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In this paper, we consider an approximate analytical method of optimal homotopy asymptotic method-least square (OHAM-LS) to
obtain a solution of nonlinear fractional-order gradient-based dynamic system (FOGBDS) generated from nonlinear programming
(NLP) optimization problems. The problem is formulated in a class of nonlinear fractional differential equations, (FDEs) and the
solutions of the equations, modelled with a conformable fractional derivative (CFD) of the steepest descent approach, are
considered to find the minimizing point of the problem. The formulation extends the integer solution of optimization problems
to an arbitrary-order solution. We exhibit that OHAM-LS enables us to determine the convergence domain of the series
solution obtained by initiating convergence-control parameter Cj′s. Three illustrative examples were included to show the
effectiveness and importance of the proposed techniques.

1. Introduction

Consider a nonlinear programming-constrained optimiza-
tion problems (NLPCOPs) of the form

min
x∈Rn

f xð Þ subject to gk xð Þ ≤ 0 and hk xð Þ = 0∀k ∈ I = 1, 2::mf g,
ð1Þ

where f : Rn ⟶R, hk : Rn ⟶R, and gk : R
n ⟶R, k,

are C2 functions. Let X0 = fx ∈Rn ∣ hk = 0, gk ≤ 0, i ∈ Ig be
the feasible set of Equation (1), and we assume that X0 is
not empty. The general idea of obtaining an approximate
analytical solution to Equation (1) is to transform to an
unconstrained nonlinear programming problem by any suit-
able technique such as augmented Lagrange method, barrier
method, and penalty method [1, 2]; it can then be solved by
any unconstrained optimization numerical method like the

steepest descent method, conjugate gradient method, and
Newton method. In optimization, the penalty method is the
most efficient method to transform a constrained optimiza-
tion problem into an unconstrained optimization problem
[3–5]. An efficient penalty function for equality and inequal-
ity problem Equation (1) is given below

Ppenalty hk xð Þð Þ = μ
1
σ
〠
p

i=1
hk xð Þð Þσ, ð2Þ

Ppenalty gk xð Þð Þ = μ〠
p

i=1
max 0, gk xð Þf gð Þσ, ð3Þ

where σ = 2. It can be seen that under some conditions, the
solutions to Equation (1) are solutions of the unconstrained
below [6],

Hindawi
Advances in Mathematical Physics
Volume 2020, Article ID 8049397, 15 pages
https://doi.org/10.1155/2020/8049397

https://orcid.org/0000-0002-7758-5057
https://orcid.org/0000-0003-2249-6169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8049397


where μ > 0 is an auxiliary penalty variable. The corollary
connecting the minimizer of the constraint problem in Equa-
tion (1) and unconstrained problem in Equation (4) is seen in
[7]. The gradient descent method as a standard optimization
algorithm has been widely applied in many engineering
applications, such as optimization machine learning and
image [8–10]. Through diverse research and studies, it is
established that the gradient method is one of the most reli-
able and efficient ways to find the optimal solution of optimi-
zation problems [11]. Nowadays, one of the critical points of
the gradient method is how to improve the performance fur-
ther. As an important area of mathematics, fractional calcu-
lus is believed to be an excellent tool to enhance the old
gradient descent method, mainly because of its special long
memory characteristics and nonlocality [12–14]. In the past
decade, several methods have been considered to solve
unconstrained nonlinear optimization in the form of ordi-
nary differential equation (ODE) dynamic system of which
the gradient-based method is one of the approaches. The
technique transforms the nonlinear optimization problem
to an ODE dynamic system with some optimality conditions,
to obtain optimal solutions to the optimization problem. The
gradient-based method was first proposed by [15], was devel-
oped by [16, 17], and was later extended to solve differential
nonlinear programming problems [18]. However, the studies
of nonlinear fractional-order gradient-based dynamic sys-
tems are still in the infant stage and are considered further
in this paper.

Arbitrary-order ODEs, which are the generalizations of
integer-order ODEs, are mostly used to model problems in
applied sciences. Several numerical methods had been used
to solve linear and nonlinear problems of FDEs, such as
the Adomian decomposition method (ADM) [19], varia-
tional iteration method (VIM) [20], homotopy perturbation
method for solving fractional Zakharov-Kuznetsov equation
[21], a numerical method for FDEs [22], and multivariate
padé approximation (MPA) [23]. The usefulness of an
arbitrary-order started receiving tremendous attention of
researchers in the field of applied science and engineering
in the last two decades where some authors in the area of
optimization focused on developing approximate analytical
methods for different types of nonlinear constrained optimiza-
tion problems in the form of IVPs of nonlinear FDE systems
including multistage ADM for NLP [24], a fractional dynam-
ics trajectory approach [25], the convergence of HAM and
application [26], fractional steepest descent approach [27],
studied optimal solution of fractional gradient [28], gradient
descent direction with Caputo derivative sense for BP neural
networks [29], fractional-order gradient methods [30], and
conformable fractional gradient-based system [31]. In 2008,
Marinca and Herisanu [32] introduced a numerical method

called OHAM to solve a nonlinear problem, later extended
by Azimi et al. [33] for strong nonlinear differential equations
(NLDEs). This powerful tool called OHAM has not been
applied in the area of FOGBDS, which motivates this work.

