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Using center manifold reduction methodswe investigate the double Hopf bifurcation in the dynamics of microbubble with delay 
couplingwith main attention focused on nonresonant double Hopf bifurcation. We obtain the normal form of the system in the 
vicinity of the double Hopf point and classify the bifurcations in a two-dimensional parameter space near the critical point. Some 
numerical simulations support the applicability of the theoretical results. In particularwe give the explanation for some physical 
phenomena of the system using the obtained mathematical results.

1. Introduction

At present, owing to the modeling of many technological and 
biological problems the dynamical systems with delay, delayed 
di�erential equations (DDEs), or functional di�erential equa-
tions (FDEs) have been an active area of research [1–6]. 
Double Hopf refers to same critical value, and there exist two 
di�erent pure imaginary eigenvalues. We can observe much 
interesting phenomena through double Hopf bifurcation, such 
as periodic and quasi-periodic motions, three dimensional 
invariant torus [7], period doubling [8, 9], homoclinic and 
heteroclinic connections, and chaos. Recently, the center man-
ifold reduction (CMR) and multiple time scales (MTS) are 
widely useful techniques which are used by researchers to 
study bifurcation of DDEs.

Bubble dynamics is an important branch of ¡uid mechan-
ics which can be applied to some research ¢elds. For example, 
the microbubbles ¢lled with a drug as a carrier for local drug 
delivery can be improved drug utilization in medical ¢eld. �e 
fact is that the dynamics of bubbles in a liquid are in¡uencing 
each other via acoustic waves, which is a complex process 
described by time-delay system.

Plesset [10], Plesset and Prosperetti [11] set up the famous 
Rayleigh–Plesset equation (1) which used to describe the 
microbubble system:

here, Δ = �−1(�(�) − �0), where � is the density of the liquid, 
and �(�) = �((4/3)��3)−� is the pressure inside the bubble, 
and � is the adiabatic exponent of the gas. However, Equation 
(1) merely describes the dynamics of a single micro-bubble 
system. In the general cases, there are a lot of bubbles (micro- 
bubbles) with the coupling e�ect in the liquid. �us, to better 
analyze of micro-bubble nature of the system, we need to study 
an optimum system for describing further. In 2010, Heckman 
and Rand [12] set up a bubble coupled system with time delay:

where � is positive-valued parameters, � is sound speed, and �
is the delay and � is a coupling coe¤cient. � and � are the 
radius of the microbubbles, respectively. � and � also denote, 
respectively, the two bubbles. Heckman et al. studied bifurca-
tions of the in-phase manifold given by � = �, �̇ = �̇ [13–16]. 
Recently, Heckman has studied Equation (2) and developed 
explanations for bifurcation structure of the in-phase mani-
fold, However, these studies were limited in that he 

(1)(�̇ − �)(��̈ + 32 �̇
2 − �−3� + Δ) − �̇3 − �−1(�2Δ) = 0,

(2)

{
(�̇ − �)(��̈ + 32 �̇2 − �−3� + 1) − �̇3 − (3� − 2)�−3��̇ − 2�̇ = ��̇(� − �),
(�̇ − �)(��̈ + 32 �̇2 − �−3� + 1) − �̇3 − (3� − 2)�−3��̇ − 2�̇ = ��̇(� − �),
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investigated only given by � = �, �̇ = �̇. �is work will extend 
the previous, by making use of the theory of center manifold 
[17] and the normal form method [18] to consider double 
Hopf bifurcation, which occur with more general cases.

�is article is organized as follows: In Section 2, we discuss 
the occurring conditions for the existence of double Hopf 
bifurcation on Equation (2). In Section 3, we analyze the non-
resonant double Hopf bifurcation for the system using the 
normal form method and the center manifold theory. We clas-
sify the bifurcations in a two-dimensional parameter space 
near the critical point and some numerical simulations sup-
port the applicability of the theoretical results in Section 4. 
Mathematical results explain the mechanical background of 
the model in Section 5. �e concluding section contains a brief 
conclusion of this work.

