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We consider the following double phase problem with variable exponents:
−div ðj∇ujpðxÞ−2∇u + aðxÞj∇ujqðxÞ−2∇uÞ = λf ðx, uÞ inΩ,
u = 0, on ∂Ω

(
.

By using the mountain pass theorem, we get the existence results of weak solutions for the aforementioned problem under some
assumptions. Moreover, infinitely many pairs of solutions are provided by applying the Fountain Theorem, Dual Fountain
Theorem, and Krasnoselskii’s genus theory.

1. Introduction and Statement of Results

In this paper, we deal with the existence and multiplicity of
solutions for the following double phase problem

−div ∇uj jp xð Þ−2∇u + a xð Þ ∇uj jq xð Þ−2∇u
� �

= λf x, uð Þ, inΩ,

u = 0, on ∂Ω,

8<
: Pλð Þ

ð1Þ

where λ > 0 is a real parameter, Ω ⊂ℝNðN ≥ 2Þ is a bounded
domain with smooth boundary, p∗ð⋅Þ =Npð⋅Þ/ðN − pð⋅ÞÞ, pð⋅Þ,
and qð⋅Þ are Lipschitz continuous in ℝN . Moreover,

q ⋅ð Þ
p ⋅ð Þ < 1 + 1

N
, a : �Ω⟶ 0,+∞½ Þ, is Lipschitz continuous

ð2Þ

and we also assume that the nonlinearity f satisfies the follow-
ing conditions:

ð f1Þ f : Ω ×ℝ⟶ℝ is a Carathéodory function and
there exists C1 > 0 such that

f x, tð Þj j ≤ C1 1 + tj jα xð Þ−1
� �

, ð3Þ

for all ðx, tÞ ∈Ω ×ℝ, where α ∈ Cð�ΩÞ, 1 < q+ < α− ≤ α+ <
p∗ð·Þ.ð f2Þlimt→0

ð f ðx, tÞ/jtjq+−1Þ = 0, uniformly for a.e. x ∈Ω.

ð f3Þ limt→+∞
Fðx, tÞ/jtjq+ = +∞, uniformly for a.e. x ∈Ω, where

Fðx, tÞ = Ð t0 f ðx, sÞds.ð f4Þ There exists a constant C0 > 0 such
that

G x, tð Þ ≤ G x, sð Þ + C0, ð4Þ

for any x ∈Ω, 0 < t < s or s < t < 0, where Gðx, tÞ = t f ðx, tÞ
− q+Fðx, tÞ.ð f ∗4 Þ There exists T0 > 0 such that f ðx, tÞ/
jtjq+−2t is nondecreasing in t when t ≥ T0 and nonincreas-
ing in t≤−T0 for all x ∈Ω.ð f5Þf ðx,−tÞ = −f ðx, tÞ, for all
x ∈Ω and t ∈ℝ.

Remark 1. We point out that the condition ð f4Þ is weaker
than ð f ∗4 Þ. It is not difficult to check that the condition ð f ∗4 Þ
is equivalent to the following condition (see [1]): ð f ∗∗4 Þ
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Gðx, tÞ is increasing in t ≥ T0 and decreasing in t≤−T0
for all x ∈Ω.

Hence, ð f ∗4 Þ implies ð f4Þ.

Similar problems have been investigated and it is well
known they have a strong physical meaning because they
appear in the models of strongly anisotropic materials, see,
e.g., [2, 3]. The energy functionals of the form

u↦
ð
Ω

ℋ x, ∇u xð Þj jð Þdx, ℋ x, tð Þ = tp xð Þ + a xð Þtq xð Þ,

 q xð Þ > p xð Þ > 1, a ⋅ð Þ > 0,

ð5Þ

where the integrand H switches between two different ellip-
tic behaviors have been intensively studied in recent years,
see [2–11]. Recently, Mingione et al. have obtained the regu-
larity theory for minimizers of (5), see, e.g., [7].

When aðxÞ = 1 and λ = 1, problem ðPλÞ becomes a
ðpðxÞ, qðxÞÞ-Laplacian problem of the form

−Δp xð Þu xð Þ − Δq xð Þu xð Þ = f x, uð Þ, inΩ,
u = 0, on ∂Ω,

(
ð6Þ

where −ΔpðxÞu≔− div ðj∇ujpðxÞ−2∇uÞ. In particular, we
refer to [9] where the authors proved the existence of
one and three nontrivial weak solutions of (6), by the
mountain pass theory and Morse theory.

If pðxÞ = qðxÞ, then aðxÞ = 1. Vetro [12] studied the
following Dirichlet boundary value problem involving the
pðxÞ-Laplacian-like operator:

−Δl
p xð Þu xð Þ + u xð Þj jp xð Þ−2u xð Þ = λf x, uð Þ, inΩ,

u = 0, on ∂Ω,

(
ð7Þ

where

−Δl
p xð Þu≔ div 1 + ∇uj jp xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + ∇uj j2p xð Þ
q

0
B@

1
CA ∇uj jp xð Þ−2∇u

0
B@

1
CA, ð8Þ

is the pðxÞ-Laplacian-like. They have established the exis-
tence and multiplicity results for the problem (7) when λ
is sufficiently small.

In the particular case of pðxÞ ≡ p,qðxÞ ≡ q, such prob-
lems have been recently studied in, e.g., [13–16]. The exis-
tence and multiplicity of weak solutions of problem ðPλÞ
with λ = 1 has been established in Liu and Dai [13]. In
[15], by using the Morse theory, Perera and Squassina
obtained a nontrivial weak solution of problem ðPλÞ. In
[14], by utilizing the Nehari method, Liu and Dai obtained
three ground state solutions. Usually, the authors in those
references considered the nonlinearities f ðx, tÞ satisfying
the Ambrosetti-Rabinowitz type condition ((AR) in short):
i.e., there exist L > 0, θ > q, such that for ∣t∣ ≥ L and a.e.

x ∈Ω,

0 < θF x, tð Þ ≤ t f x, tð Þ: ð9Þ

Under some appropriate assumptions, one can con-
sider a much weaker condition on f ðx, tÞ

lim
uj j→+∞

F x, uð Þ
uj jq = +∞uniformly in x: ð10Þ

This means that F is q-superlinear at infinity. But the
(AR) condition is useful and natural to ensure the moun-
tain pass geometry and the Palais-Smale condition ((PS) in
short). So it have attracted much interest in recent litera-
ture, see for example [13, 15, 17–19] and the references
therein. However, in this paper, we consider the problem
ðPλÞ in the case when the nonlinearity F is q+-super-
linear at both infinity and origin (see conditions ð f2Þ and
ð f3Þ). These conditions are weaker than the (AR) condi-
tion. For example, Papageorgiou, Vetro, and Vetro [16]
investigated the following (p,2)-equation with combined
nonlinearities:

−Δpu xð Þ − Δu xð Þ = λf x, uð Þ + g x, uð Þ, inΩ,
u = 0, on ∂Ω,

(
ð11Þ

where λ > 0, 2 < p<+∞,Ω ⊂ℝN , be a bounded domain
with a C2-boundary ∂Ω. Using the critical point theory,
critical groups, and flow invariance arguments, the authors
obtained at least five nontrivial smooth solutions of (11)
when f is (p − 1)-superlinear near ±∞ but does not satisfy
the (AR) condition.