So, in this paper, we showed that the steady-state solu-
tions xðtÞ of the proposed system can be approximated ana-
lytically to the expected exact optimal solution x∗ of the
nonlinear programming constrained optimization problem
by OHAM-LS as t⟶∞. The significant contribution is
summarized as follows:

(1) The reason why OHAM-LS is preferable to be the
method used [25, 31] to solve FOGBDS

(2) The reason why some existing approximate analytical
method cannot guarantee the convergence of the
series solution is discussed

(3) From the previous approximation analytical method
of solving FOGBDS, accurate optimal values
control-convergence parameter had been a little bit
difficult to achieve which is easily address with least
square optimization techniques

(4) OHAM-LS with guaranteed convergence ability is
proposed with conformable fractional derivative
sense to solve FOGBDS. The fastest convergence abil-
ity of the proposed compared with fourth-order
Runge-Kutta is also shown

We arrange the paper as follows: a brief introduction to
the fractional calculus and OHAM-LS derivation is given in
Section 2. Section 3 is devoted to problem formulation of
OHAM-LS with FOGBDS and the key contributions. In Sec-
tion 4, we solved some NLP constrained optimization prob-
lems to show the effectiveness of the proposed method. The
results obtained from OHAM-LS are plotted in several fig-
ures with numerical method comparisons to confirm the
validity and ability of the method to solve the problem. In
the last section are the conclusions.

2. Preliminaries

2.1. Fractional Calculus. The most common arbitrary-order
in literature is the Riemann-Liouville’s and the Caputo frac-
tional derivative. The arbitrary-order definitions are gener-
ally used for mathematical modelling within many areas,
especially when the classical-order derivative operator fails
or additional memory effect is required. However, the limita-
tion of these two definitions is that they do not provide some
of the features that the classical derivative provides, such as
chain rule, quotient rule, product rule, and derivative of

min F x, μð Þ = f xð Þ + μ
1
σ
〠
p

i

hk xð Þð Þσ + 〠
p

i=1
max 0, gk xð Þf gð Þσ

 !
,

subject to x ∈Rn,

ð4Þ
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constant. Recently, Khalil et al. [34] have characterized a new
fractional derivative operator, which is an extension of the
usual conformable fractional derivative, to overcome these
deficiencies. Besides these advantages, the conformable frac-
tional derivative does not show the memory effect, which is
inherent for the other classical fractional derivatives.

Definition 1. Let f : ½0,∞Þ⟶R be a given function. The
αth order CFD of f given by

Tα fð Þ xð Þ = lim
ε→0

f x + εx1−α
� �

− f xð Þ
ε

, ð5Þ

∀x > 0 and α ∈ ð0, 1�
This new definition preserves many properties of the

classical derivatives refer to [34, 35]. Some features that we
will adopt are as follows:

Theorem 2. . Let 0 < α ≤ 1 and ð f , gÞ be α-differentiable at a
point x > 0; if f is a differentiable function, then ðdα f Þ/ðdxαÞ
= x1−αðdf /dxÞ.

Definition 3. Iαað f ÞðxÞ = I1aðxα−1 f Þ =
Ð x
a ðð f ðtÞÞ/ðt1−αÞÞdt,

where the integral is the regular Riemann improper integral,
and α ∈ ð0, 1�.

Theorem 4. Let f be any continuous function in the domain
of Iα, then TαIαað f ÞðxÞ = f ðxÞ∀x ≥ a.

Theorem 5. Let f : ða, bÞ⟶R be differentiable and 0 < α
≤ 1. Then, for all x > a, we have IαaT

αð f ÞðxÞ = f ðxÞ − f ðaÞ.
2.2. The Elementary Concepts of OHAM-LS. We start from
the fundamental principle of OHAM as described in [36–
38]. Consider the IVPs

Li zi tð Þð Þ +Ni zi tð Þð Þ + gi tð Þ = 0 t ∈ φ i = 1, 2,⋯m, ð6Þ

with initial conditions

zi bð Þ = ai, ð7Þ

where Li is a linear operator, Ni is a nonlinear operator, t
is an independent variable, ziðtÞ is an unknown function,
φ is the problem domain, and giðtÞ is a known function.
According to OHAM, one can construct an homotopy
map Hiðϕiðt, pÞ: φ × ½0, 1�⟶ φ which satisfies

1 − pð Þ Li ϕi t, pð Þð Þ + gi tð Þ½ �
=Hi pð Þ Li ϕi t, pð Þð Þ +Ni ϕi t, pð Þð Þ + gi tð Þ½ �, ð8Þ

where p ∈ ½0, 1� is an embedding parameter,HiðpÞ is a nonzero
auxiliary function for p ≠ 0, Hð0Þ = 0, and ϕiðt, pÞ is an
unknown function. Obviously, when p = 0 and p = 1, it holds
that ϕiðt, 0Þ = zi,0ðtÞ and ϕiðt, 1Þ = ziðtÞ, respectively. Thus, as
p varies from 0 to 1, the solution ϕiðt, pÞ approaches from
zi,0ðtÞ to ziðtÞ where zi,0ðtÞ is the initial guess that satisfies

the linear operator which is obtained from Equation (8) for
p = 0 as

Li zi,0 tð Þ + gi tð Þð Þ = 0:zi,0 bð Þ = 0: ð9Þ

HiðpÞ is chosen in the form

Hi pð Þ = pC1 + p2C2 + p3C3+⋯ j = 1, 2,⋯n, ð10Þ

where Cj would be determined in the last part of this work.
We consider Equation (8) in the form

ϕi t, p, Cj

� �
= zi,0 tð Þ +〠

k≥1
zi,k t, Cj

� �
pk j = 1, 2,⋯n: ð11Þ

Now substituting Equation (11) in Equation (8) and
equating the coefficient of like power of p, we obtain the gov-
erning equation of zi,0ðtÞ in a linear form, given in Equation
(9). The first- and second-order problems are given by

