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�e present work investigates the problem of a cylindrical crack in a functionally graded cylinder under thermal impact by using 
the non-Fourier heat conduction model. �e theoretical derivation is performed by methods of Fourier integral transform, Laplace 
transform, and Cauchy singular integral equation. �e concept of heat flux intensity factor is introduced to investigate the heat 
concentration degree around the crack tip quantitatively. �e temperature field and the heat flux intensity factor in the time domain 
are obtained by transforming the corresponding quantities from the Laplace domain numerically. �e effects of heat conduction 
model, functionally graded parameter, and thermal resistance of crack on the temperature distribution and heat flux intensity factor 
are studied. �is work is beneficial for the thermal design of functionally graded cylinder containing a cylindrical crack.

1. Introduction

Cylindrical composite structures are widely used in engineer-
ing, and the interfaces in the composites are key parts but at 
the same time weak regions, considering that these weak 
regions are generally subjected to various damages such as 
debonding or cracking. When a cylindrical interface debonds, 
the crack may occupy the whole angular range which is called 
a cylindrical crack [1]. Functionally graded (FG) materials 
have received considerable attention in engineering fields due 
to the fact that FG materials possess gradual change in com-
position and microstructure and have continuously spatial 
variations in thermal and mechanical properties. �e appli-
cation of FG materials can improve the bonding strength and 
toughness and reduce the probability of thermomechanical 
problems caused by the mismatch of material properties. Due 
to their important characteristics, FG materials found various 
applications, such as: inner walls of nuclear reactor, pressure 
vessels, thermal barrier coatings for combustion chambers, 
heat exchanger tubes, etc., [2]. �e common fabrication tech-
nologies for producing FG bulk materials include powder 
metallurgy, centrifugal casting, tape casting, and additive man-
ufacturing [3]. And, it has been found that embedded 

microcracks or cracks are prone to occur during the manu-
facture process of structures or in their service [4–6]. For 
instance, cylindrical cracks may initiate along the interface of 
fiber and matrix in the fiber reinforced composite cylinders 
[7]. �us it is a significant design issue to study the thermal 
or mechanical fracture behaviors of FG structures [8, 9].

Great efforts have been made to investigate the fracture 
behavior of FG materials under mechanical and/or thermal 
loading [10–15]. Jin [16] studied the singular crack-tip fields 
in non-homogeneous body under thermal stress and pointed 
out that the stress intensity factors (SIFs) were still applicable 
in fracture problems of FG materials. Li and Weng [17] inves-
tigated the dynamic problem of a cylindrical crack in a func-
tionally graded interlayer bonded by two dissimilar, 
homogeneous cylinders under torsional impact loading. Jin 
and Paulino [18] studied a crack in a viscoelastic strip of a FG 
material under tensile loading and obtained both mode I and 
mode II SIFs and the crack opening/sliding displacements. 
Feng et al. [19] considered the problem of a cylindrical crack 
in the non-homogeneous, interfacial zone in a composite 
loaded by torsional impact. �e plane, thermo-mechanical 
behavior of a crack in a viscoelastic FG material coating with 
arbitrary material properties bonded to homogeneous 
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substrate has been studied by Cheng et al. [20]. �e problem 
of a cylindrical interface crack in a hollow, functionally graded 
cylinder under static torsion has been studied by Shi [21], and 
the coupled effects of geometrical, physical, and functionally 
graded parameters on the interfacial fracture behavior have 
been demonstrated by numerical results. Zhang et al. [22] ana-
lyzed a thermal shock problem of an elastic strip made of func-
tionally graded materials containing a crack parallel to the free 
surface based on the fractional heat conduction theory.

Considering that cylindrical composites under thermal 
loading conditions have significant engineering applications, 
the thermal analysis of the composite structures with cracks is 
of great importance for the safety design. �e classical Fourier 
heat conduction model implies that the thermal wave can prop-
agate instantaneously in the media at an infinite speed, which 
contradicts physical facts. For crack problems, the application 
of non-Fourier heat conduction models on homogeneous 
materials has been reported in some recent literatures [23–27]. 
Hu and Chen [25] investigated a partially, thermally insulated 
crack in an elastic strip under a thermal impact loading and 
studied the possible crack kinking phenomena. Wang [26] 
considered the transient thermal cracking associated with  
non-classical heat conduction in a cylindrical coordinate sys-
tem. Hu and Chen [28] analyzed the transient heat conduction 
of a cracked half-plane using dual-phase-lag (DPL) theory. �e 
fracture behavior of a thermoelastic cylinder subjected to a 
sudden temperature change on its outer surface has been stud-
ied by Fu et al. [27] using the hyperbolic heat conduction 
model. �e fractional calculus has been introduced into the 
hyperbolic heat conduction model to investigate the fracture 
problem of a circumferential crack in a hollow cylinder under 
thermal shock by Zhang and Li [29]. Yang and Chen [30] estab-
lished a thermoelastic model for a functionally graded half-
plane containing a crack under thermal shock loading in the 
framework of hyperbolic heat conduction theory.