2. Stability Analysis

A§er calculating (��, ��) = (1, 1) is an equilibrium point of 
Equation (2), we set � = �(�) + 1 and � = �(�) + 1, then 
Equation (2) can be written as

Further, we let

then Equation (3) can be written as

Clearly, (0, 0, 0, 0) is an equilibrium point of Equation (5). �e 
characteristic equation of its corresponding linear system 
around the origin (0, 0, 0, 0) is

When � = 0, the roots for Equation (6) are

Clearly

(3)

{{{{{{{{{
{{{{{{{{{
{

��̇(� − �) = (�̇(�) − �)((�(�) + 1)�̈(�)
+ 32 (�̇(�))2 − (�(�) + 1)−3�+1) − (�̇(�))3−(3� − 2)(�(�) + 1)−3��̇(�) − 2�̇(�),

��̇(� − �) = (�̇(�) − �)((�(�) + 1)�̈(�)
+ 32 (�̇(�))2 − (�(�) + 1)−3�+1) − (�̇(�))3
−(3� − 2)(�(�) + 1)−3��̇(�) − 2�̇(�).

(4)�̇(�) = ℎ(�), �̇(�) = �(�),

(5)

{{{{{
{{{{{
{

�̇(�) = ℎ(�),
ℎ̇(�) = ��(�−�)+2ℎ(�)+(ℎ(�))3+(3�−2)(�(�)+1)−3�ℎ(�)(ℎ(�)−�)(1+�(�)) + (−3/2)(ℎ(�))2+(�(�)+1)−3�−1)1+�(�) ,
�̇(�) = �(�),
�̇(�) = �ℎ(�−�)+2�(�)+(�(�))

3+(3�−2)(�(�)+1)−3��(�)
(�(�)−�)(1+�(�)) + (−3/2)(�(�))

2+(�(�)+1)−3�−1)
1+�(�) .

(6)
(��2 + 3�� + 3�� + ���−��)(��2 + 3�� + 3�� − ���−��) = 0.

(7)�1,2 = 12�(−(3� − �) ± √(3� − �)
2 − 12�2�),

(8)�3,4 =
1
2�(−(3� + �) ±

√(3� + �)2 − 12�2�).

(9)

{
{
{

���1,2 < 0, ���3,4 < 0, 3� > �,
�1,2 = ±√3��, ���3,4 < 0, 3� = �,���1,2 > 0, ���3,4 < 0, 3� < �,

.

When � ̸= 0, it is essential to discuss the properties of the roots 
into two cases.

Case 1. Let ±��1(�1 > 0) be a root of ��2 + 3�� + 3��+
���−�� = 0, then �1 satis¢es

and the solutions to Equation (10) are then found to be

under the assumption � > 3�.

where �1 = � − arcsin(�((�±1 )
2 − 3�)/��±1 ). By de¢ning 

�+�1(� = 0, 1, 2, 3, . . .) and �−�1(� = 0, 1, 2, 3, . . .), we can obtain 
�+�1 < �+(�+1)1  and �−�1 < �−(�+1)1. Furthermore, we get �+�1 < �−�1  and 
�+(�+1)1 − �+�1 < �−(�+1)1 − �−�1 from �+1 < �−1 . �us, there exists a 
positive integer � > 0, yielding

Case 2. Let ±��2(�2 > 0) be a root of ��2 + 3�� + 3��−
���−�� = 0. Likewise available as a conclusion

here, �2 = arcsin(−�((�±2 )
2 − 3�)/��±2 ), � > 3�.

A§er calculating, the corresponding transverse condition 
is the following:

From [18, 19] and above analysis, we can obtain the following 
theorem about the existence of Hopf bifurcation. If � > 3�, 
system Equation (5) undergoes a Hopf bifurcation at its zero 
equilibrium when �=�±�1 or �=�±�2, where � = 0, 1, 2, 3, . . .

In the following, we will discuss the occurring conditions 
for the existence of double Hopf bifurcation on Equation (5), 
and choose the (�, �) as the parameters plane. Further, we can 
draw a (�, �) diagram as shown in Figure 1. In fact, double 
Hopf bifurcation occurs at these points.(��, ��)is called a dou-
ble Hopf bifurcation point, when �+�1 = �−�2 = �� is satis¢ed for 
some � = 0, 1, 2, . . . 

From

(10){��1sin �1� = �((�1)
2 − 3�),

��1cos �1� = −3��1,

(11)�±1 =
√�2 − 9�2 + 12�2� ± √�2 − 9�2

2� > 0,

(12)�±�1 =
1
�±1
(�1 + 2��), � = 0, 1, 2, . . . ,

(13)

0 < �+01 < �−01 < �+11 < �−11 < ⋅ ⋅ ⋅ < �−(�−1)1 < �
+
�1 < �+(�+1)1 < �

−
�1.