Li zi,1 tð Þð Þ + gi tð Þ = C1N0 zi,0 tð Þð Þ, zi,1 bð Þ = 0, ð12Þ

Li zi,2 tð Þð Þ − Li zi,1 tð Þð Þ = C2Ni,0 zi,0 tð Þð Þ + C1 Li zi,1 tð Þð Þ½
+Ni,1 zi,1 tð Þð Þ�, zi,2 bð Þ = 0,

ð13Þ

and the general governing equations for zi,kðtÞ are given by

Li zi,k tð Þð Þ − Li zi,k−1 tð Þð Þ

= CkNi,0 zi,0 tð Þð Þ + 〠
k−1

m=1
Cj,m Li zi,k−m tð Þð Þ½

+Ni,k−m zi,k−1 tð Þð Þ�,

ð14Þ

zi,k bð Þ = 0,  k = 2, 3,⋯, ð15Þ
where Ni,mðz0ðtÞ, zi,1ðtÞ⋯ , zi,mðtÞÞ is the coefficient of pm,
obtained by expanding Niðϕiðt, p, CjÞÞ in series with respect
to the embedding parameter p

Ni ϕi t, p, Cj

� �� �
=Ni,0 zi,0 tð Þð Þ + 〠

∞

m=1
Ni,m zi,m tð Þð Þpm, ð16Þ

where ϕiðt, p, CjÞ is obtained from Equation (11). It should
noted that zi,k for k ≥ 0 is governed by the linear Equations
(9), (12), and (14) with linear initial conditions that come
from the original problem, which can be easily solved.

It has been shown that the convergence of the series
Equation (16) depends upon the Cj. If it is convergent at
p = 1, we have

zi t, Cj

� �
= zi,0 tð Þ +〠

k≥1
zi,k t, Cj

� �
, ð17Þ

The result of the mth-order approximation is given as

~zi t, Cj

� �
= zi,0 tð Þ + 〠

m

k=1
zi,k t, Cj

� �
, ð18Þ
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Substituting Equation (18) in Equation (6), we get the
following expression for the residual

Ri t, Cj

� �
= Li ~zi t, Cj

� ��
+Ni ~zi t, Cj

� ��
+ gi tð Þ, i = 1, 2,⋯m,

ð19Þ

If Riðt, CjÞ = 0, then ~ziðt, CjÞ is the exact solution. Usu-
ally, such a case does not arise for nonlinear problems.
Several methods [39, 40] can be used to find the optimal
values of convergence-control parameters Cj′s like the
method of the least square method, collocation method,
Ritz method, and Galerkin’s method. By applying the least
square method, we have minimized the functional

Jk C1, C2, C3,⋯Cmð Þ =
ðb
a
R2
k t, C1, C2, C3,⋯Cmð Þdt, ð20Þ

where the value a and b depends on the given problem.

ψk =
∂Jk Ckð Þ
∂Ck

= 0, k = 1, 2,⋯m: ð21Þ

With these known Cj′s, the approximate solution (of
mth-order) is well determined.

The correctness of the method by

(1) Error Norm L2.

L2 = Zexact − ZN

�� �� ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b − a
N

〠
N

i=0
zexacti − zNð Þi
�� ��2

vuut
ð22Þ

(2) Error Norm L∞.

L∞ = Zexact − ZN

�� ��
∞ ≈maxi Z

exact
i − ZNð Þi

�� �� ð23Þ

The OHAM-LS is based on hybridization of OHAMwith
the least square method of optimization technique. The
OHAM enable us to determine the convergence domain of
the series solution, and the least square method allows us to
obtain the optimal values of the Cs

k.

Remark 6. OHAM-LS is preferable because VIM, HPM, and
HAM are just a case as proved by [41–44].

Remark 7. The existing approximate analytical for FOGBDS
cannot guarantee convergence mainly because they possess
no criteria for the establishment for convergence of the series
solution Equations (20) and (21).

3. Construction of OHAM-LS with FOGBDS
Generated by NLPCOPs

We begin by considering a NLP constrained in the form

min
x∈Rn

f xð Þ subject togk xð Þ ≤ 0 and hk xð Þ = 0∀k ∈ I = 1, 2::mf g,
ð24Þ

where f : Rn ⟶R is the objective function, hkðxÞ: Rn

⟶R are equality constraint functions, gkðxÞ: Rn ⟶R

are inequality constraint functions, and C2 are continuous
differentiable functions. One of the main ideas of solving
unconstrained NLP is by searching for the next point by
choosing proper search direction dk and the stepsize αk as
in the Newton direction [45], trust-region algorithm for
unconstrained optimization [46]; the descent method [47],
conjugate gradient method [48], three-term conjugate gradi-
ent method [49], and subspace method for nonlinear optimi-
zation [50]; the hybrid method for convex NLP [51]; CCM
for optimization problem and application [52]; and descent
direction stochastic approximation for optimization problem
[53]. But there are studies for other approaches. In this paper,
we obtain the minimizing point of the problem by solving a
certain initial-value system of FDEs. This kind of FOGBDS
was first proposed by Evirgen and Özdemir [24].

