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In this paper, we study the synchronization problem for nonlinearly coupled complex dynamical networks on time scales. To
achieve synchronization for nonlinearly coupled complex dynamical networks on time scales, a pinning control strategy is
designed. Some pinning synchronization criteria are established for nonlinearly coupled complex dynamical networks on time
scales, which guarantee the whole network can be pinned to some desired state. The model investigated in this paper generalizes
the continuous-time and discrete-time nonlinearly coupled complex dynamical networks to a unique and general framework.
Moreover, two numerical examples are given for illustration and verification of the obtained results.

1. Introduction

Complex networks are an important part of our daily life
and in nature, due to many systems in the real world which
can be modeled by complex dynamical networks, such as
the Internet, World Wide Web, and food webs [1]. There
have been a lot of researches on complex networks and
neural networks (see, for example, [2–8] and references
therein). Synchronization of complex dynamical network
has been a hot topic in the past decades [9–16]. When con-
sidering synchronization problem of complex dynamical
network, the controlled synchronization problem of com-
plex dynamical network is significant. In recent years, the
pinning synchronization of complex dynamical networks,
which means the network to achieve desired synchroniza-
tion by applying control to a small fraction of network
nodes, has become a topic of great interest; see [17–34]. In
particular, Liu and Chen [16] investigated the global syn-
chronization for nonlinearly coupled complex networks.
Further, they investigated pinning synchronization for
continuous-time nonlinearly coupled networks; see [32].
In [33], a pinning control scheme was developed for
continuous-time nonlinearly coupled complex dynamical
network, while the results were extended to discrete-time

case. In [34], the synchronization of continuous-time
dynamical networks with nonlinearly coupling function
was considered.

In real life, the time domains do not always match the
known continuous-time intervals or discrete integer time
domains. From practical point of view, it is important to
study complex dynamic networks on general time domains.
This is the starting point of the present investigation.
Recently, synchronization of complex dynamical networks
on time scales has attracted considerable attention [35–43],
which contains not only synchronization of continuous-
time and discrete-time complex dynamical networks but also
some continuous-time intervals accompanying some discrete
moments.

Motivated by the aforementioned discussions, the syn-
chronization of nonlinearly coupled complex dynamical net-
works on time scales by applying pinning control scheme will
be investigated. The objective in this paper is driving the
whole network to some desired state by pinning control strat-
egy. By investigating pinning controlled networks on time
scales, some sufficient conditions are presented to guarantee
the realization of pinning synchronization for nonlinearly
coupled complex dynamical networks on time scales. The
main contributions of this paper are listed as follows:
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(i) The model investigated in this paper generalizes the
continuous-time and discrete-time nonlinearly
coupled complex dynamical networks to a unique
and general framework. Therefore, the obtained
results include continuous-time and discrete-time
nonlinearly coupled complex dynamical networks
as special cases. Moreover, the model investigated
in this paper is more general. Our results can be
applied to investigate pinning synchronization of
nonlinearly coupled complex dynamical networks
on a mixed time domain

(ii) Linearly coupled complex dynamical networks on
time scale are included as a special case of the present
work

The rest of this paper is organized as follows. Some foun-
dational knowledge about time scales and some notations
and supporting lemmas are simply outlined in Section 2. In
Section 3, the pinning synchronization problem of nonli-
nearly coupled complex dynamical networks on time scales
is formulated. In Section 4, the main theorems and some cor-
ollaries are established. In Section 5, two numerical examples
are given to verify the effectiveness of our results. Finally,
conclusions are provided in Section 6.

2. Preliminaries

In this section, we will present some foundational knowledge
about time scales and some notations and lemmas which are
needed later.

2.1. Foundational Knowledge on Time Scales. Throughout
this paper, ℕ, ℤ, and ℝ denote the sets of positive integers,
integers, and real numbers, respectively. A time scale is
defined as a nonempty closed subset of ℝ and denoted by T .

Definition 1 (see [44, 45]). Let t ∈ T . Define the forward jump
operator σ : T ⟶ T by σðtÞ = inf fτ ∈ T : τ > tg, while the
backward jump operator ρ : T ⟶ T is defined by ρðtÞ =
sup fτ ∈ T : τ < tg. In this definition, we put inf∅ = sup T

and sup∅ = inf T , where ∅ denotes the empty set. If σðtÞ >
t, we say that t is right-scattered, while if ρðtÞ < t, we say that
t is left-scattered. Also, if t < sup T and σðtÞ = t, then t is
called right-dense, and if t > inf T and ρðtÞ = t, then t is
called left-dense. The graininess function μ : T ⟶ ½0, +∞Þ
is defined by μðtÞ≔ σðtÞ − t. The set T κ is derived from the
time scale T as follows: if T has a left-scattered maximum
m, then T κ = T \ fmg. Otherwise, T κ = T .

Definition 2 (see [44]). Let f : T ⟶ℝ. Define the function
f σ : T ⟶ℝ by f σðtÞ = f ðσðtÞÞ for all t ∈ T , i.e., f σ = f ∘ σ:

Definition 3 (see [44, 45]). Assume that f : T ⟶ℝ and t ∈
T κ, then f is called Δ-differentiable at the point t if there
exists θ ∈ℝ such that for any given ε > 0, there is an open
neighborhood U of the point t such that

f σ tð Þ − f sð Þ − θ σ tð Þ − sð Þj j ≤ ε σ tð Þ − sj j, s ∈U : ð1Þ

In this case, θ is called the Δ-derivative of f at the point
t and we denote it by θ = f ΔðtÞ. Moreover, we say that f is
Δ-differentiable (or in short: differentiable) on T κ provided
f ΔðtÞ exists for all t ∈ T κ. The function f Δ : T κ ⟶ℝ is
called the Δ-derivative of f on T κ. If FΔðtÞ = f ðtÞ, t ∈ T κ,
then for any a, b ∈ T , the integral is defined as follows:

ðb
a
f tð ÞΔt = F bð Þ − F að Þ: ð2Þ

Remark 4. If T =ℝ, then f σðtÞ = f ðtÞ, f ΔðtÞ = f ′ðtÞ is the
usual derivative, and

Ð b
a f ðtÞΔt =

Ð b
a f ðtÞdt is the usual inte-

gral. If T =ℤ, then f σðtÞ = f ðt + 1Þ is the forward shift,
f ΔðtÞ = Δf ðtÞ = f ðt + 1Þ − f ðtÞ is the usual forward differ-
ence and

Ð b
a f ðtÞΔt =∑b−1

t=a f ðtÞða < bÞ.