(14)�±1 = �±2 ,
(15)�±�2 =

1
�±2
(�2 + 2��), � = 0, 1, 2 . . . ,

(16)
0 < �+02 < �−02 < �+12 < �−12 < ⋅ ⋅ ⋅ < �−(�−1)2
< �+�2 < �+(�+1)2 < �−�2,

(17)

��g�(d�(�)
d� )| �=�0 =

{{
{{
{

1, �0 = �+�1, � = 0, 1, 2, 3, . . . ,−1, �0 = �−�1, � = 0, 1, 2, 3, . . . ,−1, �0 = �+�2, � = 0, 1, 2, 3, . . . ,
1, �0 = �−�2, � = 0, 1, 2, 3, . . . ,

(18)
�+�1 =
1
�+1
(�1 + 2��) = �−�2 =

1
�−2
(�2 + 2��),
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we can obtain

the double Hopf bifurcation is called resonance when 
�1 : �2 ∈ �+ and it is called nonresonance if �1 : �2 is  an irra-
tional number [16, 17].

3. Normal Form for Double Hopf Bifurcation of 
in Coupled Microbubble with Non-Resonance

In previous section, we have established some results of 
Hopf and double Hopf bifurcation and drew this conclusion 
by analyzing the stability of the origin a§er bifurcation. 
However, there is a direct way to approach the dynamic of 
near the non-resonance double Hopf bifurcation critical 
point by using the center manifold theory and the normal 
form method.

To begin, we will try to transform the in¢nite dimensional 
dynamic system into a ¢nite dimensional system with the 
method of center manifold theory. Rescaling the time by 
� → �/� to normalize the delay so that system Equation (5) 
becomes

Suppose that the system Equation (20) undergoes a double 
Hopf bifurcation at the critical point (��, ��) with two pairs of 
eigenvalues ±��+1  and ±��−2 , we can choose

(19)
�+1 : �−2 = (√�2 − 9�2 + 12�2� + √�2 − 9�2)

: (√�2 − 9�2 + 12�2� − √�2 − 9�2)

≜ �1 : �2,

(20)

{{{{{{
{{{{{{
{

�̇(�) = �ℎ(�),
ℎ̇(�) = �(��(�−1)+2ℎ(�)+(ℎ(�))3+(3�−2)(�(�)+1)−3�ℎ(�)(ℎ(�)−�)(1+�(�)) + (−3/2)(ℎ(�))2+ (�(�)+1)−3�−1)1+�(�) ),
�̇(�) = ��(�),
�̇(�) = �(�ℎ(�−1)+2�(�)+(�(�))

3+(3�−2)(�(�)+1)−3��(�)
(�(�)−�)(1+�(�)) + (−3/2)(�(�))

2+ (�(�)+1)−3�−1)
1+�(�) ).

with

�en, the linearized equation of Equation (20) at the trivial 
equilibrium is

where �0� = ∫
0
−1��(�)�(�), � ∈ �([−1, 0], 


4), and the bilin-
ear form on �∗ × � (∗stands for adjoint) is

where

Designate Λ = {±����+1 ,±����−2 }, then as discussed above, we 
know that the phase space � can be decomposed as � = �Λ ⊕ �Λ, 
where �Λ ⊂ � is the 4-dimensional center subspace spanned 
by the basis vectors of the linear operator �0 associated with 
the imaginary characteristic roots, and �Λ is the complement 
subspace of �Λ. Further, Equation (20) can be rewritten as an 
ordinary di�erential equation in the Banach space BC (see 
[10]) of functions bounded; therefore, we can suppose that the 
bases for �Λ and its adjoint �∗Λ are given, respectively, by

(21)�(�) =
{{
{{
{

���, � = 0,
0, � ∈ (−1, 0),
−���, � = −1,

(22)

� =(
0 1 0 0
−3� − 3�� 0 00 0 0 1
0 0 −3� − 3��

), � =(
0 0 0 0
0 0 0 −��0 0 0 0
0 −�� 0 0

).

(23)�̇(�) = �0��,

(24)(�, �) = �(0)�(0) − ∫
0

−�
∫
�

�=0
�(� − �)��(�)�(�)��,

(25)
�(�) = (�1(�), �2(�), �3(�), �4(�)) ∈ �,
�(�) = (�1(�), �2(�), �3(�), �4(�))

� ∈ �∗.