Now, a natural question is whether the results contained
in [13] can be generalized to the variable exponents ðpðxÞ, q
ðxÞÞ case. Moreover, can we assume that the nonlinearity f
satisfies a more natural and weaker ðq+ − 1Þ-superlinear con-
dition near ±∞ instead of the (AR) condition?

Inspired by the above works, we will answer these
questions. For a detailed motivation of our context and
additional references, we refer to the introduction of
[8, 20]. To the best of our knowledge, there are very
few papers related to the existence of solutions of prob-
lem ðPλÞ with variable exponents. This paper was moti-
vated by the interest in applications of the variable
exponent Orlicz-Sobolev spaces. Before stating our main
results, we introduce some notations.

1.1. Notations and definitions. Throughout this paper, we
define the class

C+ �Ω
� �

= p ∈ C �Ω
� �

, p xð Þ > 1 for all x ∈ �Ω
� �

: ð12Þ

For any p ∈ C+ð�ΩÞ, we denote

p+ ≔ ess sup
x∈ℝN

p xð Þ, p− ≔ ess inf
x∈ℝN

p xð Þ, ð13Þ
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and we denote by p1 ≪ p2 the fact that

ess inf
x∈ℝN

p2 xð Þ − p1 xð Þð Þ > 0: ð14Þ

The letters C,Ci,i = 1, 2,⋯, denote positive constants
which may vary from line to line but are independent of the
terms which will take part in any limit process. The notion
of weak solution for problem ðPλÞ is that u ∈W1,ℋ

0 ðΩÞ is
a solution of ðPλÞ if

ð
Ω

∇uj jp xð Þ−2 + a xð Þ ∇uj jq xð Þ−2
� �

∇u ⋅ ∇vdx =
ð
Ω

f x, uð Þvdx,

 ∀v ∈W1,ℋ
0 Ωð Þ:

ð15Þ

It is formulated in a suitable Orlicz-Sobolev space
W1,ℋ

0 ðΩÞ that will be introduced in Section 2. It is easy
to see that solutions of ðPλÞ correspond to the critical
points of the energy functional Iλ defined by

Iλ uð Þ =
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx − λ
ð
Ω

F x, uð Þdx,∀u ∈W1,ℋ
0 Ωð Þ,

ð16Þ

where Fðx, tÞ = Ð t0 f ðx, sÞdx.
Now, we present the main results of this paper as follows:

Theorem 2. Suppose ð f1Þ − ð f4Þ are satisfied. Then problem
ðPλÞ has at least one nontrivial weak solution in W1,ℋ

0 ðΩÞ
for all λ > 0.

Theorem 3. Suppose ð f1Þ, ð f3Þ − ð f4Þ are satisfied. Then there
exists λ0 > 0 such that for all λ ∈ ð0, λ0Þ, problem ðPλÞ has at
least one solution uλ and

lim
λ→0+

uλk k = +∞: ð17Þ

Theorem 4. Suppose ð f1Þ − ð f5Þ are satisfied. Then problem
ðPλÞ has infinitely many solutions in W1,ℋ

0 ðΩÞ for all λ > 0.

Theorem 5. Suppose ð f5Þ and the following con-
dition ð f6Þf : Ω ×ℝ⟶ℝ is a Carathéodory function, and
there exist positive constants d0, d1 such that

d0 tj jβ xð Þ−1 ≤ f x, tð Þ ≤ d1 tj jβ xð Þ−1, ð18Þ

for all x ∈ �Ωand t ≥ 0, where β ∈ Cð�ΩÞ such that 1 < βðxÞ <
p∗ðxÞ with β+ < p−. Then problem ðPλÞ has infinitely many
solutions in W1,ℋ

0 ðΩÞ for all λ > 0.

Theorem 6. Suppose ð f1Þ, ð f3Þ − ð f5Þ are satisfied. Then for
all λ > 0, problem ðPλÞ has infinitely many solutions
fungn∈ℕW1,ℋ

0 ðΩÞ such that limn→∞IλðunÞ =∞.

Theorem 7. Suppose ð f1Þ, ð f3Þ − ð f5Þ are satisfied. Then for
all 0 < λ < α/q+, problem ðPλÞ has infinitely many solutions
fvngn∈ℕW1,ℋ

0 ðΩÞ such that IλðvnÞ < 0,limn→∞IλðvnÞ = 0.

Remark 8. Note that our Theorems 2–7 answer the above
questions. To be precise, Theorems 2, 4, 6, and 7 extend the
main results of [13] to the variable exponents ðpðxÞ, qðxÞÞ
case. Compared with [13], the main difficulty is that since
both pðxÞ and qðxÞ are nonconstant functions, then ðPλÞ
has a more complicated structure, due to its nonhomogene-
ities and to the presence of the nonlinear term.

Remark 9. In Theorem 5, we obtain infinitely many solutions
by using Krasnoselskii’s genus theory. Moreover, we consider
continuous functions f = f ðx, uÞ satisfying the growth condi-
tion

d0 uj jβ xð Þ−1 ≤ f x, uð Þ ≤ d1 uj jβ xð Þ−1: ð19Þ

The rest of this paper is organized as follows. In Section 2,
we state some preliminary notations and the main lemmas.
In Section 3, we prove the Theorems 2 and 3. The proofs of
Theorems 4–5 are given in Section 4. By using the Fountain
Theorem and the Dual Fountain Theorem, infinitely many
pairs of solutions are provided in Section 5.