Lemma 5 (see [44, 45]). If f , g : T ⟶ℝ are differentiable at
t ∈ T κ, then

f gð ÞΔ tð Þ = f Δ tð Þg tð Þ + f σ tð ÞgΔ tð Þ = f tð ÞgΔ tð Þ + f Δ tð Þgσ tð Þ:
ð3Þ

Lemma 6 (see [44, 45]). If f : T ⟶ℝ is differentiable at t
∈ T κ, then f σðtÞ = f ðtÞ + μðtÞf ΔðtÞ:

Definition 7 (see [44, 45]). A function f : T ⟶ℝ is called rd
-continuous provided it is continuous at right-dense points
in T and its left-sided limits exist (finite) at left-dense points
in T . The set of these functions is denoted by CrdðT ;ℝÞ.

Definition 8 (see [44, 45]). We say that a function p : T ⟶ℝ
is regressive (positive regressive) provided

1 + μ tð Þp tð Þ ≠ 0  1 + μ tð Þp tð Þ > 0ð Þ, for all t ∈ T κ ð4Þ

holds. The set of all regressive (positive regressive) and rd
-continuous functions is denoted by RðT ;ℝÞðR+ðT ;ℝÞÞ.

Definition 9 (see [44]). If p ∈RðT ;ℝÞ, then we define the
exponential function by

ep t, sð Þ = exp
ðt
s
ξμ τð Þ p τð Þð ÞΔτ

� �
, for all s, t ∈ T , ð5Þ

where the cylinder transformation ξhðzÞ is defined by

ξh zð Þ =
1
h
Log 1 + zhð Þ, h > 0,

z, h = 0,

8<
: ð6Þ

where Log is the principal logarithm function.

Lemma 10 (see [44]). Let t0 ∈ T ,  y, f ∈ CrdðT ;ℝÞ and p ∈
R+ðT ;ℝÞ. Then,

yΔ tð Þ ≤ p tð Þy tð Þ + f tð Þ, for all t ∈ T ð7Þ
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implies

y tð Þ ≤ y t0ð Þep t, t0ð Þ +
ðt
t0

ep t, σ τð Þð Þf τð ÞΔτ, for all t ∈ T :

ð8Þ

Lemma 11 (see [43]). For fixed t0 ∈ T , if p < 0 and p ∈R+

ðT ;ℝÞ, then epðt, t0Þ⟶ 0 as t⟶ +∞,  t ∈ T .
Let A be an m × n-matrix-valued function on T . We say

that A is differentiable on T provided each entry of A is differ-
entiable on T . In this case, we put AΔðtÞ = ðaΔijðtÞÞ1≤i≤m,1≤j≤n,

where A = ðaijðtÞÞ1≤i≤m,1≤j≤n.

Lemma 12 (see [44]). If a matrix-valued function A is differ-
entiable at t ∈ T κ, then AσðtÞ = AðtÞ + μðtÞAΔðtÞ:

Lemma 13 (see [44]). Suppose that A and B are differentiable
n × n-matrix-valued functions on T . Then,

(1) ðA + BÞΔ = AΔ + BΔ

(2) ðαAÞΔ = αAΔ, where α is a constant

(3) ðABÞΔ = AΔB + AσBΔ = ABΔ + AΔBσ

2.2. Notations and Supporting Lemmas. For each interval I of
ℝ, I ∩ T is denoted by IT . ℝ

n denotes the n-dimensional
Euclidean space with the Euclidean norm ∥·∥. ℝm×n denotes
the set of all m × n real matrices. Let IN ∈ℝN×N be the N-
dimensional identity matrix, diag ðd1, d2,⋯, dNÞ indicate
the diagonal matrix with diagonal entries d1 to dN , A

T be
the transpose of matrix A, and λminð·Þ and λmaxð·Þ represent
the minimum eigenvalue and the maximum eigenvalue of a
real symmetric matrix. For a symmetric matrix P ∈ℝn×n,
write P > 0 ðP < 0,  P ≥ 0, and P ≤ 0, respectivelyÞ if P is pos-
itive definite (negative definite, positive semidefinite, and
negative semidefinite, respectively). For square matrices A
and B, the notation A ≥ B ðA ≤ BÞmeans that A − B is a pos-
itive semidefinite (negative semidefinite) matrix. The symbol
⊗ denotes the Kronecker product.

Lemma 14 (see [46]). For matrices A, B, C, andD with appro-
priate dimensions, we have the following properties:

(1) ðαAÞ ⊗ B = A ⊗ ðαBÞ = αðA ⊗ BÞ, where α is a constant
(2) ðA + BÞ ⊗ C = A ⊗ C + B ⊗ C

(3) ðA ⊗ BÞT = AT ⊗ BT

(4) If A and B are symmetric, then A ⊗ B is symmetric

(5) For square matricesA and B, every eigenvalue ofA ⊗ B
arises as a product of eigenvalues of A and B

Lemma 15 (see [47]). Let U = ðαijÞN×N , M ∈ℝn×n, x =
ðxT1 , xT2 ,⋯, xTNÞT , where xi = ðxi1, xi2,⋯, xinÞT ∈ℝn and y =

ðyT1 , yT2 ,⋯, yTNÞT , where yi = ðyi1, yi2,⋯, yinÞT ∈ℝn ði = 1, 2,
⋯,NÞ. If U =UT , and each row sum of U is zero, then

xT U ⊗Mð Þy = − 〠
1≤i<j≤N

αij xi − xj
� �TM yi − yj

� �
: ð9Þ

Lemma 16 (see [26]. Suppose A = ðaijÞN×N is a real sym-
metric and irreducible matrix, in which aij ≥ 0 ðj ≠ iÞ
and aii = −∑N

j=1,j≠iaij, nonzero matrix D = diag ðd1, d2,⋯, dNÞ
satisfies di ≥ 0 ð1 ≤ i ≤NÞ. Let B = A −D. Then, all the eigen-
values of B are less than 0.