(26)Φ(�) = (�1(�), �1(�), �2(�), �2(�)),
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Figure 1: �e Hopf bifurcation curves for Equation (5) at the trivial equilibrium (0, 0, 0, 0) when � = 4/3, � = 94, and � = 0.
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and

�us, we can easily get Equation (20) that becomes an abstract 
ODE in the space BC.

where, � ∈ �, and � is de¢ned by

and

By the continuous projection �, we can decompose the 
enlarged phase space by ∧ = {±���+1 , ±���−2 } as BC = �Λ ⊕ ����, 
where ���� = {� + �0� := �(� + �0�) = 0}. Let �� = Φ�(�) + v(�), 
�en, Equation (20) is decomposed as

where, we denote � ∈ �1 = � ∩ �1 ⊂ ����, and ��1 is the 
restriction of � as an operator from �1 to the Banach space 
����.

For the convenience of computing the normal form, 
Equation (40) can be written by neglecting higher order terms 
with respect to parameters, with

where

and

Next, let �12 denote the operator de¢ned in �62 (�4 × ����), 
with

(36)

�(��, �) = (�� + �2)(
0

�1�(0)3 + �2�(0)2ℎ(0) + �3ℎ(0)3 + �4ℎ(�)2�(−1)
0

�1�(0)3 + �2�(0)2�(0) + �3�(0)3 + �4�(�)2ℎ(−1)
)

�1 = − �2�2 , �2 = −
3�+2
6� , �3 = −(

1
� +
3�
�3 +
1
2), �4 = −

3�
� .

(37)
�
��� = �� + �0�,

(38)� : �1 → ��, �� = �̇ + �0[�0� − �̇(0)]

(39)�(�, �) = [�(�) − �0]� + �(�, �).

(40){ �̇ = �� + �(0)�(Φ� + v, �),̇v = ��1v + (�� − 
)�0�(Φ� + v, �),

(41)

{{{{{{{{{{{
{{{{{{{{{{{
{

�̇1 = ����+1 �1 +
4∑
�=1
�1�∗1�(0)�� + ℎ.�.�,

�̇2 = −����+1 �2 +
4∑
�=1
�1�∗1�(0)�� + ℎ.�.�,

�̇3 = ����−1 �3 +
4∑
�=1
�2�∗2�(0)�� + ℎ.�.�,

�̇4 = −����−1 �4 +
4∑
�=1
�2�∗2�(0)�� + ℎ.�.�,

(42)

�1 = �2ℎ(0), �2 = −3��2�(0) − 3��2� ℎ(0) −
���1 + �2��
� �(−1)

+ 
1�3(0) + 
2�2(0)ℎ(0) + 
3ℎ3(0) + 
4ℎ2(0)�(−1),
�3 = �2�(0), �4 = −3��2�(0) − 3��2� �(0) −

���1 + �2��
� ℎ(−1) + 
1�

3(0)
+ 
2�2(0)ℎ(0) + 
3�3(0) + 
4�2(0)ℎ(−1)

(43)

(
�(0)
ℎ(0)
�(0)
�(0)
) = Φ(0)� +(

v1(0)
v2(0)
v3(0)
v4(0)
), (

�(−1)
ℎ(−1)
�(−1)
�(−1)
) = Φ(−1)� +(

v1(−1)
v2(−1)
v3(−1)
v4(−1)
).

(44)�12 : �62 (�4) �→ �62 (�4),

where

We let � = �� + �1 and � = �� + �2 in Equation (20), where �1
and �2 are perturbation parameters, and denote � = (�1, �2). 
�en Equation (20) can be rewritten as

where

(27)�(�) = (�∗1 (�), �∗1 (�), �∗2 (�), �∗2 (�))
�
,

(28)

