. For every k € IN, we shall prove that
there exist p, > r;, > 0 such that

(A) b= inf I)(u)— +0c0,k — +00,
LIGZk
l[ull=r (81)
(Ay))a,= max I)(u)<0,
u€Y,
leel=py

We first show that (A,) holds. For any u € Z,, we choose

lull =7, = (2q+C6Aﬁf)1/(p:a ) From Lemma 19 and p~ < at,
we see that r, — +00 as k — +00. As before, we also have
from (62) that

1

[l ~ CA = 2G|, lullyy <1,

Iy(u) = > 1) —ACy,|Q,

1
_ o N 2q*
qjllull" = CeABy lul® —=AC|Qf, Nullyy 21,

(82)

which implies that b, — +00, k — +00.
Afterwards, we demonstrate that (A,) holds. Let ¢ € Y,
and [|¢]| =1, ¢t > 1. From (59), we obtain

1
new) = | (P@ww)"@ + % V()" - B, t¢)>
~dx < ; ~AMC,5t7 +ACs|Q),

(83)

for all norms on Y, are equivalent. Then, we can choose
M large enough such that 1/p~ — AMC,; < 0. Therefore,
we see that I,(t¢) — —oo, as t — +0o0. Hence, there
exists t; > r, > 1 large enough such that I, (¢,¢) <0. There-

fore, let p, =t,, we obtain that a;:== max I,(u)<0.
uey,

lull=p,

For the proof of Theorem 7, we need the following defini-
tions and results.

Definition 20. Let X be a separable and reflexive Banach
space, I € C'(X,R), ce R. We say that I satisfies the (C);
condition (with respect to (Y,)), if any sequence {u,},  C
X for which u, € Y, for any n € N, I(u,) — c and ||(I|Yn)'
()l (1+]lu,|) — 0, as n — 0, contains a subsequence
converging to a critical point of I.
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We are now ready to prove the Theorem 7.

Proof of Theorem 7. According to the Dual Fountain Theo-
rem ([25], Theorem 3.18), it suffices to prove that for every
k > k,, there exist p, > r; > 0 such that

(B)) a= max I,(u)<0,
ueyY,
llull=r

uez;

lull=py

inf I)(u) — 0,k — +00.
MGZk

llull<p,

(By) di=

(B,) I, satisfies the(C)” condition for every ¢ € R.
(84)

Firstly, we show that (B,) holds. Let ¢ € Y}, and [|¢]| =1,
t> 1. Then similar to the proof of (A,), we see that

nee) - | (P% V()P + % V()" - F(x, t¢>)
dx < ; ~AMC,5t7 +ACs|Q),

+

(85)

for all norms on Y, are equivalent. Then, we can choose M
large enough such that 1/p~ — AMC,5 < 0. Therefore, we see
that I, (t¢) — —00, as t — +00. Hence, there exists ¢, > 1
large enough such that I, (¢,¢) < 0. Therefore, let r, = t,, we
obtain that

ap= max I,(u)<0.
nag (86)
llull=r

We show that (B,) holds. As we have done in the proof of

Theorem 6, For lull = p;, =

(2q+C6)Lﬁz+)1/(pi_a ) From Lemma 19 and P~ <at, we see
that p, — +00 as k — +00. As before, we also have from
(88) that

any ue€Z,, choosing

1 .
Ellullp - CeA = AC4|Q2], IIuIIa@ <1,

. R~
Ellullp = CeABy ull® = ACq|€Q, Nullyy 2 1,

1 -
Zﬁpi —ACyl€2,
(87)

which implies that there exists k, € N, for all k > k, choosing
pr > 1> 0 such that b, > 0.(B;) First from Y, NZ, # & and
0 < ;. < p;, we observe that
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di= inf I,(u)<ap= max I,(u)<0.
lull<p, llull=r

By (f,), there exists C,, > 0 such that
[F(x,£)] < Cyy (161+]1°) (89)

for all (x,t) e QX R, g* <a(x) < (p*)”. Now we define the
function ¥, ¥, : X — R by

¥, = | AC s

@ (90)
¥, (u) :J AC,;|uldx.

(0]

By the definition of ¥, ¥,, we have ¥;(0) =0, i=1,2,
and they are weakly-strongly continuous. Consider

§e= sup [, (u)].G= sup [¥,(u)].
uEZk, uEZk, (91)
llull<1 llull<1

From the compact embedding W5 (2)—L*")(Q) and
Lemma 19, we have

k—+00 k—+00

Let we Z; and ||w|| =1, 0 <t < p,. Then, from (89) and
(90), we obtain

o) = [ (2 it P + 2519800119 — AF(x. teo
)= [ (oo 90 + 83 v - AF ) )

sdx > —AJ F(x, tw)dx > =¥, (tw) — ¥, (tw)
0

2 _Pflpl (w) = p¥3(w) 2 _Pf & = Pili-
(93)

Passing the limit in the above inequality, as k — +c0, we
achieve that

lim d, >0, (94)

k—+00

which, together with (88), implies that lim,_,, d, =0.
(B,) Let {u,} be any sequence in W47 () such that

u,€Y,,
Ii(u,) —c>0,
’ (95)
I, ()N, 1) — 0,
asn — 0o

Then similar to the proof of Lemma 13, we see that

{u,} is bounded in W) (Q). Thus, there is a subse-
quence (which we denote by {u, }) that converges weakly
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to some u € Wy () and strongly in L*)(Q). It is easy to
check from (f,) and Holder’s inequality that

Jﬂf(x, 1y ) (4, — u)dx| < CIL+ [, [* 7, (), = ullyy — 0.

(96)

—u)=0.

ny

Claim 21. lim (I}(u, ), u
k—+c0 k

If Claim 21 holds true, then

(A(uy, ), u, —u)= <I' (U, )ty — u>
+ /\JQf(x, u, ) (u, —u)dx — 0.
(97)

So u, — u follows from Lemma 11. Hence, I, sat-

isfies the (C). condition. In order to prove Claim 21,

we invoke W47 (Q)=uU,Y,=spanf{e,: n=1,2,--} to
choose v, € Y, such that v, — u strongly in W3 (Q).
Since I):\Y,,k(u”k) —0 and u, —v, —0inY,, (see [26],

Proposition 3.5), we get that

lim <1;(unk), - vnk> 0. (98)

k—+00
Hence, we obtain

lim <I)'L(unk), U, — u> = lim <I)/L(unk), U, — vnk>

k—+o00 k—+o00
+ lim <Ii(unk), Vy ~ u> =0.
(99)

k—+00

Therefore, the Claim holds true and we conclude that
I/{(unk) — I,(u) as k —> +00. We next show that I (1) = 0.
To see this, taking w; € Y ;, we have

(B wy) = (B =L (1), ;) + (T3 () ;)
= (1= 1))+ (14, ()

(100)

We pass limit in the right side of (100) as k — +co to
obtain

<I/{(u), wj> =0, forallw;€Y; (101)

Therefore, I, satisfies the (C); condition for every c € R.
The proof is complete.
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