Lemma 17 (see [48]). If A, B ∈ℝm×m are symmetric, x ∈ℝm,
x ≠ 0 (m-dimensional zero vector) and 0 < a, b ∈ℝ, then

(1) Ak is symmetric for k ∈ℕ

(2) A is positive definite ⇔−A is negative definite

(3) A is positive definite ⇔ there exists a positive definite
matrix C ∈ℝm×m such that A = CC, that is, C is a real
square root of A

(4) λminðAÞ ≤ xTAx/xTx ≤ λmaxðAÞ
(5) λmaxðaA + bBÞ ≤ aλmaxðAÞ + bλmaxðBÞ
(6) if λ is the eigenvalue of A, then λk is the eigenvalue of

Ak, k ∈ℕ

3. Problem Formulations

Throughout the rest of the paper, let T be a time scale with
0 ∈ T and sup T = +∞. In this section, the nonlinearly
coupled complex dynamical network on the time scale T will
be introduced.

In general, the dynamic for each isolated (uncoupled)
node of the dynamical network can be described as

sΔ tð Þ = f s tð Þð Þ, t ∈ 0, +∞½ ÞT , ð10Þ

where sðtÞ = ðs1ðtÞ, s2ðtÞ,⋯, snðtÞÞT ∈ℝn, sΔ is the Δ-deriva-
tive of s on ½0, +∞ÞT , f : ℝn ⟶ℝn is continuous and of
such a nature that existence and uniqueness of solutions to
dynamic equation (10) subject to sð0Þ = s0 ðs0 ∈ℝnÞ as well
as their dependence on initial values is guaranteed.

Suppose that the dynamical network consists ofN identi-
cal nodes, with each node being an n-dimensional dynamical
system. Then, the nonlinearly coupled dynamical network
can be described by

xΔi tð Þ = f xi tð Þð Þ + c〠
N

j=1
gijh xj tð Þ
� �

, t ∈ 0, +∞½ ÞT ,

i = 1, 2,⋯,N , ð11Þ

where xiðtÞ = ðxi1ðtÞ, xi2ðtÞ,⋯, xinðtÞÞT ∈ℝn is the state vec-
tor of the ith node at time t; the constant c > 0 represents the
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coupling strength of network; the nonlinearly coupled func-
tion h : ℝn ⟶ℝn is continuous, which satisfies standard
assumptions on existence and uniqueness of solutions to
dynamic equation (11) subject to xð0Þ = x0 ðx0 ∈ℝnÞ as well
as their dependence on initial values; the coupling configura-
tion matrix G = ðgijÞ ∈ℝN×N represents the topological
structure of the complex network and is defined as follows:
if there exists a connection between the node i and the
node j (i ≠ j), then gij = gji = 1; otherwise, gij = gji = 0, and
gii = −∑N

j=1,j≠igij = −∑N
j=1,j≠igji, i = 1, 2,⋯,N: Suppose that

network (11) is connected in the sense of having no isolated
clusters, which means that the coupling configuration matrix
G is irreducible.

Suppose that sðtÞ is a solution of the uncoupled system
(10). In order to synchronize the network (11) to the objec-
tive state sðtÞ, we will design a pinning control scheme, if
the network (11) cannot synchronize to the objective state s
ðtÞ without control. Without loss of generality, we add the
controllers to the first l nodes. Hence, we have the pinning-
controlled network as follows:

xΔi tð Þ = f xi tð Þð Þ + c〠
N

j=1
gijh xj tð Þ
� �

+ ui tð Þ, t ∈ 0, +∞½ ÞT ,

i = 1, 2,⋯,N ð12Þ

with the feedback controllers given by

ui tð Þ = −cdi h xi tð Þð Þ − h s tð Þð Þð Þ, t ∈ 0, +∞½ ÞT , i = 1, 2,⋯,N ,
ð13Þ

where di = d > 0,  ði = 1, 2,⋯, l,Þ,  di = 0,  ði = l + 1, l + 2,⋯
,NÞ: Define the matrix: D = diag ðd1, d2,⋯, dl,⋯, dNÞ:

Definition 18 (see [30]). The network (12) is said to be syn-
chronized by pinning control, if

lim
t→∞

xi tð Þ − s tð Þk k = 0, i = 1, 2,⋯,N: ð14Þ

We get the following error dynamical network by letting
ziðtÞ = xiðtÞ − sðtÞ ∈ℝn ði = 1, 2,⋯,NÞ:

zΔi tð Þ = f xi tð Þð Þ − f s tð Þð Þ + c〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� �

− cdi h xi tð Þð Þ − h s tð Þð Þð Þ, t ∈ 0, +∞½ ÞT , i = 1, 2,⋯,N:

ð15Þ

It follows from Lemma 16 that the symmetric matrix
G −D is negative definite, and so the maximal eigenvalue
λmaxðG −DÞ < 0. From Lemma 17((1)–(3)), it is easy to prove
that the matrix ðG −DÞ2 is symmetric positive definite.