2. Preliminaries

In order to discuss the problem ðPλÞ, we need some theories
on generalized Orlicz spaces and Sobolev spaces. For more
details, we refer to the references [20–23]. The variable expo-
nent Lebesgue space LpðxÞðΩÞ is defined by

Lp ·ð Þ Ωð Þ = u is ameasurable real valued function
ð
Ω

u xð Þj jp xð Þdx<+∞
����

����
� 


,

ð20Þ

endowed with the Luxemburg norm

uk kp ⋅ð Þ = inf λ > 0 :

ð
Ω

u xð Þ
λ

����
����
p xð Þ

dx ≤ 1
( )

: ð21Þ

Note that, if p is a constant function, the Luxemburg
norm kukpð⋅Þ coincide with the standard norm kukp of the

Lebesgue space LpðΩÞ. Then, (LpðxÞðΩÞ,kukpð⋅Þ) becomes a
Banach space, and we call it the variable exponent Lebesgue
space. It is easy to check that the embedding Lp2 ðxÞðΩÞ↪
Lp1 ðxÞðΩÞ is continuous, where 0 < ∣Ω∣<∞ and p1,p2 are var-
iable exponents such that p1 ≤ p2 in Ω.

The following property of spaces with variable exponent
is essentially due to Fan and Zhao [24].

Lemma 10. The space ðLpð⋅ÞðΩÞ, k⋅kpð⋅ÞÞ is a separable, uni-

formly convex Banach space, and its dual space is Lp′ð⋅ÞðΩÞ
where ð1/pðxÞÞ + ð1/p′ðxÞÞ = 1. For any u ∈ Lpð⋅ÞðΩÞ and v ∈
Lp′ð⋅ÞðΩÞ, we have
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ð
Ω

uvdx
����

���� ≤ 1
p−

+ 1

p′
� �−

0
@

1
A uk kp ⋅ð Þ vk kp′ ⋅ð Þ: ð22Þ

The Musielak-Orlicz space LH ðΩÞ is defined by

Lℋ Ωð Þ = u : Ω⟶ℝmeasurable :
ð
Ω

ℋ x, uj jð Þdx<+∞
� 


,

ð23Þ

endowed with the norm

uk kℋ = inf λ > 0 : ρℋ
u
λ

� �
≤ 1

n o
, ð24Þ

where ℋ is defined in (5). The space LH ðΩÞ is a separa-
ble, uniformly convex, and reflexive Banach space. We
denote by Lqð⋅Þa ðΩÞ the space of all measurable functions
u : Ω⟶ℝ with the seminorm

uk kp ⋅ð Þ,a ≔
ð
Ω

a xð Þ uj jq xð Þdx
	 
1/q xð Þ

<∞: ð25Þ

It is easy to check that the embeddings

Lq ∙ð Þ Ωð Þ↪LH Ωð Þ↪Lp ∙ð Þ Ωð Þ ∩ Lq ∙ð Þ
a Ωð Þ, ð26Þ

are continuous. Since ρℋ ðu/kukℋ Þ = 1 whenever u ≠ 0,
we have

min uk kp xð Þ
ℋ , uk kq xð Þ

ℋ

n o
≤ uk kp xð Þ

p ⋅ð Þ + uk kp xð Þ
p ⋅ð Þ,a

≤max uk kp xð Þ
ℋ , uk kq xð Þ

ℋ

n o
, ∀u ∈ Lℋ Ωð Þ:

ð27Þ

The related Sobolev space W1,H ðΩÞ is defined by

W1,ℋ Ωð Þ≔ u ∈ Lℋ Ωð Þ: ∇uj j ∈ Lℋ Ωð Þ� �
, ð28Þ

equipped with the norm

uk k = uk kℋ + ∇uk kℋ , ð29Þ

where k∇ukℋ = jk∇ukjℋ . The completion of C∞
0 ðΩÞ in

W1,H ðΩÞ is denoted by W1,H
0 ðΩÞ and it can be equiva-

lently renormed by

uk k≔ ∇uk kℋ , ð30Þ

via a Poincaré-type inequality, cf ([6], Proposition
2.18(iv)), under assumption (2). The spaces W1,H ðΩÞ
and W1,H

0 ðΩÞ are uniformly convex, and hence reflexive,
Banach space. By (27), We have

min uk kp xð Þ, uk kq xð Þ
n o

≤ ∇uk kp xð Þ
p ⋅ð Þ + ∇uk kp xð Þ

p ⋅ð Þ,a

≤max uk kp xð Þ, uk kq xð Þ
n o

, ∀u ∈W1,ℋ
0 Ωð Þ:
ð31Þ

We point out that if r ∈ C+ð�ΩÞ and rðxÞ ≤ p∗ðxÞ for all
x ∈ �Ω, then W1,H ðΩÞ↪Lrð∙ÞðΩÞ is continuous. This
embedding is compact if

inf
x∈Ω

p∗ xð Þ − r xð Þf g > 0: ð32Þ

Let us now define Jð⋅Þ: W1,ℋ
0 ðΩÞ⟶ℝ as

J uð Þ =
ð
Ω

1
p xð Þj j ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


dx, ð33Þ

and we denote the derivative operator by A, that is
A = J ′ : W1,ℋ

0 ðΩÞ⟶ ðW1,ℋ
0 ðΩÞÞ∗, with

A uð Þ, vh i =
ð
Ω

∇uj jp xð Þ−2 + a xð Þ ∇uj jq xð Þ−2
� �

∇u ⋅ ∇vdx,

 u, v ∈W1,ℋ
0 Ωð Þ:

ð34Þ

Here, ðW1,ℋ
0 ðΩÞÞ∗ denotes the dual space of

W1,ℋ
0 ðΩÞ, and h⋅ , ⋅i denotes the paring between W1,ℋ

0
ðΩÞ and ðW1,ℋ

0 ðΩÞÞ∗. In the following lemma, we
summarize some properties of A, useful to study our
problem. When pðxÞ ≡ p, qðxÞ ≡ q, we refer to ([13],
Proposition 3.1).

Lemma 11 (see [19], Lemma 3.4). Under the condition (2), A
is a mapping of type ðS+Þ, that is, if un ⇀ u in W1,ℋ

0 ðΩÞ
and lim sup

n→+∞
hAðunÞ − AðuÞ, un − ui ≤ 0,, then un ⟶ u in

W1,ℋ
0 ðΩÞ.

Lemma 12 (see [19], Lemma 3.2). Under the condition ð f1Þ,
Iλ is well defined on W1,ℋ

0 ðΩÞ, and Iλ ∈ C1ðW1,H
0 ðΩÞ,ℝÞ

with Fréchet derivate given by

Iλ′ uð Þ, v
D E

=
ð
Ω

∇uj jp xð Þ−2 + a xð Þ ∇uj jq xð Þ−2
� �

∇u

· ∇vdx − λ
ð
Ω

f x, uð Þvdx, u, v ∈W1,H
0 Ωð Þ:

ð35Þ

Firstly, we show the functional Iλ satisfies the ðCÞc
condition.