Using the penalty function Equation (2) and (3) for
Equation (24) with ρ = 2, the conformable FOGBDS model
can be constructed as

Tαx tð Þ = −∇xF x, μð Þ, ð25Þ

subject to the initial conditions

xk 0ð Þ = xk0, k = 1⋯ :,m: ð26Þ

where ∇xFðx, μÞ is the gradient vector of Equation (25) with
respect to xk ∈R

n and Tα is the CFD of 0 < α ≤ 1.
Note that a point xe is called an equilibrium point of

Equation (25) if it satisfies the RHS of Equation (25). We
reformulate fractional dynamic system Equation (25) as

Tαxk tð Þ = gk t, μ, x1, x2 ⋯ :xnð Þ, k = 1, 2⋯ ,m: ð27Þ

We used OHAM-LS to obtain the solution of system
Equation (27) by constructing the following homotopy

Tαxk tð Þ = pgk t, μ, x1, x2 ⋯ :xnð Þ, ð28Þ

where k = 1, 2⋯ , n and p ∈ ½0, 1�. If p = 0, Equation (28)
becomes

Tαxk tð Þ = 0, ð29Þ

and when p = 1, the homotopy Equation (28) becomes

Tαxk tð Þ = gk t, μ, x1, x2 ⋯ :xnð Þ,
 k = 1, 2⋯ :m, t ∈ 0, 1½ �, 0 < α ≤ 1,

ð30Þ
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subject to the initial conditions,

xk bð Þ = ak, k = 1, 2⋯ ,m: ð31Þ

The correction functional for the system of conformable
fractional nonlinear differential equation Equation (30),
according to OHAM-LS, can be constructed as

1 − pð Þ Tα φk t, pð Þð Þ½ � =Hk pð Þ Tαφk t, qð Þ +Nφk t, qð Þ½
+ gk t, μ, φ1 t, qð Þ, φ2 t, qð Þ::⋯φn t, qð Þð �,

ð32Þ

Thus as p varies from 0 to 1, the solution φkðt, pÞ
approaches from xk,0ðtÞ to xkðtÞ where xk,0ðtÞ is the initial
guess that satisfies the linear operator which is obtained from
Equation (32) for p = 0 as

Tα xk,0 tð Þð Þ = 0, xk,0 bð Þ = 0: ð33Þ

HkðpÞ is chosen in the form

Hk pð Þ = pC1 + p2C2 + p3C3 ⋯ , ð34Þ

where Cj can be determined later. We get an approximate
solution by expanding φkðt, p, CjÞ in Taylor’s series with
respect to p; we have

φk t, p, Cj

� �
= xi,0 tð Þ +〠

i≥1
xk,i t, Cj

� �
pi, j = 1, 2,⋯, n: ð35Þ

Now using Equation (35) in Equation (32) and equating
the coefficient of like power of p, we obtain the governing
equation of xi,0ðtÞ in a linear form, given in Equation (33).
The 1st- and 2nd-order problems are given by

Tα xk,1 tð Þð Þ + gk tð Þ = C1N0 xk,0 tð Þð Þ, xk,1 bð Þ = 0,

Tα xk,2 tð Þð Þ − Tα xk,1 tð Þð Þ
= C2Nk,0 xk,0 tð Þð Þ + C1 T

α xk,1 tð Þð Þ½
+Nk,1 xk,1 tð Þð Þ�, xk,2 bð Þ = 0

ð36Þ

and the general governing equations for xk,iðtÞ are given by

Tα xk,i tð Þð Þ − Tα xk,i−1 tð Þð Þ

= CiNk,0 xk,0 tð Þð Þ + 〠
i−1

m=1
Cj,m Tα xk,i−m tð Þð Þ½

+Nk,i−m xk,i−1 tð Þð Þ�, xk,i bð Þ = 0, i = 2, 3,⋯m,

ð37Þ

where Nk,mðx0ðtÞ, xk,1ðtÞ⋯ , xk,mðtÞÞ is the coefficient of pm,
obtained by expanding

Nkðφkðt, p, CjÞÞ in series with respect to p.

Nk φk t, p, Cj

� �� �
=Nk,0 xk,0 tð Þð Þ + 〠

m≥1
Nk,m x0, x1,⋯xmð Þpm:

ð38Þ

It has been shown that the convergence of the series
Equation (38) depends upon the Cj. If it is convergent at
p = 1, one has

xk t, Cj

� �
= xk,0 tð Þ +〠

i≥1
xk,i t, Cj

� �
: ð39Þ

The solution of Equation (30) is determined approxi-
mately in the form,

~xk t, Cj

� �
= xk,0 tð Þ + 〠

m

i=1
xk,i t, Cj

� �
, j = 1, 2,⋯:,n: ð40Þ

Substituting Equation (40) in Equation (30), we get the
following expression for the residual error

Rk t, Cj

� �
= Tα ~xk t, Cj

� �� �
+N ~xk t, Cj

� �� �
+ gk ~xk t, Cj

� �� �
:

ð41Þ

If Rkðt, CjÞ = 0, then ~xkðt, CjÞ is the exact solution.
Usually, such a case does not arise for nonlinear problems.
Using the least square method as below minimizes the
functional

Jk C1, C2, C3,⋯Cmð Þ =
ðb
a
R2
k t, C1, C2, C3,⋯Cmð Þdt, ð42Þ

where the value of a and b depends on the given problem.

ψk =
∂Jk Ckð Þ
∂Ck

= 0,  k = 1, 2,⋯m: ð43Þ

With these known Ck, the analytical approximate solu-
tion (of mth-order) is well determined.

The steps for optimal homotopy asymptotic method-
least square (OHAM-LS) are as follows:

Step 1.We transform the nonlinear constrained optimization
problem to the unconstrained optimization problem by a
penalty method.

Step 2. We find the gradient of the unconstrained optimiza-
tion problem, with given initial conditions.

Step 3. We choose the linear and nonlinear operators for
OHAM-LS.

Step 4.We construct homotopy for the conformable fractional
nonlinear differential equation which includes embedding
parameter, auxiliary function, and the unknown function.

Step 5. We substitute the series solution results into the gov-
erning equation and equate to zero for an exact solution.
Usually, such case a does not arise in nonlinear problems.
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Step 6. We find the optimal values for Cj′s by using the opti-
mization method called least square method, for good analyt-
ical approximate solution.