4. Pinning Synchronization Criteria for
Nonlinearly Coupled Complex Dynamical
Networks on Time Scales

In order to derive the synchronization criteria for the
pinning-controlled network (12), we make the following
assumptions:

(A1) (see [18]). The function f : ℝn ⟶ℝn is assumed
to satisfy Lipschitz condition, that is, there exists a constant
l1 > 0 such that

f xð Þ − f yð Þk k ≤ l1 x − yk k holds for any x, y ∈ℝn: ð16Þ

(A2) (see [9, 21, 49]). There exists a constant l2 > 0,
such that

x − yð ÞT h xð Þ − h yð Þð Þ ≥ l2 x − yð ÞT x − yð Þ, for any x, y ∈ℝn:

ð17Þ

(A3). There exists a constant matrix K ∈ℝn×n, such that

f xð Þ − f yð Þð ÞT h xð Þ − h yð Þð Þ ≥ x − yð ÞTK x − yð Þ, 
for any x, y ∈ℝn: ð18Þ

(A4) (see [18]). The function h : ℝn ⟶ℝn is assumed
to satisfy Lipschitz condition, that is, there exists a constant
l3 > 0 such that

h xð Þ − h yð Þk k ≤ l3 x − yk k holds for any x, y ∈ℝn: ð19Þ

We have the following theorems and corollaries, which
give some sufficient conditions to guarantee synchroniza-
tion of the network (12) by pinning control.

Theorem 19. Suppose that assumptions (A1), (A2), (A3), and
(A4) hold. If there exists θ : T ⟶ℝ with θ ∈R+ðT ;ℝÞ and
lim
t→∞

eθðt, 0Þ = 0 such that the following condition is satisfied:

2l1InN + 2cl2 G −Dð Þ ⊗ In½ � + μ tð Þ l21InN
�

+ 2c G −Dð Þ ⊗ Kð Þ + c2l23λmax G −Dð Þ2� �
InN
	
≤ θ tð ÞInN ,

t ∈ 0, +∞½ ÞT ,
ð20Þ

then, the network (12) is synchronized by pinning control.

Proof. Consider the Lyapunov function VðtÞ =∑N
i=1z

T
i ðtÞ

ziðtÞ, t ∈ ½0, +∞ÞT : By Lemmas 5, 6, 12, and 13, calculating
the Δ-derivative of VðtÞ along the trajectories of the error
dynamical network (15), one has
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VΔ tð Þ = 〠
N

i=1
zTi
� �Δ

tð Þzi tð Þ + zTi
� �σ

tð ÞzΔi tð Þ
h i

= 〠
N

i=1
zTi
� �Δ

tð Þzi tð Þ + zTi tð Þ + μ tð Þ zTi
� �Δ

tð Þ
h i

zΔi tð Þ
n o

= 〠
N

i=1
2zTi tð ÞzΔi tð Þ + μ tð Þ zΔi tð Þ� �T

zΔi tð Þ
h i

= 〠
N

i=1
2zTi tð Þ

"
f xi tð Þð Þ − f s tð Þð Þð Þ + c〠

N

j=1
gij h xj tð Þ

� ��8<
:

− h s tð Þð ÞÞ − cdi h xi tð Þð Þ − h s tð Þð Þð Þ
#

+ μ tð Þ f xi tð Þð Þ − f s tð Þð Þð ÞT
2
4

+ c 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !T

− cdi h xi tð Þð Þ − h s tð Þð Þð ÞT
3
5" f xi tð Þð Þð

− f s tð Þð ÞÞ + c〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� �

− cdi h xi tð Þð Þ − h s tð Þð Þð Þ
#9=
;

= 〠
N

i=1

(
2zTi tð Þ f xi tð Þð Þ − f s tð Þð Þð Þ + 2czTi tð Þ〠

N

j=1
gij

� h xj tð Þ
� �

− h s tð Þð Þ� �
− 2cdizTi tð Þ h xi tð Þð Þ − h s tð Þð Þð Þ

+ μ tð Þ
"

f xi tð Þð Þ − f s tð Þð Þð ÞT f xi tð Þð Þ − f s tð Þð Þð Þ

+ c f xi tð Þð Þ − f s tð Þð Þð ÞT 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� �

− cdi f xi tð Þð Þ − f s tð Þð Þð ÞT h xi tð Þð Þ − h s tð Þð Þð Þ

+ c 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !T

f xi tð Þð Þ − f s tð Þð Þð Þ

+ c2 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !T

〠
N

j=1
gij h xj tð Þ

� ��

− h s tð Þð ÞÞ − c2di 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !T

� h xi tð Þð Þ − h s tð Þð Þð Þ − cdi h xi tð Þð Þ − h s tð Þð Þð ÞT
� f xi tð Þð Þ − f s tð Þð Þð Þ − c2di h xi tð Þð Þð

− h s tð Þð ÞÞT 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� �

+ c2d2i h xi tð Þð Þð

− h s tð Þð ÞÞT h xi tð Þð Þ − h s tð Þð Þð Þ
#)

≤ 〠
N

i=1
2 zi tð Þk k f xi tð Þð Þ − f s tð Þð Þk k

8<
:

+ 2c〠
N

j=1
gijz

T
i tð Þ h xj tð Þ

� �
− h s tð Þð Þ� �

− 2cdizTi tð Þ h xi tð Þð Þ − h s tð Þð Þð Þ

+ μ tð Þ
"

f xi tð Þð Þ − f s tð Þð Þk k2 + c〠
N

j=1
gij

� f xi tð Þð Þ − f s tð Þð Þð ÞT h xj tð Þ
� �

− h s tð Þð Þ� �
− cdi f xi tð Þð Þ − f s tð Þð Þð ÞT h xi tð Þð Þ − h s tð Þð Þð Þ

+ c〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� �T f xi tð Þð Þ − f s tð Þð Þð Þ

+ c2 〠
N

j=1
gji h xj tð Þ

� �
− h s tð Þð Þ� �T !

� 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !

− c2di 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !T

h xi tð Þð Þ − h s tð Þð Þð Þ

− cdi h xi tð Þð Þ − h s tð Þð Þð ÞT f xi tð Þð Þ − f s tð Þð Þð Þ

− c2di h xi tð Þð Þ − h s tð Þð Þð ÞT 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !

+ c2d2i h xi tð Þð Þ − h s tð Þð Þð ÞT h xi tð Þð Þ − h s tð Þð Þð Þ
#9=
;:

ð21Þ

By assumption (A1), the following inequalities can be
obtained:

VΔ tð Þ ≤ 〠
N

i=1
2l1∥zi tð Þ∥2 +V1 tð Þ +V2 tð Þ

+ μ tð Þ 〠
N

i=1
l21∥zi tð Þ∥2 +V3 tð Þ + V4 tð Þ

"

+V5 tð Þ +V6 tð Þ +V7 tð Þ +V8 tð Þ
#
,

ð22Þ

where V1ðtÞ = 2c∑N
i=1∑

N
j=1gijz

T
i ðtÞðhðxjðtÞÞ − hðsðtÞÞÞ, V2ðtÞ

= −2c∑N
i=1diz

T
i ðtÞðhðxiðtÞÞ − hðsðtÞÞÞ, V3ðtÞ = 2c∑N

i=1∑
N
j=1gij

ð f ðxiðtÞÞ − f ðsðtÞÞÞTðhðxjðtÞÞ − hðsðtÞÞÞ, V4ðtÞ = −2c∑N
i=1di

ð f ðxiðtÞÞ − f ðsðtÞÞÞTðhðxiðtÞÞ − hðsðtÞÞÞ, V5ðtÞ = c2∑N
i=1ð∑N

j=1
gjiðhðxjðtÞÞ − hðsðtÞÞÞTÞð∑N

j=1gijðhðxjðtÞÞ − hðsðtÞÞÞÞ,V6ðtÞ =
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− c2∑N
i=1dið∑N

j=1gijðhðxjðtÞÞ − hðsðtÞÞÞÞTðhðxiðtÞÞ − hðsðtÞÞÞ,
V7ðtÞ = −c2∑N

i=1diðhðxiðtÞÞ − hðsðtÞÞÞTð∑N
j=1gijðhðxjðtÞÞ − h

ðsðtÞÞÞÞ, and V8ðtÞ = c2∑N
i=1d

2
i ðhðxiðtÞÞ − hðsðtÞÞÞTðhðxiðtÞÞ

− hðsðtÞÞÞ:
We introduce the notations

z tð Þ = zT1 tð Þ, zT2 tð Þ,⋯, zTN tð Þ� �T ,
H z tð Þð Þ =

�
h x1 tð Þð Þ − h s tð Þð Þð ÞT , h x2 tð Þð Þð

− h s tð Þð ÞÞT ,⋯, h xN tð Þð Þ − h s tð Þð Þð ÞT
�T

,

F z tð Þð Þ =
�

f x1 tð Þð Þ − f s tð Þð Þð ÞT , f x2 tð Þð Þð

− f s tð Þð ÞÞT ,⋯, f xN tð Þð Þ − f s tð Þð Þð ÞT
�T

:

ð23Þ

By assumption (A2) and Lemma 15, we have

V1 tð Þ = 2c〠
N

i=1
〠
N

j=1
zTi tð Þgij h xj tð Þ

� �
− h s tð Þð Þ� �

= 2czT tð Þ G ⊗ Inð ÞH z tð Þð Þ

= −2c 〠
1≤i<j≤N

gij zi tð Þ − zj tð Þ
� �T h xi tð Þð Þ − h s tð Þð Þð Þ½

− h xj tð Þ
� �

− h s tð Þð Þ� ��
= −2c 〠

1≤i<j≤N
gij xi tð Þ − xj tð Þ
� �T h xi tð Þð Þ − h xj tð Þ

� �� 	

≤ −2cl2 〠
1≤i<j≤N

gij xi tð Þ − xj tð Þ
� �T xi tð Þ − xj tð Þ

� �

= −2cl2 〠
1≤i<j≤N

gij zi tð Þ − zj tð Þ
� �T zi tð Þ − zj tð Þ

� �

= 2cl2zT tð Þ G ⊗ Inð Þz tð ÞÞ:
ð24Þ

By assumption (A2), we get

V2 tð Þ = −2c〠
N

i=1
diz

T
i tð Þ h xi tð Þð Þ − h s tð Þð Þð Þ

≤ −2cl2 〠
N

i=1
diz

T
i tð Þzi tð Þ = −2cl2zT tð Þ D ⊗ Inð Þz tð Þ:

ð25Þ

By assumption (A3) and Lemma 15, we have

V3 tð Þ = 2c〠
N

i=1
〠
N

j=1
gij f xi tð Þð Þ − f s tð Þð Þð ÞT h xj tð Þ

� �
− h s tð Þð Þ� �

= 2cFT z tð Þð Þ G ⊗ Inð ÞH z tð Þð Þ
= −2c 〠

1≤i<j≤N
gij f xi tð Þð Þ − f xj tð Þ

� �� �T h xi tð Þð Þ − h xj tð Þ
� �� �

≤ −2c 〠
1≤i<j≤N

gij xi tð Þ − xj tð Þ
� �TK xi tð Þ − xj tð Þ

� �
= −2c 〠

1≤i<j≤N
gij zi tð Þð Þ − zj tð ÞTK zi tð Þ − zj tð Þ

� �
= 2czT tð Þ G ⊗ Kð Þz tð Þ: ð26Þ

By assumption (A3), we get

V4 tð Þ = −2c〠
N

i=1
di f xi tð Þð Þ − f s tð Þð Þð ÞT h xi tð Þð Þ − h s tð Þð Þð Þ

≤ −2c〠
N

i=1
diz

T
i tð ÞKzi tð Þ = −2czT tð Þ D ⊗ Kð Þz tð Þ:

ð27Þ

By calculating, one has

V5 tð Þ = c2 〠
N

i=1
〠
N

j=1
gji h xj tð Þ

� �
− h s tð Þð Þ� �T !