To the authors’ best knowledge, the thermal problem of a 
cylindrical crack in a functionally graded cylinder has not 
been solved due to the mathematical complexity involved. �is 
work is dedicated to obtain the dynamic thermal responses of 
an FG cylinder containing a cylindrical crack under thermal 
shock using non-Fourier heat conduction models. �e Fourier 
transform and Laplace transform are applied, and the crack 
problem is reduced to solving a singular integral equation in 
the Laplace domain. �en the heat flux intensity factor (HFIF) 
and temperature field are obtained by applying the numerical 
Laplace inversion technique. Finally, the effects of heat con-
duction model, functionally graded parameter, and thermal 
resistance of crack on the temperature field and HFIF are ana-
lyzed numerically.

2. Problem Formulation

As illustrated in Figure 1, an FG hollow cylinder located in the 
cylindrical coordinate �푂 − �푟�휑�푧 is subjected to transient thermal 
loadings on its inner and outer surfaces. �e infinitely long, 
rigid cylinder has an inner radius ��, and outer radius ��, while 
an axisymmetric, cylindrical crack spreads along the plane �푟 = �푅� with the size of −�푐 < �푧 < �푐. For simplicity, the thermal 

conductivity and mass density of the cylinder are assumed to 
be radial-coordinate-dependent, while other material proper-
ties are homogeneous. �e non-Fourier heat conduction model 
is adopted to analyze the thermal behavior of the cracked FG 
cylinder with uniform initial temperature �0.

Considering the axisymmetric nature of the cracked cyl-
inder, the heat flux only exists in the radial, and axial direc-
tions, and can be expressed within the structure of the DPL 
model [28] as,

in which, �㨀→�푞  is the heat flux vector, � is time, � is temperature, 
and � is the thermal conductivity. �e phase lag of heat flux �� 
and phase lag of temperature gradient �� are material proper-
ties. By omitting the quadratic term on the le� and setting �휏� = 0 in Eq. (1), another frequently-used, non-Fourier heat 
conduction model proposed by Cattaneo [31] and Vernotte 
[32] (C–V model), is obtained. Also, setting �휏� = 0 and �휏� = 0 
leads to the classical Fourier heat conduction model. �e 
advancement of the DPL heat conduction model has been 
clarified by predicting the temperature results tested for some 
materials, such as, processed meat [33]. Phase lags of heat flux 
and temperature gradient are material-dependent properties 
and vary from picoseconds for most of the metals [34] to 102 s 
for non-homogeneous materials [33, 35].

Without heat source, the energy conservation equation 
reads

where � and �� are mass density and specific heat capacity, 
respectively.

(1)(1 + �휏�푞 �휕�휕�푡 +
1
2�휏�푞2

�휕2
�휕�푡2)�㨀→�푞 = −�푘(1 + �휏�푇 �휕

�휕�푡)
�㨀→∇ �푇,

(2)−�㨀→∇ ⋅ �㨀→�푞 = �휌�푐� �휕�푇�휕�푡 ,
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Figure 1: An infinitely long, FG hollow cylinder with a cylindrical 
crack.



3Advances in Mathematical Physics

By eliminating the heat flux from Eqs. (1) and (2), the 2D 
axisymmetric governing equation of temperature is obtained

where the thermal conductivity and mass density vary with 
radial coordinate in a power-law form

in which, �0 and �0 are reference material properties, and the 
power exponent � can also be called as FG parameter.

Substitution of Eq. (4) into (3) leads to

where �푑0 = �푘0/�휌0�푐�푝 is the reference thermal diffusivity.
�e boundary conditions for the partially insulated crack 

can be written as

where � and �� with the superscripts “(1)” and “(2)” represent 
temperature and heat flux in the area �푟 < �푅� and �푟 > �푅�, respec-
tively. Equations (8)–(9b) describe the thermal condition along 
the crack plane, while Eqs. (9a) and (9b) is termed as the mixed 
boundary condition which enhances the complexity of the prob-
lem remarkably. When the thermal resistance of the crack � 
equals 0, the crack will not disturb the temperature field, and a 
perfectly conductive crack condition arises. When � approaches 
infinity, there is no heat flux across the insulating crack.

3. Solution Procedure

�e following non-dimensional parameters are introduced to 
simplify the solution procedure:

It is noted that other parameters with the same units as those 
in Eq. (10) are omitted here for brevity.

(3)

(1 + �휏�푞 �휕�휕�푡 +
1
2�휏2�푞

�휕2
�휕�푡2)[�휌(�푟)�푐�푃

�휕�푇
�휕�푡 ]

= (1 + �휏�푇 �휕
�휕�푡)[

�휕�푘
�휕�푟

�휕�푇
�휕�푟 + �푘(�푟)( �휕2

�휕�푟2 + �휕
�푟�휕�푟 + �휕2

�휕�푧2)�푇],

(4)�푘(�푟) = �푘0(�푟�푐)
�휂, �휌(�푟) = �휌0(�푟�푐)

�휂,

(5)
(1 + �휏�푞 �휕�휕�푡 +

1
2�휏2�푞

�휕2
�휕�푡2)