3.1. Convergence Analysis of OHAM-LS with FOGBDS

Theorem 8. As long as the series ~xkðt, CjÞ = xk,0ðtÞ +∑m
i=1 xk,i

ðt, CjÞ, j = 1, 2,⋯:, n converges where ~xkðt, CjÞ is governed
by Equation (40) under the definitions Equations (37) and
(38), it must be the solution of Equations (25) and (26).

Proof. If we assume ∑∞
m=1 ~xk,mðt, CjÞ, k = 1, 2⋯ :n, converges

to ~xkðt, CjÞ, then

lim
m→∞

~xk,m t, Cj

� �
= 0∀k = 1, 2⋯ n: ð44Þ

From Equation (37), we can write

〠
∞

i=1
CiNk,0 xk,0 tð Þð Þ + 〠

i−1

m=1
Cj,m Tα xk,i−m tð Þð Þ +Nk,i−m xk,i−1 tð Þð Þ½ �

"

= 〠
∞

i=1
Tα xk,i tð Þð Þ − Tα xk,i−1 tð Þð Þ½ �

= lim
n→∞

〠
n

i=1
Tα xk,i tð Þð Þ − Tα xk,i−1 tð Þð Þ

= Tαx11 tð Þ + Tαx22 tð Þ − Tαx21 tð Þð Þ + ::

+ Tαxnn tð Þ − Tαxn n−1ð Þ tð Þ
� �

= Tα lim
n→∞

〠
n

m=1
xnn tð Þ

" #
= Tα lim

n→∞
xnn tð Þ

h i
= 0,

〠
∞

i=1
CiNk,0 xk,0 tð Þð Þ + 〠

i−1

m=1
Cj,m Tα xk,i−m tð Þð Þ½

"

+Nk,i−m xk,i−1 tð Þð Þ� = 0:
ð45Þ

So, using above gives

= 〠
∞

m=1

h
Tαxk m−1ð Þ +N xk m−1ð Þ

� �
+ gk t, μ, x1 m−1ð Þ, x2 m−1ð Þ ⋯ ::xn m−1ð Þ

� i
,

ð46Þ

= 〠
∞

m=1
Tαxk m−1ð Þ + 〠

∞

m=1
N xk m−1ð Þ
� �

+ 〠
∞

m=1
gk t, μ, xk m−1ð Þ
� �

,
ð47Þ

= Tα~xk t, Cj

� �
+N ~xk t, Cj

� �� �
+ gk ~xk t, Cj

� �� �
: ð48Þ

From Equation (48), we have

Tα~xk t, Cj

� �
+N ~xk t, Cj

� �� �
+ gk ~xk t, Cj

� �� �
= 0∀k = 1, 2⋯m,

ð49Þ

4. Numerical Examples and Results

In this section, three examples are presented to illustrate the
efficiency of the new method for solving NLPCOPs. The cal-
culations are performed using maple software 2018, HP
ENVY laptop 13 corei7 8th Gen 16GB.

Example 1. Consider the NLPCOP test problem from Schitt-
kowski [54] (No. 216).

Minimize f xð Þ = 100 x21 − x2
� �2 + x1 − 1ð Þ2,

subject to h xð Þ = x1 x1 − 4ð Þ − 2x2 + 12 = 0,
ð50Þ

whose exact solution is not known, but expected optimal
solution is x∗1 = 1:9993, x∗2 = 3:9998. First, we transform the
constraint problem to an unconstrained problem by qua-
dratic penalty function for σ = 2; then, we have

f x, μð Þ = 100 x21 − x2
� �2 + x1 − 1ð Þ2

+ 1
2 μ x1 x1 − 4ð Þ − 2x2 + 12ð Þ2,

ð51Þ

where μ ∈R+, and so that the nonlinear FOGBDS can be
given as

Tαx1 tð Þ = −400 x21 − x2
� �

x1 − 2 x1 − 1ð Þ
− μ 2x1 − 4ð Þ x21 − 4x1 − 2x2 + 12

� �
,

Tαx2 tð Þ = 200 x21 − x2
� �

+ 2μ x21 − 4x1 − 2x2 + 12
� �

,
 x1 0ð Þ = 0, x2 0ð Þ = 0,

ð52Þ

where 0 < α ≤ 1. By using OHAM-LS with auxiliary penalty
variable μ = 200, the terms of the OHAM-LS solutions for
fractional order are acquired by using the concept of homo-
topy. According to Equation (6)), we choose the linear and
nonlinear operators in the following forms:

L1 φ1 t, pð Þ½ � = Tαφ1 t, pð Þ,
L2 φ2 t, pð Þ½ � = Tαφ2 t, pð Þ,
N1 φ1 t, pð Þ½ � = Tαφ1 t, pð Þ + 400 φ1 t, pð Þ2 − φ2 t, pð Þ� �

φ1 t, pð Þ
+ 2 φ1 t, pð Þ − 1ð Þ + 200 2φ1 t, pð Þ − 4ð Þ
� φ1 t, pð Þ2 − 4φ1 t, pð Þ − 2φ2 t, pð Þ + 12
� �

,

N2 φ2 t, pð Þ½ � = Tαφ2 t, pð Þ − 200 φ1 t, pð Þ2 − φ2 t, pð Þ� �
− 400 φ1 t, pð Þ2 − 4φ1 t, pð Þ − 2φ2 t, pð Þ + 12

� �
:

ð53Þ

6 Advances in Mathematical Physics



We can construct the following homotopy

1 − pð ÞTαφ1 t, pð Þ =H pð Þ Tαφ1 t, pð Þ + 400 φ1 t, pð Þ2�	
− φ2 t, pð ÞÞφ1 t, pð Þ + 2 φ1 t, pð Þ − 1ð Þ
+ 200 2φ1 t, pð Þ − 4ð Þ φ1 t, pð Þ2�
− 4φ1 t, pð Þ − 2φ2 t, pð Þ + 12Þ�,