� 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !

= c2HT z tð Þð Þ G2 ⊗ In
� �

H z tð Þð Þ,

V6 tð Þ = −c2 〠
N

i=1
di 〠

N

j=1
gji h xj tð Þ

� �
− h s tð Þð Þ� �T !

� h xi tð Þð Þ − h s tð Þð Þð Þ
= −c2HT z tð Þð Þ GD ⊗ Inð ÞH z tð Þð Þ,

V7 tð Þ = −c2 〠
N

i=1
di h xi tð Þð Þ − h s tð Þð Þð ÞT

� 〠
N

j=1
gij h xj tð Þ

� �
− h s tð Þð Þ� � !

= −c2HT z tð Þð Þ DG ⊗ Inð ÞH z tð Þð Þ,

V8 tð Þ = c2 〠
N

i=1
d2i h xi tð Þð Þ − h s tð Þð Þð ÞT

� h xi tð Þð Þ − h s tð Þð Þð Þ
= c2HT z tð Þð Þ D2 ⊗ In

� �
H z tð Þð Þ:

ð28Þ

Hence, by Lemmas 14((1), (2), (4), (5)) and 17 (4) and
assumption (A4), we have

V5 tð Þ +V6 tð Þ +V7 tð Þ + V8 tð Þ
= c2HT z tð Þð Þ G2 − GD −DG +D2� �

⊗ InÞ
� 	

H z tð Þð Þ
= c2HT z tð Þð Þ G −Dð Þ2 ⊗ In

� �
H z tð Þð Þ

≤ c2λmax G −Dð Þ2� �
HT z tð Þð ÞH z tð Þð Þ
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= c2λmax G −Dð Þ2� �
〠
N

i=1
h xi tð Þð Þ − h s tð Þð Þð ÞT h xi tð Þð Þð

− h s tð Þð ÞÞ = c2λmax G −Dð Þ2� �
〠
N

i=1
h xi tð Þð Þ − h s tð Þð Þk k2

≤ c2l23λmax G −Dð Þ2� �
〠
N

i=1
zi tð Þk k2:

ð29Þ

In view of (22), (24), (25), (26), (27), (29), and Lemma
14((1), (2)), one can get

VΔ tð Þ ≤ 2l1zT tð Þz tð Þ + 2cl2zT tð Þ G −Dð Þ ⊗ In½ �z tð Þ
+ μ tð Þ l21z

T tð Þz tð Þ + 2czT tð Þ G −Dð Þ ⊗ K½ �z tð Þ

+ c2l23λmax G −Dð Þ2� �

zT tð Þz tð Þg
= zT tð Þ 2l1InN + 2cl2 G −Dð Þ ⊗ In½ �f

+ μ tð Þ l21InN + 2c G −Dð Þ ⊗ Kð Þ�
+ c2l23λmax G −Dð Þ2� �

InN �gz tð Þ:
ð30Þ

From (20), we have

VΔ tð Þ ≤ θ tð ÞV tð Þ, t ∈ 0, +∞½ ÞT : ð31Þ

By Lemma 10, it implies that

V tð Þ ≤ V 0ð Þeθ t, 0ð Þ, t ∈ 0, +∞½ ÞT : ð32Þ

Since θ ∈R+ðT ;ℝÞ and lim
t→∞

eθðt, 0Þ = 0, VðtÞ⟶ 0 as

t⟶∞. Thus, the network (12) is synchronized by pinning
control.

Theorem 20. Let μðtÞ ≤ μ∗ for all t ∈ T . Suppose that assump-
tions (A1), (A2), (A3), and (A4) hold. Then, the network (12)
is synchronized by pinning control, if there exists a constant
α < 0 with α ∈R+ðT ;ℝÞ such that

2l1InN + 2cl2 G −Dð Þ ⊗ In½ � + μ∗ l21InN + 2c G −Dð Þ ⊗ Kð Þ�
+ c2l23λmax G −Dð Þ2� �

InN
	
≤ αInN

ð33Þ

holds.

Proof. Lemma 11 yields lim
t→∞

eαðt, 0Þ = 0. Choose the Lyapu-
nov function VðtÞ =∑N

i=1z
T
i ðtÞziðtÞ,  t ∈ ½0, +∞ÞT : Note that

VΔ tð Þ = 〠
N

i=1
2zTi tð ÞzΔi tð Þ + μ tð Þ zΔi tð Þ� �T

zΔi tð Þ
h i

≤ 〠
N

i=1
2zTi tð ÞzΔi tð Þ + μ∗ zΔi tð Þ� �T

zΔi tð Þ
h i

:

ð34Þ

The rest proof of the theorem is analogy with the proof of
Theorem 19.

Theorem 21. Let μðtÞ ≤ μ∗ for all t ∈ T . Suppose that assump-
tions (A1), (A2), (A3), and (A4) hold, and K is symmetric in
assumption (A3). Then, the network (12) is synchronized by
pinning control, if λ = λmaxð2l1InN + 2cl2½ðG −DÞ ⊗ In� + μ∗½
l21InN + 2cððG −DÞ ⊗ KÞ + c2l23λmaxððG −DÞ2ÞInN �Þ < 0 and λ
∈R+ðT ;ℝÞ:

Proof. Choose the Lyapunov function VðtÞ =∑N
i=1z

T
i ðtÞziðtÞ,

t ∈ ½0, +∞ÞT : Taking into account the inequality (34), by
analogy with the proof of Theorem 19, one has

VΔ tð Þ ≤ zT tð Þ 2l1InN + 2cl2 G −Dð Þ ⊗ In½ � + μ∗ l21InN
�


+ 2c G −Dð Þ ⊗ Kð Þ + c2l23λmax G −Dð Þ2� �
InN �

�
z tð Þ:
ð35Þ

Hence, by Lemma 17(4), the following estimate holds:

VΔ tð Þ ≤ λmax 2l1InN + 2cl2 G −Dð Þ ⊗ In½ � + μ∗ l21InN
��

+ 2c G −Dð Þ ⊗ Kð Þ + c2l23λmax G −Dð Þ2� �
InN �ÞzT tð Þz tð Þ

= λzT tð Þz tð Þ = λV tð Þ, t ∈ 0, +∞½ ÞT :
ð36Þ

By Lemma 10, we have VðtÞ ≤ Vð0Þeλðt, 0Þ,  t ∈
½0, +∞ÞT : Since λ < 0 and λ ∈R+ðT ;ℝÞ, it follows from
Lemma 11 that lim

t→∞
eλðt, 0Þ = 0. Therefore, VðtÞ⟶ 0 as t

⟶∞. This completes the proof.