�휕�푇
�휕�푡

= �푑0(1 + �휏�푇 �휕
�휕�푡)[

�휕2
�휕�푟2 + (�휂 + 1) �휕

�푟�휕�푟 + �휕2
�휕�푧2]�푇,

(6)�푇(1)(�푅�푖, �푧, �푡) = �푇�푎(�푡), |�푧| < ∞,
(7)�푇(2)(�푅�표, �푧, �푡) = �푇�푏(�푡), |�푧| < ∞,
(8)�푞(1)�푟 (�푅�푐, �푧, �푡) = �푞(2)�푟 (�푅�푐, �푧, �푡), �푎�푏�푠(�푧) < ∞,

(9a)�푇(1)(�푅�푐, �푧, �푡) = �푇(2)(�푅�푐, �푧, �푡), |�푧| ≥ �푐,
(9b)�푉�푞(1)�푟 (�푅�푐, �푧, �푡) = �푇(1)(�푅�푐, �푧, �푡) − �푇(2)(�푅�푐, �푧, �푡), �푎�푏�푠(�푧) < �푐,

(10)
�푡�耠 = �푡�푑0

�푐2 , �휏�耠�푞 = �휏�푞�푑0

�푐2 , �푟�耠 = �푟
�푐 ,

�푇(�푗)�耠 = �푇(�푗)−�푇0
�푇0

, �푉�耠 = �푉�푘0
�푐 , �푞(�푗)�耠 = �푞(�푗)�푐

�푘0�푇0
.

Using the parameters in (10), the governing Equation (5) 
can be normalized as

Applying the Laplace transform to the above equation by 
assuming the zero initial conditions leads to

in which, �휆1 = �푠(1 + �휏�耠�푞�푠 + (1/2)�휏�耠2�푞 �푠2)/(1 + �휏�耠�푇�푠) and � is the 
Laplace variable.

Similar normalization and Laplace transformation pro-
cesses applied to the boundary conditions give,

Using superposition, the temperature field resulting from 
differential Equation (12) under the boundaries (13)~(16b) 
can be the addition of solutions of two subproblems: (P1) inho-
mogeneous boundary condition applied to the cylinder sur-
faces with the absence of crack; (P2) homogeneous thermal 
load applied to the cracked cylinder. For the first problem, the 
temperature distribution along the axial direction will be uni-
form. �us one could have.

P1:

and
P2:

(11)(1 + �휏�耠�푞 �휕
�휕�푡�耠 +

1
2�휏�耠2�푞

�휕2
�휕�푡�耠2)

�휕�푇(�푗)�耠
�휕�푡�耠

= (1 + �휏�耠�푇 �휕
�휕�푡�耠)[

�휕2
�휕�푟�耠2 + (�휂 + 1) �휕

�푟�耠�휕�푟�耠 +
�휕2
�휕�푧�耠2]�푇(�푗)�耠, �푗 = 1, 2.

(12)
�푟�耠2 �휕2�̃푇(�푗)

�

�휕�푟�耠2 + (�휂 + 1)�푟�耠 �휕�̃푇(�푗)
�

�휕�푟�耠 + �푟�耠2 �휕2�̃푇(�푗)
�

�휕�푧�耠2 − �휆1�푟�耠2�̃푇(�푗)� = 0,

(13)�̃푇(1)�(�푅�耠
�푖 , �푧�耠, �푠) = �̃푇�耠

�푎(�푠),
(14)�̃푇(2)�耠(�푅�耠

�표, �푧�耠, �푠) = �̃푇�耠
�푏(�푠),

(15)�̃푞(1)�耠�푟 (�푅�耠
�푐, �푧�耠, �푠) = �̃푞(2)�耠�푟 (�푅�耠

�푐, �푧�耠, �푠),
(16a)�̃푇(1)�耠(�푅�耠

�푐, �푧�耠, �푠) = �̃푇(2)�耠(�푅�耠
�푐, �푧�耠, �푠), �����푧�耠���� ≥ 1,

(16b)
�푉�耠�̃푞(1)�耠�푟 (�푅�耠

�푐, �푧�耠, �푠) = �̃푇(1)�耠(�푅�耠
�푐, �푧�耠, �푠) − �̃푇(2)�耠(�푅�耠

�푐, �푧�耠, �푠), �����푧�耠���� < 1.

(17)
�푟�耠2 �푑2�̃푇(�푗)�耠1�푑�푟�耠2 + (�휂 + 1)�푟�耠 �푑�̃푇(

�푗)�耠
1�푑�푟�耠 − �휆1�푟�耠2�̃푇(�푗)�耠1 = 0, �푗 = 1, 2,

(18)�̃푇(1)�耠
1 (�푅�耠

�푖 , �푠) = �̃푇�耠
�푎(�푠),

(19)�̃푇(2)�耠
1 (�푅�耠

�표, �푠) = �̃푇�耠
�푏(�푠),

(20)�̃푞(1)�耠�푟1 (�푅�耠
�푐, �푠) = �̃푞(2)�耠�푟1 (�푅�耠

�푐, �푠),
(21)�̃푇(1)�耠

1 (�푅�耠
�푐, �푠) = �̃푇(2)�耠

1 (�푅�耠
�푐, �푠),

(22)�푟�耠2 �휕2�̃푇(
�푗)�耠

2�휕�푟�耠2 + (�휂 + 1)�푟�耠 �휕�̃푇(
�푗)�耠

2�휕�푟�耠
+ �푟�耠2 �휕2�̃푇(

�푗)�耠
2�휕�푧�耠2 − �휆1�푟�耠2�̃푇(�푗)�耠2 = 0, �푗 = 1, 2,
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�e temperature and the heat flux are then obtained as,

where, �휆3 = �휉2 + �휆1.
Using the boundary Equations (23) and (24), the 

unknowns in Eq. (32) are linked as

in which,

�e only unknown, independent coefficient �(2)
2  can be 

solved from the mixed boundary conditions (25a) and (25b). 
A function, defined as the gradient of temperature jump, is 
introduced