Lemma 13. If hypotheses ð f1Þ,ð f3Þ, and ð f4Þ hold, then Iλ
satisfies the ðCÞc condition.
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Proof. For every c ∈ℝ, let fung ⊂W1,H
0 ðΩÞ be a ðCÞc −

sequence, that is,

Iλ unð Þ⟶ c, and ∥ I′λ unð Þ∥ W1,H
0 Ωð Þð Þ∗ 1+∥un∥ð Þ⟶ 0, as n⟶∞:

ð36Þ

We claim that {un} is bounded in W1,ℋ
0 ðΩÞ. In fact,

suppose by contradiction that ∥un∥⟶ +∞, as n⟶∞:
Let vn = un/∥un∥, n ≥ 1. Up to a subsequence, we may assume
that

vn ⟶ v, a:e: in Ω,
vn ⇀ v, weakly inW1,H

0 Ωð Þ,
vn ⟶ v, strongly in Lq+ Ωð Þ,
vn ⟶ v, strongly in Lα xð Þ Ωð Þ:

8>>>>><
>>>>>:

ð37Þ

We know that v satisfies the following alternative: v = 0 or
v ≠ 0. In what follows, we will show that under the condition
∥un∥⟶ +∞, v satisfies neither v = 0 nor v ≠ 0. This is a con-
tradiction. Thus, fung is bounded.

If v = 0, then vn ⟶ 0 a.e. x ∈Ω, as n⟶∞. Since
IλðtunÞ is continuous in t ∈ ½0, 1�, for each n, there exists
tn ∈ ½0, 1�ðn = 1, 2,⋯Þ such that

Iλ tnunð Þ = max
t∈ 0,1½ �

Iλ tunð Þ: ð38Þ

It is easily seen that tn > 0 and IλðtnunÞ ≥ c > 0 = Iλð0Þ =
Iλð0unÞ. If tn < 1, then ðd/dtÞIλðtunÞjt=tn = 0, which implies

Iλ ′ tnunð Þ, tnun
D E

= 0: ð39Þ

Moreover, if tn = 1, then, from(36) we have hIλ ′ðunÞ, uni
= onð1Þ. So, we always have

Iλ ′ tnunð Þ, tnun
D E

= on 1ð Þ: ð40Þ

Let γk be a sequence of positive real numbers such that
γk > 1 for any k and lim

k→+∞
γk = +∞. Then ∥γkvn∥ = γk > 1 for

any k and n. Fix k, using ð f1Þ, (37), and the Lebesgue domi-
nated convergence theorem we deduce that

lim
n→∞

ð
Ω

F x, γkvnð Þdx = 0: ð41Þ

Recall that ∥un∥⟶ +∞ as n⟶∞. So, we have ∥un∥>γk
or 0 < γk/∥un∥<1 for n large enough. Hence, from (31) and
(38), we deduce that

Iλ tnunð Þ ≥ Iλ
γk
∥un∥

un

	 

= Iλ γkvnð Þ

=
ð
Ω

γ
p xð Þ
k

p xð Þ ∇vnj jp xð Þ + γ
q xð Þ
k

q xð Þ a xð Þ ∇vnj jq xð Þ − λF x, γkvnð Þ
 !

� dx ≥
γp

−

k

q+
− λ
ð
Ω

F x, γkvnð Þdx,

ð42Þ

for any n large enough. By combing this inequality with (41),
as n, k⟶+∞, we have

limsup
n→∞

Iλ tnunð Þ = +∞: ð43Þ

On the other hand, using condition ð f4Þ and (40), for all n
large enough, we obtain

Iλ tnunð Þ = Iλ tnunð Þ − 1
q+

Iλ′ tnunð Þ, tnun
D E

+ o 1ð Þ

=
ð
Ω

1
p xð Þ −

1
q+

	 

∇ tnunð Þ ∣ p xð Þdx
���

+
ð
Ω

1
q xð Þ −

1
q+

	 

a xð Þ

����∇ tnunð Þj
q xð Þ

dx

+ λ
ð
Ω

1
q+

f x, tnunð Þtnun − F x, tnunð Þ
� �

dx

≤ Iλ unð Þ − 1
q+

Iλ′ unð Þ, un
D E

+ λC0 Ωj j
q+

⟶ c + λC0 ∣Ω ∣
q+

, as n⟶∞:

ð44Þ

From (43) and (44), we obtain a contradiction. This shows
that v ≠ 0, and thus,

vn xð Þ⟶ v xð Þ ≠ 0 a:e: inΩ: ð45Þ

Let Ω≠ ≔ fx ∈Ω : vðxÞ ≠ 0g. It implies that

∣un xð Þ∣⟶ +∞, inΩ≠, as n⟶∞: ð46Þ

Using condition ð f3Þ, we obtain

lim
n→+∞

F x, un xð Þð Þ
∥un xð Þ∥q+

= lim
n→+∞

F x, un xð Þð Þ
un xð Þj jq+

un xð Þj jq+

∥un xð Þ∥q+

= lim
n→+∞

F x, un xð Þð Þ
un xð Þj jq+

vn xð Þj jq+ = +∞, x ∈Ω≠:

ð47Þ

Also by ð f1Þ and ð f3Þ, we can get a constant C2 > 0 such
that

F x, tð Þ ≥ −C2, ∀ x, tð Þ ∈ �Ω ×ℝ: ð48Þ
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Thus, we get

F x, unð Þ + C2
∥un∥

q+ ≥ 0: ð49Þ

From (31), we see that

c = Iλ un xð Þð Þ + on 1ð Þ
=
ð
Ω

1
p xð Þ ∇unj jp xð Þ + a xð Þ

q xð Þ ∇unj jq xð Þ − λF x, unð Þ
	 


� dx + on 1ð Þ ≥ 1
q+

∥un∥
p− −

ð
Ω

λF x, unð Þdx + on 1ð Þ,

ð50Þ

which implies

ð
Ω

F x, unð Þdx ≥ 1
λq+

∥un∥
p− −

c
λ
+ on 1ð Þ⟶ +∞, as n⟶∞:

ð51Þ

Similarly, from (31), we also get

c = Iλ un xð Þð Þ + on 1ð Þ ≤ 1
p−

∥un∥
q+ −

ð
Ω

λF x, unð Þdx + on 1ð Þ,

ð52Þ

which implies

∥un∥
q+ ≥ p−c + λp−

ð
Ω

F x, unð Þdx − on 1ð Þ > 0, ð53Þ

for n large enough.
We claim that ∣Ω≠∣ = 0: Indeed, suppose by contradiction

∣Ω≠∣ ≠ 0, then by (47)–(53) and Fatou’s lemma, we obtain

+∞ =
ð
Ω≠

liminf
n→+∞

F x, un xð Þð Þ
un xð Þj jq+

vn xð Þj jq+ + C2
∥un∥

q+

 !