ð54Þ

1 − pð ÞTαφ2 t, pð Þ =H pð Þ Tαφ2 t, pð Þ − 200 φ1 t, pð Þ2�	
− φ2 t, pð ÞÞ − 400 φ1 t, pð Þ2 − 4φ1 t, pð Þ�
− 2φ2 t, pð Þ + 12Þ�,

ð55Þ
where

φ1 t, pð Þ = x1,0 tð Þ +〠
j≤1

x1,j tð Þpj, ð56Þ

φ2 t, pð Þ = x2,0 tð Þ +〠
j≤1

x2,j tð Þpj, ð57Þ

Hk pð Þ = pC1 + p2C2 + p3 + C3+⋯,  k = 1, 2⋯m: ð58Þ
Substituting Equations (56)-(58) into Equations (54) and

(55) and equating the coefficient of the same powers of p
result to the following set of linear FDEs.

p0 : Tαx1,0 tð Þ = 0, ð59Þ

p0 : Tαx2,0 tð Þ = 0, ð60Þ
p1 : Tαx1,1 tð Þ = 2000x31,0C1 + Tαx1,0C1 − 3600x2,0x1,0C1

− 9600x21,0C1 − Tαx1,0 + 6400x2,0C1

+ 32002x1,0C1 − 38402C1 = 0,
ð61Þ

p1 : Tαx2,1 tð Þ = Tαx2,0C1 − 1800x21,0C1 − Tαx2,0
+ 6400x1,0C1 + 3400x2,0C1 − 19200C1 = 0,

ð62Þ
p2 : Tαx1,2 tð Þ = 2000x31,0C2 + 6000x21,0x1,1C1

+ Tαx1,0C2 + Tαx1,1C1 − 3600x2,0x1,0C2
− 3600x2,0x1,1C1 − 9600x21,0C2

− 19200x1,0x1,1C1 − 3600x1,0x2,1C1
− Tαx1,1 + 6400x2,0C2 + 32002x1,0C2
+ 32002x1,1C1 + 6400x2,1C1 − 38402C2 = 0,

ð63Þ
p2 : Tαx2,2 tð Þ = Tαx2,0C2 + Tαx2,1C1 − 1800x21,0C2

− 3600x1,0x1,1C1 − Tαx2,1 + 6400x1,0C2
+ 6400x1,1C1 + 3400x2,0C2 + 3400x2,1C1
− 19200C2 = 0:

ð64Þ

Applying the operator Iα to both sides of Equations (59)-
(64) with initial conditions given in Equation (5.6), we obtain

x1,0 tð Þ = 0, ð65Þ

x2,0 tð Þ = 0, ð66Þ
x1,1 t, C1ð Þ = 384020t1/10C1, ð67Þ

x2,1 t, C1ð Þ = 192000t1/10C1, ð68Þ

x1,2 t, C1, C2ð Þ = −6:759104020 × 1010t1/5C2
1

− 384020t1/10 + 384020t1/10C1

+ 384020C2t
1/10,

ð69Þ

x2,2 t, C1, C2ð Þ = −1:555264000 × 1010t1/5C2
1

− 192000t1/10C2
1 + 192000t1/10C1

+ 192000C2t
1/10:

ð70Þ

Adding up the solution components Equations (65)-(70),
the 2nd-order approximate solution obtained by OHAM-LS
at α = 0:9, for p = 1, are

x21 t, C1, C2ð Þ = 768040C1 − 384020C2
1 + 384020C2

� �
t1/10

− 6:759104020 × 1010t1/5C2
1,

ð71Þ

x22 t, C1, C2ð Þ = 384000C1 − 192000C2
1 + 192000C2

� �
t1/10

− 1:555264000 × 1010t1/5C2
1:

ð72Þ
For the calculations of C1 and C2 in x21ðtÞ and x22ðtÞ given

in Equations (71) and (72), we apply the procedure men-
tioned in Equations (19)-(21); we obtain, for x21ðtÞ,

c 1½ � = 1:800506863 × 10−6,
c 2½ � = 6:594892833 × 10−6,

ð73Þ

and for x22ðtÞ,

c 1½ � = 0:111906918 × 10−4,
c 2½ � = 0:2190543167 × 10−4:

ð74Þ

Substituting these optimal values into Equations (71) and
(72) becomes

x21 tð Þ = 4:196444315t1/10 − 1:084631569t1/5,
x22 tð Þ = 7:546421106t1/10 − 0:7996784175t1/5:

ð75Þ

Table 1 shows the Ck at different values of α for Example
1. Table 2 shows the comparisons and the absolute error
between OHAM-LS and RK4 at different values of α = 1.
Figure 1 shows the analytical approximate solutions obtained
by OHAM-LS for α = 1, 0:9, 0:8, and 0:7 with RK4 at α = 1.

7Advances in Mathematical Physics



Example 2. Consider the NLPCOPs test problem from Schitt-
kowski [54] [No 320].