Equation (36), expressing the axial gradient of temperature 
jump across the crack faces, serves as a basic function to solve 
the mixed-boundary-condition problem using the method of 
singular integral equation. Due to the existence of crack, the 
temperature along the plane �푟 = �푅� jumps in the radial direc-
tion within the range of |�푧| < �푐, while it is continuous within 
the range of |�푧| ≥ �푐. �us, the axial gradient of the temperature 
jump can describe the nature of thermal disturbance caused 
by the crack in a unified form.

�us from Eq. (25a), one could have

(32)
�̃푇(�푗)�耠2 = 1

2�휋∫
∞

−∞
(�푖�푟�耠)−�휂/2[�퐷(�푗)

1 �퐼�푚(√�휆3�푟�耠)
+�퐷(�푗)

2 �퐾�푚(√�휆3�푟�耠)]�푒�푖�휉�푧�耠�푑�휉,

(33)

�̃푞(�푗)�耠2 = 1
2�휋∫

∞

−∞
�휆2(�푖)−�휂/2{�퐷(�푗)

1 [(�푟�耠)�휂/2 √�휆3�퐼�푚−1(√�휆3�푟�耠)
−(�휂2 + �푚)(�푟�耠)�휂/2−1�퐼�푚(√�휆3�푟�耠)]
−�퐷(�푗)

2 [(�푟�耠)�휂/2 √�휆3�퐾�푚−1(√�휆3�푟�耠)
+(�휂2 + �푚)(�푟�耠)�휂/2−1�퐾�푚(√�휆3�푟�耠)]}�푒�푖�휉�푧�耠�푑�휉,

(34)�퐷(1)
1 = −X2X7

X1
�퐷(2)

2 , �퐷(1)
2 = X7�퐷(2)

2 , �퐷(2)
1 = −X4

X3
�퐷(2)

2 ,

(35)

X1 = �퐼�푚(√�휆3�푅�耠
�푖), X2 = �퐾�푚(√�휆3�푅�耠

�푖),
X3 = �퐼�푚(√�휆3�푅�耠

�표), X4 = �퐾�푚(√�휆3�푅�耠
�표),

X5 = �푅�耠(�휂/2)
�푐 √�휆3�퐼�푚−1(√�휆3�푅�耠

�푐)
− (�휂2 + �푚)�푅�耠(�휂/2−1)

�푐 �퐼�푚(√�휆3�푅�耠
�푐),

X6 = �푅�耠(�휂/2)
�푐 √�휆3�퐾�푚−1(√�휆3�푅�耠

�푐)
+ (�휂2 + �푚)�푅�耠(�휂/2−1)

�푐 �퐾�푚(√�휆3�푅�耠
�푐),

X7 = (X4/X3 + X6/X5)(X2/X1 + X6/X5) .

(36)Φ(�푧�耠, �푠) = �휕
�휕�푧�耠 [�̃푇(1)

2 (�푅�耠
�푐, �푧�耠, �푠) − �̃푇(2)�耠

2 (�푅�耠
�푐, �푧�耠, �푠)].

(37)Φ(�푧�, �푠) = 0, �����푧����� ≥ 1,

�e total temperature and heat flux can be easily obtained 
from �̃푇(�푗)�耠 = �̃푇(�푗)�耠1 + �̃푇(�푗)�耠2  and �̃푞(�푗)�耠�푟 = �̃푞(�푗)�耠�푟1 + �̃푞(�푗)�耠�푟2  a�er solving 
the above two problems.

P1 can be directly solved as,

where, the imaginary number �푖 = √−1, �휆2 = −(1 + �휏�耠�푇�푠)/(1 + �휏�耠�푞�푠 + (1/2)�휏�耠2�푞 �푠2), and �푚 = �����휂/2����. �퐼�( ) 
and �퐾�( ) represent the � th-order modified Bessel functions 
of the first and second kinds, respectively. �e unknowns �퐶(�푗)1  
and �퐶(�푗)2  can be obtained from �̃푃�㨀→�퐶 = �㨀→�푄 , in which, 

�㨀→�퐶  is defined 
as

and the non-zero elements of the 4 × 4 matrix �̃푃 and 4 × 1 vec-
tor 

�㨀→�푄  are

Now, let’s turn to solve the mixed-boundary-value prob-
lem P2. Applying the Fourier transform to Equation (22) with 
respect to �� leads to,