≤ liminf
n→+∞

ð
Ω≠

F x, un xð Þð Þ
un xð Þj jq+

vn xð Þj jq+ + C2
∥un∥

q+

 !

= liminf
n→+∞

ð
Ω≠

F x, un xð Þð Þ
∥un xð Þ∥q+

≤ liminf
n→+∞

Ð
Ω
F x, un xð Þð Þdx

p−c + λp−
Ð
Ω
F x, unð Þdx − on 1ð Þ = 1

λp−
,

ð54Þ

which yields a contradiction. Therefore the sequence fung is
bounded in W1,H

0 ðΩÞ. Thus, there is a subsequence (which
we still denote by fung) that converges weakly to some u ∈
W1,H

0 ðΩÞ and strongly in Lαð·ÞðΩÞ. It is easy to check from
(f1) and Hölder’s inequality that

ð
Ω

f x, unð Þ un − uð Þdx
����

����
≤ C ∥1 +ð unj jα xð Þ−1∥α′ ·ð Þ∥un − u∥α ·ð Þ ⟶ 0:

ð55Þ

Then

A unð Þ, un − uh i = I ′ unð Þ, un − u
D E
+ λ
ð
Ω

f x, unð Þ un − uð Þdx⟶ 0:
ð56Þ

So un ⟶ u follows from Lemma 11.

3. Proofs of Theorems 2 and 3

First, we will show the functional Iλ satisfies the mountain
pass geometry [25].

Lemma 14. Assume hypotheses ð f1Þ − ð f3Þ hold. Then the
functional Iλ satisfies the following properties:

(i) There exist ρ, δ > 0 such that IλðuÞ ≥ δ for any
u ∈W1,H

0 ðΩÞ with ∥u∥ = ρ

(ii) There exists a η ∈W1,H
0 ðΩÞ \ Bρ such that IλðηÞ ≤ 0.

Proof. Let us check (i). For any u ∈W1,H
0 ðΩÞ \ f0g and ε > 0

small, it follows from ð f1Þ − ð f2Þ that there exists Cε > 0 such
that

F x, tð Þ ≤ ε tj jq+ + Cε tj jα xð Þ, for all x, tð Þ ∈Ω ×ℝN : ð57Þ

Thus, for u ∈W1,H
0 ðΩÞ and ∥u∥≤1, we have

Iλ uð Þ =
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ − λF x, uð Þ
	 


dx ,

≥
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx − λ
ð
Ω

ε uj jq+ + Cε uj jα xð Þ
� �

dx,

≥
1
q+

∥u∥q
+
− λC3ε∥u∥

q+ − λCεC4∥u∥
α− ,

ð58Þ

by the Sobolev embedding W1,H
0 ðΩÞ↪Lq

+ðΩÞ and W1,H
0

ðΩÞ↪Lαð·ÞðΩÞ. Since q+ < α− and ε arbitrarily small,
there exist ρ > 0 and δ > 0 such that IλðuÞ ≥ δ > 0 for ∥u∥ =
ρ. Hence item (i) holds.

Let us check (ii). From ð f3Þ, for anyM > 0, we can choose
a constant C5 > 0 such that

F x, tð Þ ≥M tj jq+ − C5, ∀ x, tð Þ ∈Ω ×ℝ: ð59Þ
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Then, for ω ∈W1,H
0 ðΩÞ and t > 0, we deduce that

If M is large enough such that

ð
Ω

1
p xð Þ ∇ωj jp xð Þ + a xð Þ

q xð Þ ∇ωj jq xð Þ − λM ωj jq+
	 


dx < 0, ð61Þ

conclusion (ii) follows.

Proof of Theorem 2. Since the functional Iλ has the mountain
pass geometry and satisfies the ðCÞc condition, the mountain
pass theorem [25] gives that there exists a critical point
u ∈W1,H

0 ðΩÞ. Moreover, IðuÞ = c ≥ α > 0 = Ið0Þ, so u is a
nontrivial solution.

Lemma 15. Assume ð f1Þ holds. Then there exist positive con-
stants mλ and ρλ such that lim

λ→0+
mλ = +∞ and Iλ ≥mλ > 0

when ∥u∥ = ρλ.

Proof. Let u ∈W1,H
0 ðΩÞ with ∥u∥>1: It follows from ð f1Þ that

there exists C6 > 0 such that

F x, tð Þj j ≤ C6 tj jα xð Þ + 1
� �

, ð62Þ

for all ðx, tÞ ∈Ω ×ℝ, q+ < αðxÞ < ðp∗Þ−. Hence, we obtain

Iλ uð Þ ≥
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx − λC6

ð
Ω

uj jα xð Þ + 1
� �

� dx ≥ 1
q+

∥u∥p
−
− λC7 uk kα+ − λC6 Ωj j:

ð63Þ

Let ρλ = λ−s where s ∈ ð0, 1/ðα+ − p+ÞÞ. Hence, we get
ρλ > 1 for λ small enough. Therefore, substituting ∥u∥ =
ρλ = λ−s in (63), we see that

Iλ uð Þ ≥ 1
q+

λ−sp
−
− C7λ

1−sα+ − λC6 Ωj j: ð64Þ

Let us define mλ = ð1/q+Þλ−sp− − C7λ
1−sα+ − λC6jΩj:

From s ∈ ð0, 1/ðα+ − p+ÞÞ, we get that there exist λ0 small

enough such that mλ > 0 for all λ ∈ ð0, λ0Þ and mλ ⟶ +
∞ as λ⟶ 0+.

Proof of Theorem 3. By Lemma 13, Iλ satisfies the ðCÞc condi-
tion. Now in view of Lemma 13 and Lemma 15 and Lemma
14(ii) we can apply the mountain pass theorem to obtain a
nontrivial critical point uλ for Iλ such that

Iλ uλð Þ = c ≥mλ: ð65Þ

On the other hand, from (62), we have

Iλ uð Þ ≤
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx + λC6

ð
Ω

uj jα+ + 1
� �

dx, ≤ 1
p−

max ∥uλ∥
p− ,∥uλ∥q

+
n o

+ λC8 max uλk kα+uλα
−

n o
+ λC6 Ωj j:

ð66Þ

Taking the limit λ⟶ 0+ in (66) and using Lemma 15,
one has lim

λ→0+
∥uλ∥ = +∞:

4. Proofs of Theorems 4 and 5

Lemma 16. Assume the hypotheses ð f1Þ − ð f3Þ hold. Then the
functional Iλ satisfies the following properties:

(i) There exist constants ρ, δ > 0, such that IλðuÞ ≥ δ for
any u ∈W1,H

0 ðΩÞ with ∥u∥ = ρ

(ii) For each finite dimensional subspace ~X ⊂W1,H
0 ðΩÞ,

there exists an R = Rð~XÞ such that Iλ ≤ 0, on ~X \
BRð~XÞ:

Proof. As in the proof of Lemma 14, it is immediate to see
that the case (i) is true. Let e ∈ ~X and ∥e∥ = 1 be fixed. From
(59), we obtain

lim
t→+∞

I twð Þ
tq+

≤ lim
t→+∞

Ð
Ω

1/p xð Þ ∇ twð Þ ∣ p xð Þ + a xð Þ/q xð Þð Þ�� ��∇ twð Þ��q xð Þ� �
dx − λ

Ð
Ω

M twj jq+ − C5
� �

dx

tq+
,

≤ lim
t→+∞

1
tq+

ð
Ω

tp xð Þ

p xð Þ ∇ωj jp xð Þ + a xð Þtq xð Þ

q xð Þ ∇ωj jq xð Þ − tq
+
λM ωj jq+ + λC5

	 


� dx ≤
ð
Ω

1
p xð Þ ∇ωj jp xð Þ + a xð Þ

q xð Þ ∇ωj jq xð Þ − λM ωj jq+
	 


dx:

ð60Þ
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Iλ teð Þ =
ð
Ω

1
p xð Þ ∇ teð Þj jp xð Þ + a xð Þ

q xð Þ ∇ teð Þj jq xð Þ − λF x, teð Þ
	 


� dx ≤ tq
+

p−
− λMC9t

q+ + λC5 Ωj j,

ð67Þ

for all norms on ~X are equivalent. Then, we can choose M
large enough such that 1/p− − λMC9 < 0. Therefore, we see
that IλðteÞ⟶ −∞, as n⟶∞, and the step is proved by
taking v0 = t0e with t0 > R large enough.

Proof of Theorem 4. According to our assumption (f5), Iλ is
an even functional. By the Lemma 13, Iλ satisfies the ðCÞc
condition. Together with the Lemma 16, we can apply a Z2
version of the mountain pass theorem (see [25], Theorem
9.12) to obtain an unbounded sequence of weak solutions
of problem (Pλ).

We finalize the section presenting a relation between
the genus of K and the number of solutions of the
problem ðPλÞ, where K is a k-dimensional linear subspace
K ⊂ C∞

0 ðΩÞ of W1,H
0 ðΩÞ. We invoke Clark’s Theorem in

[25], Theorem 9.1. The next result is a compactness result
on problem ðPλÞ which we will use later.

Lemma 17. Assume that condition ð f6Þ holds, then

(i) Iλ is bounded from below

(ii) Iλ satisfies the (PS) condition.

Proof. (i) Using ð f6Þ, and for ∥u∥>1, λ > 0, we obtain

Iλ uð Þ ≥
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx − λd1
β−

ð
Ω

uj jβ xð Þdx, ≥ 1
q+

∥u∥p
−
− C10∥u∥

β+
:

ð68Þ

Hence, Iλ is coercive following immediately from the
above expression and β+ < p−. Therefore, Iλ is bounded from
below.

(ii) Suppose fung is a ðPSÞc sequence for Iλ. Thus
IλðunÞ⟶ c and Iλ′ðunÞ⟶ 0 in ðW1,H

0 ðΩÞÞ∗ as n⟶ +
∞: It follows from (i) that fung is bounded in W1,H

0 ðΩÞ.
Up to a subsequence, we may assume that

un ⟶ u, a:e: inΩ,
un ⇀ u, weakly inW1,H

0 Ωð Þ,
un ⟶ u, strongly inLβ ·ð Þ Ωð Þ:

8>><
>>: ð69Þ

Since Iλ′ðunÞ⟶ 0 and un − u⇀ 0 inW1,H
0 ðΩÞ, (see [26],

Proposition 3.5), we get that

lim
n→+∞

Iλ′ unð Þ, un − u
D E

= 0: ð70Þ

It is easy to check from (f6) and Hölder’s inequality that

ð
Ω

f x, unð Þ un − uð Þdx
����

���� ≤ C11∥un

����
β xð Þ−1

� ∥β′ ·ð Þ∥un − u∥β ·ð Þ ⟶ 0, as n⟶∞,
ð71Þ

where β′ð·Þ = βð·Þ/βð·Þ − 1. Then

A unð Þ, un − uh i = I ′ unð Þ, un − u
D E

+ λ
ð
Ω

f x, unð Þ un − uð Þdx⟶ 0, as n⟶∞:

ð72Þ

So un → u follows from Lemma 11.

Proof of Theorem 5. Consider K is a k-dimensional linear
subspace K ⊂ C∞

0 ðΩÞ of W1,H
0 ðΩÞ. We claim IλjK < 0 if ∥u∥

≤r < 1 is sufficiently small. Indeed, by the equivalence of

norms on K , there exists a constant C12 > 0 such that C12∥u
∥β

+
≤
Ð
Ω
jujβðxÞdx for u ∈ K with ∥u∥≤1: Therefore, by ð f6Þ,

Iλ uð Þ ≤
ð
Ω

1
p xð Þ ∇uj jp xð Þ + a xð Þ

q xð Þ ∇uj jq xð Þ
	 


� dx − λd0
β−

ð
Ω

uj jβ xð Þdx ≤
1
p−

∥u∥p
−
− λC13∥u∥

β+
≤ ∥u∥β

+

� 1
p−

∥u∥p
−−β+ − λC13

	 

,

ð73Þ

for u ∈ K with ∥u∥<1: If r ∈ ð0, 1Þ is small enough, we have
that

1
p−

rp
−−β+

− λC13 < 0: ð74Þ

The last inequality shows IλjK < 0 for all u ∈ Skr = fu ∈ K
: ∥u∥ = rg. It is clear that K is isomorphic to ℝk and Skr is
homeomorphic to Sk−1 in ℝk. Hence, we obtain γðSkr Þ = k:
In the proof of Lemma 17, it was already established that
Iλ ∈ C

1ðX,ℝÞ is bounded from below, satisfies the (PS)
condition, and Iλð0Þ = 0. Clearly, ð f5Þ implies Iλ is even.
Consequently, by Clark’s Theorem in [25] (Theorem
9.1), Iλ possesses at least k distinct pairs of nontrivial solu-
tions. Since k is arbitrary, we obtain infinitely many non-
trivial solutions.