�1(�) = (1, ��+1 ��, −
3� + (��+1 �� + 3�/�)��+1 ��
(�/�)�−��

+
1 ��

,

−3� + (��
+
1 �� + 3�/�)��+1 ��
(�/�)�−��

+
1 �� ��+1

)
�

���
+
1 ���

≜ (�11(0), �12(0), �13(0), �14(0))
����

+
1 ���,

(29)�2(�) = (1, ��−2 ��, −
3� + (��−2 �� + 3�/�)��−2 ��
(�/�)�−��

−
2 ��

,

−3� + (��
−
2 �� + 3�/�)��−2 ��
(�/�)�−��

−
2 �� ��−2

)
�

���
−
2 ���

≜ (�21(0), �22(0), �23(0), �24(0))
����

−
2 ���,

(30)
�∗1 (�) = �1(1,

��+1 ��
3� ,
9�2 − 3���+1 ��(��+1 �� − 3�/
)
3����+1 ��
��

+
1 ��/


,

3�
 − ��+1 ��(
��+1 �� − 3�)
3�� 
��

+
1 ��)
−��

+
1 ���

≜ �1(�∗11(0), �∗12(0), �∗13(0), �∗14(0))
−��
+
1 ���,

(31)
�∗1 (�) = �2(1,

��−2 ��
3� ,
9�2 − 3���−2 ��(��−2 �� − 3�/
)
3����−2 ��
��

−
2 ��/


,

3�
 − ��−2 ��(
��−2 �� − 3�)
3�� 
��

−
2 ��)
−��

−
2 ���

≜ �2(�∗21(0), �∗22(0), �∗23(0), �∗24(0))
−��
−
2 ���,

(32)

�1 =[(�11(0)�∗11(0) + �12(0)�∗12(0) + �13(0)�∗13(0) + �14(0)�∗14(0)

+�� (�12(0)�
∗
14(0) + �14(0)�∗12(0)))�����

+
1 ��]
−1
,

(33)

�2 =[(�21(0)�∗21(0) + �22(0)�∗22(0) + �23(0)�∗23(0) + �24(0)�∗24(0)

+�� (�22(0)�
∗
24(0) + �24(0)�∗22(0)))�����

−
2 ��]
−2
.

(34)�̇(�) = �(�)�� + �(��, �),

(35)

�(�)�� =(�� + �2)(
0 1 0 0
−3� − 3�� 0 00 0 0 1
0 0 −3� − 3��

)(
�(0)
ℎ(0)
�(0)
�(0)
)

+ (�� + �2)(
0 1 0 0
0 0 0 −�+�1�0 0 0 0
0 −�+�1� 0 0

)(
�(−1)
ℎ(−1)
�(−1)
�(−1)
)
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where the complementary space ��(�13(�4))� spanned by 
the elements

�erefore, the normal form up to third-order terms is given 
by

where

and �13 (�, 0, 0) is the function giving the cubic terms in (�, �, v)
for � = 0, and � = 0 is de¢ned by the ¢rst equation of Equation 
(40).

Finally, the normal form on the center manifold arising 
from Equation (40) becomes

where

(55)

��(�13(�4))� =����{{{{{(
�21�2000 ),(

�1�3�4000 ),(
0�22�100 ),

( 0�2�3�400 ),(
00�1�2�30 ),(

00�23�40 ),
( 000�1�2z4),(

000�24�3)
}}}}}.

(56)�̇ = �� + 12�
1
2(�, 0, �) +

1
3!�
1
3(�, 0, 0) + ℎ.�.
,

(57)
1
3!�
1
3(�, 0, 0) =

1
3!(� − �

1
1,3)�13 (�, 0, 0),

(58)
{{{
{{{
{

�̇1 = ����+1 �1 + �1�1 + �11�21�2 + �12�1�3�4 + ℎ.�.�,
�̇2 = −����+1 �2 + �1�2 + �11�22�1 + �12�1�3�4 + ℎ.�.�,
�̇3 = ����−2 �3 + �2�3 + �21�23�4 + �22�1�2�3 + ℎ.�.�,
�̇4 = −����−2 �4 + �2�4 + �21�24�3 + �22�1�2�4 + ℎ.�.�,

(59)

�11 = �1�∗12{3�1�211�21 + �2(�211�22 + 2�21�12�11) + 3�3�212�22

+ �4(�212�24�����
−
2+2�12�22�14�����

−
2 )}

+ �1�∗14{3�1�213�23 + �2(�213�24 + 2�23�14�13)

+ 3�3�214�24 + �4(�214�22�����
+
1 + 2�14�24�12�����

+
1 )},

(60)

�12 = �1�∗12{6�1�11�31�41 + �2(2�11�31�42 + 2�11�41�32 + 2�31�41�12)

+ 6�3�12�32�42 + �4(2�12�32�44�����
−
2

+2�12�42�34�����
−
2 + 2�32�42�14�����

−
2 )}

+ �1�∗14{6�1�13�33�43 + �2(2�13�33�44 + 2�13�43�34 + 2�33�43�14)