(23)�̃푇(1)�耠
2 (�푅�耠

�푖 , �푧�耠, �푠) = �̃푇(2)�耠
2 (�푅�耠

�표, �푧�耠, �푠) = 0,

(24)�̃푞(1)�耠�푟2 (�푅�耠
�푐, �푧�耠, �푠) = �̃푞(2)�耠�푟2 (�푅�耠

�푐, �푧�耠, �푠),

(25a)�̃푇(1)�耠
2 (�푅�耠

�푐, �푧�耠, �푠) = �̃푇(2)�耠
2 (�푅�耠

�푐, �푧�耠, �푠), �����푧�耠���� ≥ 1,

(25b)
�푉�耠[�̃푞(1)�耠�푟1 (�푅�耠

�푐, �푠) + �̃푞(1)�耠�푟2 (�푅�耠
�푐, �푧�耠, �푠)]

= �̃푇(1)�耠
2 (�푅�耠

�푐, �푧�耠, �푠) − �̃푇(2)�耠
2 (�푅�耠

�푐, �푧�耠, �푠), �儨�儨�儨�儨�푧�耠�儨�儨�儨�儨 < 1,

(26)�̃푇(�푗)�耠1 = (�푖�푟�耠)−�휂/2[�퐶(�푗)1 �퐼�푚(√�휆1�푟�耠) + �퐶(�푗)2 �퐾�푚(√�휆1�푟�耠)],

(27)

�̃푞(�푗)�耠�푟1 = �휆2(�푖)−�휂/2{�퐶(�푗)1 [�푟�耠�휂/2 √�휆1�퐼�푚−1(√�휆1�푟�耠)
−(�휂2 + �푚)�푟�耠�휂/2−1�퐼�푚(√�휆1�푟�耠)]
− �퐶(�푗)2 [�푟�耠�휂/2 √�휆1�퐾�푚−1(√�휆1�푟�耠)
+(�휂2 + �푚)�푟�耠�휂/2−1�퐾�푚(√�휆1�푟�耠)]},

(28)�㨀→�퐶 = [�퐶(1)
1 �퐶(1)

2 �퐶(2)
1 �퐶(2)

2 ]T,

(29)

�푃1,1 = (�푖�푅�푖)−�휂/2�퐼�푚(√�휆1�푅�耠
�푖), �푃1,2 = (�푖�푅�푖)−�휂/2�퐾�푚(√�휆1�푅�耠

�푖),
�푃2,3 = (�푖�푅�표)−�휂/2�퐼�푚(√�휆1�푅�耠

�표), �푃2,4 = (�푖�푅�표)−�휂/2�퐾�푚(√�휆1�푅�耠
�표),�푃3,1 = −�푃3,3 = √�휆1�퐼�푚−1(√�휆1�푅�耠

�푐) − �휂/2+�푚
�푅�
�
�퐼�푚(√�휆1�푅�耠

�푐),
−�푃3,2 = �푃3,4 = √�휆1�퐾�푚−1(√�휆1�푅�耠

�푐) + �휂/2+�푚
�푅�
�
�퐾�푚(√�휆1�푅�耠

�푐),
�푃4,1 = −�푃4,3 = �퐼�푚(√�휆1�푅�耠

�푐), �푃4,2 = −�푃4,4 = �퐾�푚(√�휆1�푅�耠
�푐),

(30)�푄1 = �̃푇�耠
�푎(�푠), �푄2 = �̃푇�耠

�푏(�푠).

(31)

�푟�耠2 �휕2 ̄�̃푇(�푗)�耠2�휕�푟�耠2 + (�휂 + 1)�푟�耠 �휕 ̄�̃푇(�푗)�耠2�휕�푟�耠 − �휉2�푟�耠2 ̄�̃푇(�푗)�耠2 − �휆1�푟�耠2 ̄�̃푇(�푗)�耠2 = 0.
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in which,

A�er calculating the function �푓(�휀, �푠) numerically, the four 
unknown coefficients �퐷(�푗)

1  and �퐷(�푗)
2  can be obtained from Eqs. 

(34), (39), and (48). Finally, problem P2 is solved.

4. Temperature Field and Heat Flux Intensity 
Factor

�e total temperature in the cylinder can be obtained by add-
ing Equations (29)–(35) as,

in which, �(1)
1 , �(1)

2 , and �(2)
1  are expressed in terms of �(2)

2 , 
while �(2)

2  can be numerically obtained from Eq. (42) using 
the Gauss–Chebyshev integration equation

�e concept of heat flux intensity factor (HFIF), similar 
to the stress intensity factor, is introduced to describe the heat 
gathering degree around the crack tip

Using the parameter �퐾�耠
�푞 = �퐾�푞 √�푐/(�푘0�푇0), the non-dimensional 

HFIF in the Laplace domain is written as

Substituting Eqs. (30) and (36) into the above equation, 
one could have

(49)
�푁∑
�휇=1

1
�푁�푓(�휀�휇, �푠)[ 1

�푧�耠�휔 − �휀�휇 + �퐿(�푧�耠�휔, �휀�휇, �푠)] = �퐻(�푠)
X∞

,

(50)
�푁∑
�휇=1

�푓(�휀�휇, �푠) = 0,

(51)�휀� = cos(2�휇 − 1
2�푁 �휋), �휇 = 1, 2, . . . , �푁,

(52)�푧�� = cos( �휔
�푁�휋), �휔 = 1, 2, . . . , �푁 − 1.