5. Proofs of Theorems 6 and 7

In this section, we will show that (Pλ) has infinitely many
pairs of solutions by using the Fountain Theorem and Dual
Fountain Theorem. Firstly, we need to recall some
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preliminary results. SinceW1,H
0 ðΩÞ is a reflexive and separa-

ble Banach space, there are ej ⊂W1,H
0 ðΩÞ and e∗j ⊂

ðW1,H
0 ðΩÞÞ∗ such that

W1,H
0 Ωð Þ = span ej : j = 1, 2⋯

� �
,

W1,H
0 Ωð Þ

� �∗
= span e∗j : j = 1, 2⋯

n o
,

e∗j , ej
D E

=
1, i = j,
0, i ≠ j:

( ð75Þ

Then, we define

Xj = span ej
� �

, Yk = ⊕ k
j=1Xj, Zk = ⊕ ∞

j=kX j: ð76Þ

We will apply the following Fountain Theorem ([25],
Theorem 3.6).

Lemma 18. Assume that X is a Banach space, and let φ ∈ C1

ðX, RÞ be an even functional. If, for every k ∈ℕ, there exists
ρk > rk > 0 such that

A1ð Þ bk ≔ inf
u∈Zk
∥u∥=rk

φ uð Þ⟶ +∞, k⟶ +∞,

A2ð Þ ak ≔ max
u∈Yk
∥u∥=ρk

φ uð Þ ≤ 0,

A3ð Þ φ satisfies the Cð Þc condition for every c > 0:

ð77Þ

Then φ has an unbounded sequence of critical values.

To prove Theorems 6 and 7, the following lemma is
needed.

Lemma 19.Assume that αðxÞ ∈ C+ð�ΩÞ, q+ < αðxÞ < ðp∗Þ−, for
any x ∈ �Ω. Let

βk = sup
∥u∥=1
u∈Zk

∥u∥Lα ·ð Þ ,
ð78Þ

then lim
k→+∞

βk = 0:

Proof. Obviously, 0 < βk+1 ≤ βk and so βk ⟶ β ≥ 0: Let uk
∈ Zk satisfy

∥uk∥ = 1, 0 ≤ βk−∥uk∥Lα xð Þ < 1
k
: ð79Þ

Then, there exists a subsequence of fukg (which we still
denote by fukg) such that uk ⇀ u, and

e∗j , u
D E

= lim
k→+∞

e∗j , uk
D E

= 0, j = 1, 2,⋯, ð80Þ

which implies u = 0, and thus, uk ⇀ 0. Since W1,H
0 ðΩÞ↪

↪Lαð·ÞðΩÞ, then uk ⟶ 0 in Lαð·ÞðΩÞ. Hence, we get
lim

k→+∞
βk = 0:

Proof of Theorem 6. Let X =W1,H
0 ðΩÞ. According to

f ðx,−tÞ = −f ðx, tÞ, Iλ is an even functional. As the proof
of Lemma 13, it follows from ð f1Þ, ð f3Þ, and (f4) that Iλ sat-
isfies the ðCÞc condition. For every k ∈ℕ, we shall prove that
there exist ρk > rk > 0 such that

A1ð Þ bk ≔ inf
u∈Zk
∥u∥=rk

Iλ uð Þ⟶ +∞, k⟶ +∞,

A2ð Þak ≔ max
u∈Yk
∥u∥=ρk

Iλ uð Þ ≤ 0,
ð81Þ

We first show that (A1) holds. For any u ∈ Zk, we choose

∥u∥ = rk = ð2q+C6λβ
α+

k Þ1/ðp
−−α+Þ

. From Lemma 19 and p− < α+,
we see that rk ⟶ +∞ as k⟶ +∞. As before, we also have
from (62) that

Iλ uð Þ ≥

1
q+

∥u∥p
−
− C6λ − λC6 Ωj j, ∥u∥α ·ð Þ ≤ 1,

1
q+

∥u∥p
−
− C6λβ

α+

k ∥u∥α
+
− λC6 Ωj j, ∥u∥α ·ð Þ ≥ 1,

8>>><
>>>:

≥
1
2q+ r

p−

k − λC14 Ωj j,

ð82Þ

which implies that bk ⟶ +∞, k⟶ +∞:
Afterwards, we demonstrate that (A2) holds. Let ϕ ∈ Yk

and ∥ϕ∥ = 1, t > 1. From (59), we obtain

Iλ tϕð Þ =
ð
Ω

1
p xð Þ∇ tϕð Þp xð Þ + a xð Þ

q xð Þ ∇ tϕð Þj jq xð Þ − F x, tϕð Þ
	 


� dx ≤ tq
+

p−
− λMC15t

q+ + λC5 Ωj j,

ð83Þ

for all norms on Yk are equivalent. Then, we can choose
M large enough such that 1/p− − λMC15 < 0. Therefore,
we see that IλðtϕÞ⟶ −∞, as t⟶ +∞. Hence, there
exists t1 > rk > 1 large enough such that Iλðt1ϕÞ ≤ 0. There-
fore, let ρk = t1, we obtain that ak ≔ max

u∈Yk
∥u∥=ρk

IλðuÞ ≤ 0:

For the proof of Theorem 7, we need the following defini-
tions and results.

Definition 20. Let X be a separable and reflexive Banach
space, I ∈ C1ðX,ℝÞ, c ∈ℝ. We say that I satisfies the ðCÞ∗c
condition (with respect to (Yn)), if any sequence fungn∈ℕ ⊂
X for which un ∈ Yn, for any n ∈ℕ, IðunÞ⟶ c and ∥ðI∣Yn

Þ′
ðunÞ∥X∗ð1+∥un∥Þ⟶ 0, as n⟶∞, contains a subsequence
converging to a critical point of I.
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We are now ready to prove the Theorem 7.

Proof of Theorem 7. According to the Dual Fountain Theo-
rem ([25], Theorem 3.18), it suffices to prove that for every
k ≥ k0, there exist ρk > rk > 0 such that

B1ð Þ ak ≔ max
u∈Yk
∥u∥=rk

Iλ uð Þ < 0,

B2ð Þ bk ≔ inf
u∈Zk
∥u∥=ρk

Iλ uð Þ ≥ 0,

B3ð Þ dk ≔ inf
u∈Zk
∥u∥≤ρk

Iλ uð Þ⟶ 0, k⟶ +∞:

B4ð Þ Iλ satisfies the Cð Þ∗c condition for every c ∈ℝ:

ð84Þ

Firstly, we show that (B1) holds. Let ϕ ∈ Yk and ∥ϕ∥ = 1,
t > 1. Then similar to the proof of (A2), we see that