Minimize f xð Þ = x1 − 20ð Þ2 + x2 + 20ð Þ2,

subject to h xð Þ = x21
100 + x22

4 − 1 = 0:
ð76Þ

This is a practical problem, and the exact solution is not
known, but the expected optimal solution is x∗1 = 9:395, x∗2
= −0:6846. First, the quadratic penalty function is used to
get the unconstrained optimization problem as follows:

F x, μð Þ = x1 − 20ð Þ2 + x2 + 20ð Þ2 + 1
2 μ

x21
100 + x22

4 − 1

 �2

,

ð77Þ

where μ ∈R+ and so that the nonlinear FOGBDS be given as

Tαx1 tð Þ = 2x1 − 40 + μ
1

5000 x
3
1 +

1
200 x1x

2
2 −

1
50 x1


 �
,

Tαx2 tð Þ = 2x2 + 40 + μ
1
200 x2x

2
1 +

1
8 x

3
2 −

1
2 x2


 �
,

  0 < α ≤ 1, x1 0ð Þ = 0, x2 0ð Þ = 0:
ð78Þ

By using OHAM-LS with μ = 106, the terms of the
OHAM-LS solutions for fractional order are acquired by
using the concept of homotopy. According to Equation (6),
we choose the linear and nonlinear operators in the following
forms:

L1 φ1 t, pð Þ½ � = Tαφ1 t, pð Þ, ð79Þ

L2 φ2 t, pð Þ½ � = Tαφ2 t, pð Þ, ð80Þ

N1 φ1 t, pð Þ½ � = Tαφ1 t, pð Þ − 2


φ1 t, pð Þ + 40

− 106

 1
5000φ1 t, pð Þ3

+ 1
200φ1 t, pð Þφ2 t, pð Þ2 − 1

50φ1 t, pð Þ
��

,

ð81Þ

N2 φ2 t, pð Þ½ � = Tαφ2 t, pð Þ − 2φ2 t, pð Þ − 40

− 106

 1
200 φ2 t, pð Þ × φ1 t, pð Þ2

−
1
8φ2 t, pð Þ3 + 1

2φ2 t, pð Þ
�
,

ð82Þ

1 − pð ÞTαφ1 t, pð Þ =H pð Þ
�
Tαφ1 t, pð Þ − 2



φ1 t, pð Þ + 40

− 106

 1
5000φ1 t, pð Þ3 + 1

200φ1 t, pð Þ

× φ2 t, pð Þ2 − 1
50φ1 t, pð Þ

�

,

ð83Þ

1 − pð ÞTαφ2 t, pð Þ =H pð Þ
�
Tαφ2 t, pð Þ − 2φ2 t, pð Þ − 40

− 106

 1
200φ2 t, pð Þ × φ1 t, pð Þ2

−
1
8φ2 t, pð Þ3 + 1

2φ2 t, pð Þ
�


,

ð84Þ

Table 1: Control-convergence parameters Ck at different values of α:

Variable x1 tð Þ x1 tð Þ x2 tð Þ x2 tð Þ
α C1 C2 C1 C2

1 1:912514527 × 10–6 7:294797236 × 10–6 0:113698734 × 10–4 0:229361274 × 10–4

0.9 1:800506863 × 10–6 6:594892833 × 10–6 0:111906918 × 10–4 0:2190543167 × 10–4

0.8 1:714313871 × 10–6 5:524430129 × 10–6 0:10992623 × 10–4 0:201017632 × 10–4

0.7 1:593611093 × 10–6 5:294592861 × 10–6 0:107191284 × 10–4 0:197911283 × 10–4

Table 2: Comparisons and absolute error between OHAM-LS and RK4, α = 1.

tk OHAM-LSx1 tð Þ OHAM-LSx2 tð Þ RK4x1 tð Þ RK4x2 tð Þ Error x1 tð Þ Error x2 tð Þ
0.0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

0.0005 1.970211 3.871721 1.970899 3.871887 0.000688 0.000166

0.0010 1.977134 3.907823 1.978274 3.907993 0.001136 0.00017

0.0013 1.981102 3.922403 1.981384 3.922554 0.000282 0.000151

0.0015 1.982211 3.930534 1.983132 3.930578 0.000921 4.4E-05

0.0020 1.983214 3.935653 1.984252 3.935654 0.001038 1E-06
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where

φ1 t, pð Þ = x1,0 tð Þ +〠
j≤1

x1,j tð Þpj, ð85Þ

φ2 t, pð Þ = x2,0 tð Þ +〠
j≤1

x2,j tð Þpj, ð86Þ

Hk pð Þ = pC1 + p2C2 + p3 + C3+⋯, k = 1, 2: ð87Þ
Substituting Equations (85)-(87) into Equations (83) and

(84) and equating the coefficient of the same powers of p
yields the following set of linear FDEs:

p0 : Tαx1,0 tð Þ = 0, ð88Þ

p0 : Tαx2,0 tð Þ = 0, ð89Þ

p1 : Tαx1,1 tð Þ = −200x31,0C1 − 5000x1,0x22,0C1

+ Tαx1,0C1 − Tαx1,0 + 19998x1,0C1
+ 40C1,

ð90Þ

p1 : Tαx2,1 tð Þ = −125000x32,0C1 − 5000x2,0x21,0C1

− Tαx2,0C1 − 2x2,0C1 − Tβx2,0
+ 500000x1,0C1 − 40C1 = 0,

ð91Þ
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x

1 
(t

) 1

0.8

0.6
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0.0015 0.0020

(a)

x
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(t
)

0

1

2

3

0 0.0005 0.0010
t

0.0015 0.0020

(b)

Figure 1: (a) Different values of α (OHAM-LS; α = 1, dot; α = 0:9, dash; α = 0:8, dash dot; and α = 0:7, long dash) and Rk4 (α = 1, solid) at x1.
(b) Different values of α (OHAM-LS; α = 1, dot; α = 0:9, dash; α = 0:8, dash dot; and β = 0:7, long dash) and RK4 (α = 1, solid) at x2.
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p2 : Tαx1,2 tð Þ = −200x31,0C2 − 6000x21,0x1,1C1