+ 6�3�14�34�42 + �4(2�14�34�42�����
+
1

+2�14�44�32�����
+
1 + 2�34�44�12�����

+
1 )},

where �62 (�4) represents the linear space of the second-order 
homogeneous polynomials in six variables (�1, �2, �3, �4, �1, �2)
with coe¤cients in �4. It is easy to verify that one may choose 
the decomposition without considering the strong resonant

with complementary space

�en, the normal form of Equation (37) on the center mani-
fold associated with the equilibrium near � = 0 has the form

where �12 is the function giving the quadratic terms in (�, �)
for � = 0, and is determined by �12(�, 0, �) = ������
(�12(�4))

� × �12 (�, 0, �), where �12 (�, 0, �) is the function giv-
ing the quadratic terms in (�, �) for � = 0 de¢ned by the ¢rst 
equation of Equation (41). �us, the normal form truncated 
at the quadratic order terms is given by

where

To ¢nd the normal form up to third order, similarly, let �13
denote the operator de¢ned in �63 (�4 × ����), with

where �63 (�4) denotes the linear space of the third order 
homogeneous polynomials in four variables (�1, �2, �3, �4)
with coe¤cients in �4.

Decompose the space �63 (�4) as follows

(45)(�12�)(�, �) = ���(�, �)�� − ��(�, �),

(46)�62 (�4) = ��(�12(�4)) ⊕ ��(�12(�4))�

(47)

��(�12(�4))
� = ����

{{
{{
{
(
�1��
0
0
0
),(
0
�2��
0
0
),(
0
0
�3��
0
),(
0
0
0
�4��

)
}}
}}
}
� = 1, 2.

(48)�̇ = �� + 12�
1
2(�, 0, �) + ℎ.�.�,

(49)
{{{
{{{
{

�̇1 = ����+1 �1 + �1�1 + ℎ.�.�,
�̇2 = −����+1 �2 + �1�2 + ℎ.�.�,
�̇3 = ����−1 �3 + �2�3 + ℎ.�.�,
�̇4 = −����−1 �4 + �2�4 + ℎ.�.�,

(50)

�1 = 2�1{�∗11�2�12 + �∗12(−3��2�11 − 3�� �2�12 −
���1 + �2��
� �14�

����−2)

+�∗13�2�14 + �∗14(−3��2�13 − 3�� �2�14 −
���1 + �2��
� �12�

����+1)},

(51)

�2 = 2�2{�∗21�2�32 + �∗22(−3��2�31 −
3�
� �2�32 −

���1 + �2��
� �34�

����−2)

+�∗23�2�34 + �∗24(−3��2�33 −
3�
� �2�34 −

���1 + �2��
� �32�

����+1)}.

(52)�13 : �62 (�4) �→ �63 (�4),

(53)(�13�)(�, �) = ���(�, �)�� − ��(�, �),

(54)�63 (�4) = ��(�13(�4)) ⊕ ��(�13(�4))�,
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(62)�22 = �2�∗22{6�1�11�21�31 + �2(2�11�31�22
+ 2�11�21�12 + 2�31�21�12) + 6�3�12�32�22
+ �4(2�12�32�24�����

−
2 + 2�12�22�34�����

−
2 + 2�32�22�14�����

−
2 )}

+ �2�∗24{6�1�13�33�23 + �2(2�13�33�24
+ 2�13�23�34 + 2�33�23�14) + 6�3�14�34�22
+ �4(2�14�34�22�����

+
1 + 2�14�24�32�����

+
1 + 2�34�24�12�����

+
1 )}.

(61)

�21 = �2�∗22{3�1�231�41 + �2(�231�42 + 2�41�32�31) + 3�3�232�42

+ �4(�232�44�����
−
2 + 2�32�42�34�����

−
2 )}

+ �2�∗24{3�1�233�43 + �2(�233�44 + 2�43�34�33) + 3�3�234�44

+ �4(�234�42�����
+
1 + 2�34�44�32�����

+
1 )},

2H

1H

2ε

1ε

1A
2

A

3A

4A
5A

6A

2T

1T

(a)

15 20 25 30 35 40 45
0.65

0.7

0.75

0.8

0.85

0.9

P

τ

(Pc, τc)

ε1

ε2

τ+
01 τ–

02

(b)

Figure 2: (a) Critical bifurcation lines in the (�1, �1) parameter space near (��, ��); and the corresponding phase portraits in the (�1, �1)
plane when �� = 30.21, �� = 0.78, (b) to embed Figure 2(a) into Figure 1, and yielding complete bifurcation sets near (��, ��).
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Figure 3: Simulated solution of Equation (20) for (�1, �2) = (0.4, −0.08), showing a stable periodic solution.
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where �1 = ���1, �2 = ���2, � = ���11, � = ���12, � = ���21,� = ���22, � = �/�, � = �/�.