(53)

�̃푇(�푗)�耠 = (�푖�푟�耠)−�휂/2[�퐶(�푗)1 �퐼�푚(√�휆1�푟�耠) + �퐶(�푗)2 �퐾�푚(√�휆1�푟�耠)]
+ 1
2�휋∫

∞

−∞
(�푖�푟�耠)−�휂/2[�퐷(�푗)

1 �퐼�푚(√�휆3�푟�耠)
+�퐷(�푗)

2 �퐾�푚(√�휆3�푟�耠)]�푒�푖�휉�푧��푑�휉, �푗 = 1, 2,

(54)
�퐷(2)

2 = −(�푖�푅
�耠
�푐)�휂/2

�휉X8
∫

1

−1
Φ(�휀, �푠)sin(�휉�휀)�푑�휀

= −(�푖�푅
�耠
�푐)�휂/2

�휉X8

�푁
∑
�휇=1

�휋
�푁�푓(�휀�휇, �푠)sin(�휉�휀�휇).

(55)�퐾�푞(�푡) = lim�푧→�푐
√2(�푧 − �푐)�푞(2)�푟 (�푅�푐, �푧, �푡).

(56)�̃퐾�耠
�푞(�푠) = lim

�푧�→1
√2(�푧�耠 − 1)�̃푞(2)�耠�푟 (�푅�耠

�푐, �푧�耠, �푠).

(57)�̃퐾�耠
�푞(�푠) = �휆22 �푅�耠�휂

�푐 �푓(1, �푠),

Eq. (38) is the single-valuedness condition. With the help of 
Eq. (34), substituting Eq. (32) into Eq. (36) leads to

in which, � is the integral variable and,

Substituting Eqs. (27), (32)–(34), and (39) into Eq. (25b) 
results in a singular integral equation

in which,

�e fundamental solution of the singular integral equation 
(41) under the single-valuedness condition (38) is [36],

Eqs. (41) and (38) can be solved numerically by adopting the 
Gauss–Jacobi integration formulas in [37] as,

(38)∫1

−1
Φ(�푧�耠, �푠)�푑�푧�耠 = 0, �����푧�耠���� < 1.

(39)�퐷(2)
2 = (�푖�푅�耠

�푐)�휂/2�푖�휉X8
∫1

−1
Φ(�휀, �푠)�푒−�푖�휉�휀�푑�휀,

(40)

X8 = (X4
X3

− X2X7
X1

)�퐼�푚(√�휆3�푅�耠
�푐) + (X7 − 1)�퐾�푚(√�휆3�푅�耠

�푐).

(41)∫1

−1
Φ(�휀, �푠)[ 1

�푧�耠 − �휀 + �퐿(�푧�耠, �휀)]�푑�휀 = �휋�퐻(�푠)
X∞

,

(42)�퐿(�푧�耠, �휀) = ∫∞

0

X11 − X∞
X∞

sin[�휉(�푧�耠 − �휀)]�푑�휉,

(43)

X11 = (�푖�푅�耠
�푐)�휂/2[−X2X7X9/X1 + X7X10 + (X4/X3)�퐼�푚(√�휆3�푅�耠

�푐) − �퐾�푚(√�휆3�푅�耠
�푐)]

�휉X8
,

(44)
X9 = �퐼�푚(√�휆3�푅�耠

�푐) − �푉�耠�휆2�푅�耠�휂
�푐 √�휆3�퐼�푚−1(√�휆3�푅�耠

�푐)
+ �푉�耠�휆2(�휂2 + �푚)�푅�耠�휂−1

�푐 �퐼�푚(√�휆3�푅�耠
�푐),

(45)
X10 = �퐾�푚(√�휆3�푅�耠

�푐) + �푉�耠�휆2�푅�耠�휂
�푐 √�휆3�퐾�푚−1(√�휆3�푅�耠

�푐)
+ �푉�耠�휆2(�휂2 + �푚)�푅�耠�휂−1

�푐 �퐾�푚(√�휆3�푅�耠
�푐),

(46)X∞ = lim
�휉→∞

X11 = −�푉�耠�휆22 (�푖)�휂/2(�푅�耠
�푐)3�휂/2,

(47)

�퐻(�푠) = �푉�耠�휆2{[�푅�耠�휂
�푐 √�휆1�퐼�푚−1(√�휆1�푅�耠

�푐)
−(�휂2 + �푚)�푅�耠�휂−1

�푐 �퐼�푚(√�휆1�푅�耠
�푐)]�퐶(1)

1

−[�푅�耠�휂
�푐 √�휆1�퐾�푚−1(√�휆1�푅�耠

�푐)
+(�휂2 + �푚)�푅�耠�휂−1

�푐 �퐾�푚(√�휆1�푅�耠
�푐)]�퐶(1)

2 }.

(48)Φ(�휀, �푠) = �푓(�휀, �푠)(1 − �휀2)−1/2.



Advances in Mathematical Physics6

thermal wave propagates from the outer surface of the cylinder 
to the inner surface under the DPL heat conduction model. 
Evidently, the difference between the transient temperature 
field away from the cylindrical crack obtained in this paper 
and that in the reference for uncracked cylinder is negligible, 
which proves the correctness of the solution procedure.