Corollary 22. Let μðtÞ ≤ μ∗ for all t ∈ T . Suppose that assump-
tions (A1), (A2), (A3), and (A4) hold, and K is symmetric
in assumption (A3). If inequality 2l1 + 2cl2λmaxðG −DÞ +
μ∗½l21 + 2cλmaxððG −DÞ ⊗ KÞ + c2l23λmaxððG −DÞ2Þ� < 0 holds,
and 2l1 + 2cl2λmaxðG −DÞ + μ∗½l21 + 2cλmaxððG −DÞ ⊗ KÞ +
c2l23λmaxððG −DÞ2Þ� ∈R+ðT ;ℝÞ, then the network (12) is
synchronized by pinning control.

Proof. By Lemmas 14((4), (5)) and 17((5)) and Theorem 21, it
is not hard to see the result holds when μ∗ > 0 and μ∗ = 0.

Next, let us consider the particular case when the func-
tion hðxÞ is linear: hðxÞ = Γx, where Γ ∈ℝn×n. The network
(11) can be written as

xΔi tð Þ = f xi tð Þð Þ + c〠
N

j=1
gijΓxj tð Þ, t ∈ 0, +∞½ ÞT ,

i = 1, 2,⋯,N: ð37Þ
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We write the network (12) as the following

xΔi tð Þ = f xi tð Þð Þ + c〠
N

j=1
gijΓxj tð Þ + ui tð Þ, t ∈ 0, +∞½ ÞT , 

i = 1, 2,⋯,N ,
ð38Þ

where uiðtÞ = −cdiΓðxiðtÞ − sðtÞÞ,  t ∈ ½0, +∞ÞT , di = d > 0,
ði = 1, 2,⋯, lÞ,  di = 0,  ði = l + 1, l + 2,⋯,NÞ, and sðtÞ is a
solution of system: sΔðtÞ = f ðsðtÞÞ,  t ∈ ½0, +∞ÞT . Meanwhile,
the assumption (A3) can be described as

(A3′). There exists a constant matrix �K ∈ℝn×n, such that

x − yð ÞTΓT f xð Þ − f yð Þð Þ
≥ x − yð ÞT �K x − yð Þ, for any x, y ∈ℝn:

ð39Þ

Corollary 23. Let μðtÞ ≤ μ∗ for all t ∈ T and Γ be symmetric
positive definite. Suppose that assumptions (A1) and (A3′)
hold. The network (38) is synchronized by pinning control if
there exists a constant β < 0 with β ∈R+ðT ;ℝÞ such that
the following inequality is satisfied:

2l1InN + 2cλmin Γð Þ G −Dð Þ ⊗ In½ � + μ∗ l21InN + 2c G −Dð Þ ⊗ �K
� ��

+ c2 λmax Γð Þð Þ2λmax G −Dð Þ2� �
InN
	
≤ βInN :

ð40Þ

Proof. Since Γ is symmetric positive definite, one has 0 <
λminðΓÞ. By Lemma 17(3), Γ2 is also symmetric positive def-
inite. From Lemma 17((4), (6)), it is easy to see that

x − yð ÞTΓ x − yð Þ ≥ λmin Γð Þ x − yð ÞT x − yð Þ, for any x, y ∈ℝn,
Γ x − yð Þk k ≤ λmax Γð Þ x − yk k, for any x, y ∈ℝn:

ð41Þ

That is, assumptions (A2) and (A4) hold, where l2 =
λminðΓÞ and l3 = λmaxðΓÞ. Now, the result follows from The-
orem 20, immediately.

By Theorem 21 and Corollary 23, we have the following
corollary.

Corollary 24. Let μðtÞ ≤ μ∗ for all t ∈ T and Γ be symmetric
positive definite. Suppose that assumptions (A1) and (A3′)
hold, and �K is symmetric in assumption (A3′). The network
(38) is synchronized by pinning control if γ = λmaxð2l1InN + 2
cλminðΓÞ½ðG −DÞ ⊗ In� + μ∗½l21InN + 2cððG −DÞ ⊗ �KÞ + c2

ðλmaxðΓÞÞ2λmaxððG −DÞ2ÞInN �Þ < 0 and γ ∈R+ðT ;ℝÞ:

Obviously, the research of synchronization problem for
nonlinearly coupled complex dynamical networks on time
scales is more general. It contains continuous-time and

discrete-time nonlinearly coupled complex dynamical net-
works. In addition, it contains linearly coupled complex
dynamical networks on time scales.

Remark 25. According to the previous works [12, 26, 31, 35,
39, 40], the synchronization problem of complex dynamical
networks with delay on time scales by pinning control strat-
egy can be investigated, but there are some challenges for the
effects of time delays and the various forms of time scales.

5. Numerical Examples

In this section, two numerical examples are given to verify
the theoretical results established above.