4. Illustrations and Numerical Simulations

To give a more clear bifurcation picture, we choose 
� = 4/3, � = 94, �� = 30.21, �� = 0.78 by referring [12], and 
yield �+1 = 2.166, �−2 = 1.847, �+1 : �−2 = 5√2 : 6. By calculat-
ing, we can obtain �1 = 0.410�2 + 0.605�1, �2 = −30.514�2+
24.351�1 , � = −4.729 < 0 , � = −10.031 , � = −.5.554 , � = −2.003
< 0, � = 5.007, and � = 1.117. For the bifurcation behaviors of 
the original system Equation (20) in the neighborhood of the 
trivial equilibrium, the above critical bifurcation boundaries 

(65){ �̇1 = (�1 − �1 − ��2)�1,�̇2 = (�2 − ��1 − �2)�2,
With the polar coordinates

then, the amplitude equation resulted from Equation (58) is

and the nature of bifurcation of Equation (64) can refer to [20]. 
We introduce new phase variables and rescale time according 
to �1 = −��1, �2 = −��1, � = 2�, and obtain

(63)
{{{
{{{
{

�1 = �1�−��1
�2 = �1���1
�3 = �2�−��2
�1 = �2���2

(64){
̇�1 = (�1 + ��21 + ��22)�1
̇�2 = (�2 + ��21 + ��22)�1
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Figure 5:  Simulated solution of Equation (2) for � = 0.001,
� = 4/3, � = 94, � = 1000 : the equilibrium (0 0 0 0) is asymptotically 
stable.
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Figure 4: Simulated solution of Equation (20) for (�1, �2) = (−0.4, −0.08), showing the equilibrium(0 0 0 0) is asymptotically stable.
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Figure 6: Simulated solution of Equation (2) for � = 1000, � = 4/3,
� = 94, � = 0.001 : the equilibrium (0 0 0 0) is asymptotically stable.
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5. Explanation for the Mechanical Background 
of the Model Using Mathematical Results

As � = 0, then Equation (2) can be written as

which shows the behavior of systems range from double bub-
bles coupling to single bubble. �e zero solution of Equation 
(70) is asymptotically stable (see [12]).

As noted in [12], � = �/� shows that the distance of two 
bubbles � is proportional to the time delay � when sound speed 
is constant. �at coupling coe¤cient � decreases as the dis-
tance between bubbles increases (see [13]), and meaning the 
coupling coe¤cient � as a decreasing function of the delay �. 
Clearly, if � is su¤ciently small and � is su¤ciently big (� is 
su¤ciently small and � is su¤ciently big), the behavior of 
Equation (2) at the equilibrium (0 0 0 0) will be close to 
Equation (70) (see Figures 5 and 6). And if neglecting rela-
tionship between � and � and choosing them su¤ciently big, 
Equation (2) will have a chaotic motion (see Figure 7). 
�erefore, the double bubble oscillators Equation (2) can show 
the possibility of more complicated dynamics.

Bubble dancing [21] is an interesting phenomenon in bub-
ble dynamics. It creates a pull or push under the sound pres-
sure gradient between the bubbles, which makes them undergo 
a periodic motion in turn, and the periodic motion is called 
bubble dancing. As noted in Figure 3, it shows a stable periodic 
solution by taking value of parameters, which can depict peri-
odic motion of bubble’ radius, and the change of bubble’ radius 
can describe the motion of bubble in the liquid. �us, the 
stable periodic solution of system can be used to better explain 
this physical phenomenon (bubble dancing).

(70)
(�̇ − �)(��̈ + 32 �̇

2 − �−3� + 1) − �̇3 − (3� − 2)�−3��̇ − 2�̇ = 0,

divide the parameter plane (��, ��) into six regions (see Figure 
2(a)). In region �1, Equation (20) exists one trivial equilib-
rium, when the parameters are changed from region �1 to �6, 
the stable trivial equilibrium becomes a saddle and a stable 
periodic solution is bifurcated. In region �5, another stable 
periodic solution appears. When the parameters vary across 
line �2 from region �5 to �4, an unstable periodic solution 
bifurcates an unstable quasi-periodic solution which is a nob-
ble, and there coexists with two stable periodic solutions and 
an unstable quasi-periodic solution. Further, in region �3, an 
unstable quasi-periodic solution disappears when parameters 
change. Finally, when the parameters are varied in the region 
�2, the periodic solution collides with the trivial solution and 
the trivial solution ranges from a source to a saddle. Here, in 
Figure 2, the bifurcation critical lines are, respectively

which stand for the Hopf bifuration lines,

and which stand for the periodic solution of pitchfork bifur-
cation lines.