5.2. Effect of Heat Conduction Model and Phase Lag 
Parameters.  In this subsection and therea�er, a cylinder 
with the size of �푅� = 0.006m and �푅� = 0.01m containing a 
cylindrical crack of length 2c at �푅� = 0.008m is chosen for 
the parameter analyses. �e cylinder is made of carbon fiber 
reinforced resin matrix composite, and the reference properties 
are chosen with 20% volume fraction of fiber, shown in Table 
1. It should be noted that the phase lag of heat flux is chosen 
referring to [40], and the phase lag of temperature gradient is 
assumed correspondingly due to the absence of this value in 
literature. �e crack length is 2�푐 = 0.006m. �e inner surface 
of the cylinder is heated to �푇� = 330K suddenly, while the 
outer surface is kept at the initial temperature �푇0 = 300K. �e 
effects of heat conduction model and corresponding phase lags 
on the transient heat flux intensity factor and temperature field 
are analyzed in this subsection.

�e histories of HFIF calculated based on different heat 
conduction models for a homogeneous cylinder with an insu-
lated cylindrical crack are depicted in Figure 3. As the HFIF 
represents the degree of heat concentration around the crack 
tip, a higher value of HFIF means a more dangerous thermal 
situation. It can be seen from Figure 3 that the value of �� at 
stable state is the same for all the heat conduction theories, 
however, the maximum value of �� strongly depends on the 
heat conduction theory adopted. Compared to the HFIF 

in which, �푓(1, �푠) is calculated from �푓(�휀�, �푠) using the interpo-
lation method.

Finally, the transient temperature and HFIF in the time 
domain are obtained by applying the numerical Laplace inver-
sion technique described in [38] to Eqs. (56) and (60), 
respectively.

5. Numerical Results

In this section, a fiber reinforced composite cylinder contain-
ing a cylindrical crack is taken as an example to demonstrate 
the applicability of the mathematical model proposed in this 
paper. A sudden temperature change is applied on the inner 
surface of cylinder, and transient temperature field and HFIF 
are obtained based on the DPL heat conduction model. �e 
effects of heat conduction model and phase lags, FG parame-
ter, and thermal resistance of crack on the results are analyzed 
in detail. In the meanwhile, the solution procedure is verified 
in Section 5.1 with the temperature result presented in [39] 
which described the non-Fourier heat conduction in 
uncracked FG cylinders.

5.1. Validation of the Solution Procedure.  In order to justify the 
solution process in this paper, a cracked FG cylinder with the 
same configuration and temperature loading as the uncracked 
cylinder in [39] is taken for illustration. �e mass density and 
thermal conductivity vary with the radial coordinate gradually 
with �푛 = 1, while other parameters are homogeneous. �e crack 
spreads along the plane �푅�

� = 0.8 and has the non-dimensional 
length −1 < �푧� < 1. It is known from the Saint-Venant principle 
that the temperature field near the crack will be disturbed and 
not be affected by the crack at a position far away from it. �us, 
the temperature field far from the crack should be the same 
as that for uncracked cylinders. �e temperature distributions 
along the radial direction at �푧� = 10 are drawn in Figure 2 
and compared with the results of uncracked cylinder at two 
different instants �푡� = 0.084 and �푡� = 0.126. It is seen that the 
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Ref. [29]
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τTʹ = 0.25
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n = 1

Figure 2: Comparison of temperature distribution away from the 
crack with the result in [39].

Table 1: Reference material properties.

�휌0 (Kg/m3) �푐� (J/KgK) �푘0 (W/mK) �휏� (s) �휏� (s)
1302 1006 11.6 0.8 0.6
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Figure 3: Effect of heat conduction model on HFIF for a homogeneous 
cylinder.
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be reflected back when it propagates from the inner surface to 
the outer surface. �en, more heat is gathered around the inner 
crack face, and the temperature is elevated substantially to a 
value higher than the applied loading ��. Similar to the con-
clusion given by Akbarzadeh and Chen [39], the increase of �� 
delays the start signal of the thermal wave and increases the 
maximum temperature of the two crack faces.

Figures 6 and 7 illustrate the effect of phase lag of temper-
ature gradient �� on the transient heat flux intensity factor and 
temperature field, respectively, within the structure of DPL 
heat conduction model. �e cylinder is taken to be homoge-
neous, while the phase lag of heat flux is kept constant at �휏� = 0.8 s and �� is assumed to vary from 0.6 s to 1.0 s. Different 
from the effect of �� on the maximum �� in Figure 4, the 
increase of �� generally elevates the maximum value of HFIF, 
which is clearly shown in Figure 6. It reveals that a cracked 

history obtained by the Fourier model, �� oscillates first and 
has a higher maximum value for non-Fourier models. Also, 
the DPL model induces a higher �� than the C–V model, 
which declares the importance of DPL heat conduction model 
to predict the thermal concentration degree around the crack.