Iλ tϕð Þ =
ð
Ω

1
p xð Þ ∇ tϕð Þj jp xð Þ + a xð Þ

q xð Þ ∇ tϕð Þj jq xð Þ − F x, tϕð Þ
	 


� dx ≤ tq
+

p−
− λMC15t

q+ + λC5 Ωj j,

ð85Þ

for all norms on Yk are equivalent. Then, we can choose M
large enough such that 1/p− − λMC15 < 0. Therefore, we see
that IλðtϕÞ⟶ −∞, as t⟶ +∞. Hence, there exists t2 > 1
large enough such that Iλðt2ϕÞ < 0. Therefore, let rk = t2, we
obtain that

ak ≔ max
u∈Yk
∥u∥=rk

Iλ uð Þ < 0:
ð86Þ

We show that ðB2Þ holds. As we have done in the proof of
Theorem 6, For any u ∈ Zk, choosing ∥u∥ = ρk =
ð2q+C6λβ

α+

k Þ1/ðp
−−α+Þ

. From Lemma 19 and p− < α+, we see
that ρk ⟶ +∞ as k⟶ +∞. As before, we also have from
(88) that

Iλ uð Þ ≥

1
q+

∥u∥p
−
− C6λ − λC6 Ωj j, ∥u∥α ·ð Þ ≤ 1,

1
q+

∥u∥p
−
− C6λβ

α+

k ∥u∥α
+
− λC6 Ωj j, ∥u∥α ·ð Þ ≥ 1,

≥
1
2q+ ρ

p−

k − λC16 Ωj j,

8>>>>>>><
>>>>>>>:

ð87Þ

which implies that there exists k0 ∈ℕ, for all k ≥ k0 choosing
ρk > rk > 0 such that bk ≥ 0:ðB3Þ First from Yk ∩ Zk ≠∅ and
0 < rk < ρk, we observe that

dk ≔ inf
u∈Zk
∥u∥≤ρk

Iλ uð Þ ≤ ak ≔ max
u∈Yk
∥u∥=rk

Iλ uð Þ < 0:
ð88Þ

By ð f1Þ, there exists C17 > 0 such that

∣F x, tð Þ∣ ≤ C17 ∣t∣+ tj jα xð Þ
� �

ð89Þ

for all ðx, tÞ ∈Ω ×ℝ, q+ < αðxÞ < ðp∗Þ−. Now we define the
function Ψ1,Ψ2 : X ⟶ℝ by

Ψ1 uð Þ =
ð
Ω

λC17 uj jα xð Þdx,

Ψ2 uð Þ =
ð
Ω

λC17∣u∣dx:
ð90Þ

By the definition of Ψ1,Ψ2, we have Ψið0Þ = 0, i = 1, 2,
and they are weakly-strongly continuous. Consider

ξk = sup
u∈Zk ,
∥u∥≤1

Ψ1 uð Þj j, ζk = sup
u∈Zk ,
∥u∥≤1

Ψ2 uð Þj j:
ð91Þ

From the compact embedding W1,H
0 ðΩÞ↪Lαð·ÞðΩÞ and

Lemma 19, we have

lim
k→+∞

ξk = lim
k→+∞

ζk = 0: ð92Þ

Let ω ∈ Zk and ∥ω∥ = 1, 0 < t < ρk. Then, from (89) and
(90), we obtain

Iλ tωð Þ =
ð
Ω

1
p xð Þ ∇ tωð Þj jp xð Þ + a xð Þ

q xð Þ ∇ tωð Þj jq xð Þ − λF x, tωð Þ
	 


� dx ≥ −λ
ð
Ω

F x, tωð Þdx ≥ −Ψ1 tωð Þ −Ψ2 tωð Þ

≥ −ρα
+

k Ψ1 ωð Þ − ρkΨ2 ωð Þ ≥ −ρα
+

k ξk − ρkζk:

ð93Þ

Passing the limit in the above inequality, as k⟶ +∞, we
achieve that

lim
k→+∞

dk ≥ 0, ð94Þ

which, together with (88), implies that limk→+∞dk = 0:
ðB4Þ Let fung be any sequence in W1,H

0 ðΩÞ such that

un ∈ Yn,
Iλ unð Þ⟶ c > 0,

∥Iλ∣Yn
′ unð Þ∥ 1+∥un∥ð Þ⟶ 0,

 as n⟶∞

ð95Þ

Then similar to the proof of Lemma 13, we see that
fung is bounded in W1,H

0 ðΩÞ. Thus, there is a subse-
quence (which we denote by funkg) that converges weakly
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to some u ∈W1,H
0 ðΩÞ and strongly in Lαð·ÞðΩÞ. It is easy to

check from (f1) and Hölder’s inequality that

ð
Ω

f x, unk
� �

unk − u
� �

dx
����

���� ≤ C∥1 + unk
�� ��α xð Þ−1∥α′ ·ð Þ∥unk − u∥α ·ð Þ ⟶ 0:

ð96Þ

Claim 21. lim
k→+∞

hIλ′ðunkÞ, unk − ui = 0:

If Claim 21 holds true, then

A unk
� �

, unk − u
� �

= I ′ unk
� �

, unk − u
D E
+ λ
ð
Ω

f x, unk
� �

unk − u
� �

dx⟶ 0:

ð97Þ

So unk ⟶ u follows from Lemma 11. Hence, Iλ sat-
isfies the ðCÞ∗c condition. In order to prove Claim 21,
we invoke W1,H

0 ðΩÞ = �∪nYn = �spanfen : n = 1, 2,⋯g to
choose vn ∈ Yn such that vn ⟶ u strongly in W1,H

0 ðΩÞ.
Since Iλ∣Ynk

′ ðunkÞ⟶ 0 and unk − vnk ⇀ 0 in Ynk
, (see [26],

Proposition 3.5), we get that

lim
k→+∞

Iλ′ unk
� �

, unk − vnk

D E
= 0: ð98Þ

Hence, we obtain

lim
k→+∞

Iλ′ unk
� �

, unk − u
D E

= lim
k→+∞

Iλ′ unk
� �

, unk − vnk

D E
+ lim

k→+∞
Iλ′ unk
� �

, vnk − u
D E

= 0:

ð99Þ

Therefore, the Claim holds true and we conclude that
Iλ′ðunkÞ⟶ Iλ′ðuÞ as k⟶ +∞:We next show that Iλ′ðuÞ = 0:
To see this, taking ωj ∈ Y j, we have

Iλ′ uð Þ, ωj

D E
= Iλ′ uð Þ − Iλ′ unk

� �
, ωj

D E
+ Iλ′ unk

� �
, ωj

D E
= Iλ′ uð Þ − Iλ′ unk

� �
, ωj

D E
+ IλjYnk

′ unk
� �

, ωj

� �
:

ð100Þ

We pass limit in the right side of (100) as k⟶ +∞ to
obtain

Iλ′ uð Þ, ωj

D E
= 0, for allωj ∈ Y j: ð101Þ

Therefore, Iλ satisfies the ðCÞ∗c condition for every c ∈ℝ.
The proof is complete.
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