We will present some numerical simulation results and 
choose the values of the parameters, respectively, 
(�1, �2) = (0.4,−0.08) ∈ �6 and (�1, �2) = (−0.4,−0.08) ∈ �1. 
Corresponding to a stable periodic solution shown in Figure 3, 
the equilibrium (0 0 0 0) is asymptotically stable, shown in 
Figure 4. �us, the result shows that the numerical simulations 
are coincident with the analytical predictions.

(66)�1 = {(�1, �2), �1 = 0} : �1 = −0.698�2,

(67)�2 = {(�1, �2), �2 = 0} : �1 = 1.253�2,

(68)�1 = {(�1, �2), �2 > 0} : �1 = 1.262�2

(69)�2 = {(�1, �2), �1 > 0} : �1 = 1.308�2
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Figure 7: Simulated solution of Equation (2) for � = 1000, � = 4/3, � = 94, � = 100 : showing the chaotic motion.
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Bifurcation and Chaos, vol. 23, no. 1, p. 1350014, 2013.

[10] � M. S. Plesset, “�e Dynamics of cavitation bubbles,” Applied 
Mechanics, vol. 16, pp. 277–282, 1949.
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cavitation,” Annual Review of Fluid Mechanics, vol. 9, no. 1, pp. 
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no. 1-2, pp. 121–132, 2013.

[13] � C. R. Heckman, S. M. Sah, and R. H. Rand, “Dynamics of 
microbubble oscillators with delay coupling,” Communications 
in Nonlinear Science and Numerical Simulation, vol. 15,  
pp. 2735–2743, 2010.

[14] � C. R. Heckman and R. H. Rand, “Asymptotic analysis of the 
Hopf–Hopf bifurcation in a time-delay system,” Journal of 
Applied Nonlinear Dynamics, vol. 1, no. 2, pp. 159–171, 2012.

[15] � C. Heckman, J. Kotas, and R. Rand, “Center manifold reduction 
of the Hopf–Hopf bifurcation in a time delay system,” ESAIM: 
Proceedings, vol. 39, pp. 57–65, 2013.

[16] � C. Heckman and R. Rand, Dynamics of Coupled Microbubbles 
with Large Fluid-Compressibility Delays, pp. 24–29, ENOC, 
Rome, Italy, 2011.

[17] � J. Hale, �eory of Functional Differential Equations, Springer 
Verlag, New York, 1977.

[18] � J. Xu and L. Pei, “�e nonresonant double Hopf bifurcation 
in delayed neural network,” International Journal of Computer 
Mathematics, vol. 85, no. 6, pp. 925–935, 2008.

[19] � E. Knobloch, “Normal form coefficients for the nonresonant 
double Hopf bifurcation,” Physics Letters A, vol. 116, no. 8, pp. 
365–369, 1986.

[20] � Y. A. Kuznetsov, Elements of Applied Bifurcation �eory, 
Springer-Verlag, New York, 2nd edition, 1998.

[21] � C. C. Mei and X. C. Zhou, “Parametric resonance of a spherical 
bubble,” Journal of Fluid Mechanics, vol. 229, pp. 29–50, 1991.

6. Conclusions and Discussion

In this work, we mainly have discussed the nonresonant dou-
ble Hopf bifurcation in dynamics of microbubble with delay 
coupling and have used center manifold reduction methods 
to compute the normal form near the double Hopf bifurcation 
point. Moreover, with bifurcation analysis near the double 
Hopf critical point given, we confirm the existence of a stable 
periodic solution and an unstable quasi-periodic solution. We 
discover the system coexists with two stable periodic solutions 
and an unstable quasi-periodic solution, which is a new phe-
nomenon with studying the double Hopf bifurcation.

However, we only get the normal forms for nonresonant 
cases owing to the limitations of our knowledge, so analyzing 
the microbubble dynamics of the resonance case will be our 
next research.
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