�e effect of phase lag of heat flux �� on the HFIF history 
and temperature histories of the crack face midpoints of a 
homogeneous cylinder are shown in Figures 4 and 5, respec-
tively. �ree different values of �휏� = 0.6 s, 0.8 s, 1.0 s within  
the structure of C–V model are chosen for the analysis. It can 
be seen from Figure 4 that the increase of �� raises the oscilla-
tion range of HFIF, while its influence on the maximum value 
of HFIF is indiscernible. Figure 5 clearly shows the temperature 
jump across the crack faces, and the temperature at the inner 
crack face is much higher than that at the outer crack face. Due 
to the existence of the insulated crack, the thermal wave will 
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Figure 4: Effect of �� on HFIF for a homogeneous cylinder based 
on the C–V model.
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Figure 5:  Effect of �� on the temperature history at crack face 
midpoints for a homogeneous cylinder based on the C–V model.
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Figure 6: Effect of �� on HFIF for a homogeneous cylinder based 
on the DPL model.
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Figure 7:  Effect of �� on the temperature history at crack face 
midpoints for a homogeneous cylinder based on the DPL model.
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continuously beyond this range. Also, the temperature at the 
inner crack face is much higher than that at the outer crack 
face due to the outwards thermal flow direction. Figure 10 also 
indicates that � has sensible effect on the temperature of inner 
crack face and negligible effect on the temperature of the outer 
crack face, as the thermal wave has not arrived at the outer 
crack face at the instant �푡 = 0.784 s due to the thermal reflec-
tion by the insulated crack face.

5.4. Effect of �ermal Resistance of Crack.  �e effect of thermal 
resistance of crack � on the transient HFIF and temperature 
field of crack face midpoints are shown in Figures 11 and 
12, respectively. �e cylinder is taken to be inhomogeneous 
with �휂 = 1, and the thermal results are obtained based on the 
DPL model. As stated previously, an infinitely large value 
of � corresponds to an insulated crack, while two other 

structure made of a material with a higher �� is more danger-
ous under sudden temperature change. By comparing Figures 
5 and 7, the temperature at crack face midpoints obtained 
using the DPL model needs more time to get stable than that 
using the C–V model. Moreover, the influence of �� on the 
maximum temperature is not obvious.

5.3. Effect of FG Parameter.  �e thermal conductivity and 
mass density of cylinder vary with the radial coordinate in a 
power-law form as shown in Eq. (4), while other parameters 
are homogeneous. Different values of FG parameter (power 
exponent) correspond to a cylinder made of materials with 
different properties, thus affects the thermal responses 
remarkably. In this subsection, the effects of FG parameter � on 
the HFIF history, temperature history of crack face midpoints, 
and temperature distribution along the crack plane are shown 
in Figures 8~10, respectively. It is worth mentioning that the 
DPL heat conduction model is taken for the thermal analyses.

It can be seen from Figure 8 that the rise of inhomogene-
ous degree increases the heat flux intensity factor entirely, 
including the oscillation range, maximum value, and the stable 
value. �is reveals that the employment of inhomogeneous 
cylinders with positive FG parameter is more thermally dan-
gerous than the homogeneous ones. Meanwhile, an inhomo-
geneous cylinder with negative FG parameter can serve as a 
nice thermal barrier structure as it reduces the thermal con-
centration degree around the crack remarkably. Different from 
the situation of HFIF history, the effect of FG parameter � on 
the temperature history of midpoints of crack faces is weak, 
which is depicted in Figure 9. Due to the use of DPL heat 
conduction model, the temperature jump across the crack 
faces shows clear oscillation behavior. �e temperature jump 
is more obvious in Figure 10, which illustrates the temperature 
distribution along the crack plane at a specific instant �푡 = 0.784 s for different FG parameters. Clearly, the tempera-
ture at one crack face differs from another within the range of 
crack −0.003m < �푧 < 0.003m, and this phenomenon becomes 
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Figure 8: Effect of FG parameter on HFIF based on the DPL 
model.
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Figure 9: Effect of FG parameter on the temperature history at crack 
face midpoints based on the DPL model.
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Figure 10: Effect of FG parameter on the temperature distribution 
along the crack plane based on the DPL model.
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6. Conclusion

�e transient heat conduction of a functionally graded cylin-
der containing a cylindrical crack is investigated in this paper 
using the non-Fourier heat conduction theory. �e 
mixed-boundary-value problem is solved with the employ-
ment of the singular integral equation and Laplace transform 
methods. �e concept of heat flux intensity factor is intro-
duced to evaluate the heat concentration degree at the crack 
tip. Finally, the effects of heat conduction model, FG param-
eter, and thermal resistance of the crack on the transient HFIF 
and temperature field are analyzed numerically.

It is found that the temperature field across the two crack 
faces is discontinuous due to the existence of insulating crack. 
�e heat conduction models adopted and related phase lags 
have great effects on the thermal responses. Due to the use of 
non-Fourier models, the HFIF are elevated remarkably, and 
the temperature shows significant oscillation behavior. Within 
the structure of FG profile used in this paper, an inhomoge-
neous cylinder with negative FG parameter can serve as a 
better thermal barrier structure than the homogeneous one. 
Also, the thermal resistance of crack is an important parameter 
which reduces the HFIF and temperature jump across the 
crack faces when the crack becomes more conductive.
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