Example 1. Consider 2-dimensional nonlinearly coupled
complete network with ten nodes on time scale T , which is
described by

xΔi tð Þ = f xi tð Þð Þ + c〠
10

j=1
gijh xj tð Þ
� �

, t ∈ 0, +∞½ ÞT ,

i = 1, 2,⋯, 10,
ð42Þ

where T =S∞
k=0½k, k + 0:7�,  k ∈ℕ ∪ f0g, in this case the

graininess function of T is given by

μ tð Þ =
0, t ∈

[∞
k=0

k, k + 0:7½ Þ,

0:3, t = k + 0:7,

8><
>: ð43Þ

xiðtÞ = ðxi1ðtÞ, xi2ðtÞÞT , ði = 1, 2,⋯, 10Þ, f ðxiðtÞÞ =
ð f1ðxi1ðtÞÞ, f2ðxi2ðtÞÞÞT with f jðxijðtÞÞ = 0:01½tanh ðxijðtÞÞ +
xijðtÞ�, ðj = 1, 2Þ, hðxiðtÞÞ = ðh1ðxi1ðtÞÞ, h2ðxi2ðtÞÞÞT with hj
ðxijðtÞÞ = 0:01 tanh ðxijðtÞÞ + 0:1xijðtÞ, ðj = 1, 2Þ, c = 0:2, and
the corresponding matrix G is

G =

−9 1 1 1 1 1 1 1 1 1
1 −9 1 1 1 1 1 1 1 1
1 1 −9 1 1 1 1 1 1 1
1 1 1 −9 1 1 1 1 1 1
1 1 1 1 −9 1 1 1 1 1
1 1 1 1 1 −9 1 1 1 1
1 1 1 1 1 1 −9 1 1 1
1 1 1 1 1 1 1 −9 1 1
1 1 1 1 1 1 1 1 −9 1
1 1 1 1 1 1 1 1 1 −9

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

:

ð44Þ
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Note that each isolated node of network (42) is a 2-
dimensional nonlinear system described by

sΔ tð Þ =
sΔ1 tð Þ
sΔ2 tð Þ

0
@

1
A

=
0:01 tanh s1 tð Þð Þ + s1 tð Þ½ �
0:01 tanh s2 tð Þð Þ + s2 tð Þ½ �

 !
, t ∈ 0, +∞½ ÞT :

ð45Þ

It is not difficult to obtain that f ð·Þ and hð·Þ satisfy
assumptions (A1), (A2), (A3), and (A4) with l1 = 0:02, l2 =
0:1, l3 = 0:11, and constant matrix

K =
0:001 0
0 0:001

 !
: ð46Þ

The objective here is to synchronize the network (42)
to the solution s = 0 (2-dimensional zero vector) of (45)
by pinning control. From Figure 1, we see the complex
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Figure 1: Error zi1 and zi2 of the system (42) without control.
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Figure 2: Synchronization error zi1 and zi2 of the system (42).
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dynamical network (42) without control cannot reach syn-
chronization with s = 0. Now, we apply pinning control to
the network (42) with matrix D = diag ð3, 3, 3, 3, 3, 3, 3, 0,
0, 0Þ. By calculations, all conditions of Theorem 21 are
fulfilled. Then by Theorem 21, the network (42) can achieve
synchronization under the above pinning control strategy.
Figure 2 also shows that the synchronization is realized.

Example 2. Consider 2-dimensional nonlinearly star-shaped
network with five nodes on time scale T , which is
described by

xΔi tð Þ = f xi tð Þð Þ + c〠
5

j=1
gijh xj tð Þ
� �

,

 t ∈ 0, +∞½ ÞT , i = 1, 2,⋯, 5,
ð47Þ

where T = 0:1ℤ; in this case, the graininess function is
μðtÞ = 0:1, xiðtÞ = ðxi1ðtÞ, xi2ðtÞÞT ,  ði = 1, 2,⋯, 5Þ, f ðxiðtÞÞ
= ð f1ðxi1ðtÞÞ,  f2ðxi2ðtÞÞÞT with f jðxijðtÞÞ = 0:01½tanh ðxij
ðtÞÞ + xijðtÞ�, ðj = 1, 2Þ, hðxiðtÞÞ = ΓxiðtÞ with Γ = diag
ð0:05,0:05Þ, c = 0:6, and the corresponding matrix G is
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Figure 3: Error zi1 and zi2 of the system (47) without control.
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Figure 4: Synchronization error zi1 and zi2 of the system (47).
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G =

−4 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

0
BBBBBBBB@

1
CCCCCCCCA
: ð48Þ

Note that each isolated node of network (47) is a 2-
dimensional nonlinear system described by

sΔ tð Þ =
sΔ1 tð Þ
sΔ2 tð Þ

0
@

1
A

=
0:01 tanh s1 tð Þð Þ + s1 tð Þ½ �
0:01 tanh s2 tð Þð Þ + s2 tð Þ½ �

 !
, t ∈ 0, +∞½ ÞT :

ð49Þ

Γ be symmetric positive definite. It is not difficult to
obtain that assumptions (A1) and (A3′) are satisfied with
l1 = 0:02 and constant matrix

�K =
0:0005 0

0 0:0005

 !
: ð50Þ

The objective here is to synchronize the network (47) to
the solution s = 0 (2-dimensional zero vector) of (49) by
pinning control. From Figure 3, we see the complex
dynamical network (47) without control cannot reach syn-
chronization with s = 0. Now, we apply pinning control to
the network (47) with matrix D = diag ð2:5,2:5,2:5,2:5,0Þ.
By calculations, all conditions of Corollary 24 are fulfilled.
By Corollary 24, the network (47) can achieve synchroniza-
tion under the above pinning control strategy. Figure 4 also
shows that the synchronization is realized.

6. Conclusions

In this paper, we have investigated the synchronization prob-
lem of nonlinearly coupled complex dynamical networks on
time scales by pinning control strategy. Some pinning syn-
chronization criteria have been established which guarantee
that the nonlinearly coupled complex dynamical networks
on time scales can be pinned to some desired state. Two
numerical examples have been given to verify the effective-
ness of the obtained results.
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