− 5000x1,0x22,0C2 − 10000x1,0x2,0x2,1C1

− 5000x22,0x1,1C1 + Tαx1,0C2 + Tαx1,1C1

− Tαx1,1 + 19998x1,0C2 + 19998x1,1C1
+ 40C2 = 0,

ð92Þ
p2 : Tαx2,2 tð Þ = −125000x32,0C2 − 375000x22,0x2,1C1

− 10000x2,0x1,1x1,0C1 − 5000x2,0x21,0C2

− 5000x2,1x21,0C1 + Tαx2,1C1 + Tαx2,0C2

− 2x2,0C2 − 2x2,1C1 + 500000x1,1C1
− Tαx2,1 + 500000x1,0C2 − 40C2 = 0:

ð93Þ
Applying the operator Iα on both sides of Equations (88)-

(93) with initial conditions given in Equation (4.38), we
obtain

x1,0 tð Þ = 0, ð94Þ

x2,0 tð Þ = 0, ð95Þ

x1,1 t, C1ð Þ = −200t1/5C1, ð96Þ

x2,1 t, C1ð Þ = 200t1/5C1, ð97Þ

x1,2 t, C1, C2ð Þ = 9:999000 × 106t2/5C2
1 + 200t1/5C2

1

− 200t1/5C1 − 200C2t
1/5,

ð98Þ

x2,2 t, C1, C2ð Þ = 2:50001000 × 108t2/5C2
1 − 200t1/5C2

1

+ 200t1/5C1 + 200C2t
1/10:

ð99Þ

Adding up the solution components Equations (94)-(99),
the 2nd-order approximate solution obtained by OHAM-LS
at α = 0:9, for p = 1, is

x21 tð Þ = t1/5 −400C1 − 9:999000 × 106t1/5C2
1 + 200C2

1 − 200C2
� �

,
ð100Þ

x22 tð Þ = t1/5 400C1 − 2:50001000 × 108t1/5C2
1 − 200C2

1 + 200C2
� �

:

ð101Þ
For the calculations of C1 and C2 in x21ðtÞ and x22ðtÞ given

in Equations (100) and (101), we apply the procedure men-
tioned in Equations (19)-(21), we obtain for x21ðtÞ,

c 1½ � = −0:1208162856 × 10−3,
c 2½ � = −0:02826592550:

ð102Þ

And for x22ðtÞ,

c 1½ � = −1:343994006 × 10−5,
c 2½ � = −2:536649902 × 10−3:

ð103Þ

Substituting these optimal values into Equations (100)
and (101), we have

x21 tð Þ = 5:701514534 + 0:1459511521t1/5
� �

t1/5,

x22 tð Þ = −0:5167059926 + 0:04515817783t1/5
� �

t1/5:

ð104Þ

Table 3 shows the Ck at different values of α for example
2. Table 4 show the comparisons and the absolute error
between OHAM-LS and RK4 at different values of α = 1.

Table 3: Control-convergence parameters Ck at different values of α.

Variable x1 tð Þ x1 tð Þ x2 tð Þ x2 tð Þ
α C1 C2 C1 C2

1 −0:1198434251 × 10–3 -0.02645325610 −1:3256727843 × 10–5 −2:527402984 × 10–3

0.9 −0:1208162856 × 10–3 -0.02826592550 −1:343994006 × 10–5 −2:536649902 × 10–3

0.8 −0:1487623674 × 10–3 -0.02983123651 −1:3619012564 × 10–5 −2:550122356 × 10–3

0.7 −0:1598723560 × 10–3 -0.03154109428 −1:3801234527 × 10–5 −2:573641295 × 10–3

Table 4: Comparison and absolute error between OHAM-LS and RK4, α = 1.

tk OHAM-LSx1 tð Þ OHAM-LSx2 tð Þ RK4x1 tð Þ RK4x2 tð Þ Error x1 tð Þ Error x2 tð Þ
0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

1.0 5.847225 -0.473547 5.847465 -0.477547 0.00024 -0.004

2.0 6.741648 -0.542275 6.741904 -0.542553 0.000256 -0.000278

4.0 8.455454 -0.584110 8.457551 -0.584133 0.002097 -2.3E-05

6.0 8.731031 -0.615205 8.732010 -0.615305 0.000979 -1E-04

7.0 8.977101 -0.640324 8.977187 -0.640466 8.6E-05 -0.000142

8.0 9.090736 -0.661201 9.090838 -0.661673 0.000102 -0.000472

10.0 9.303112 -0.680032 9.303232 -0.680066 0.00012 -3.4E-05
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Figure 2 show the analytical approximate solutions obtained
by OHAM-LS for α = 1,0:9,0:8, and 0:7 with RK4 at α = 1.

Example 3. Consider the NLPCOP test problem from Schitt-
kowski [54] (No. 300).

Minimize f xð Þ = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,
subject to 8 − x21 − x22 − x23 − x24 − x1 + x2 − x3 + x4 ≤ 0,

10 − x21 − 2x22 − x23 + x1 + x4 ≤ 0,
5 − 2x21 − x22 − x23 − 2x1 + x2 + x4 ≤ 0:

ð105Þ

This is a practical problem, and the exact solution is not
known, but the expected optimal solution is x∗1 = 0, x∗2 = 1,
x∗3 = 2, and x∗4 = −1. From the above procedure, the second-
order approximate solution obtained by OHAM-LS at α =
0:9, for p = 1, is

x21 tð Þ = 16100C1 − 8050C2
1 + 8050C2

� �
t1/10

+ 1:54569500 × 108t1/5C2
1,

ð106Þ

x22 tð Þ = −25900C1 + 12950C2
1 − 12950C2

� �
t1/10

− 3:75020500 × 108t1/5C2
1,

ð107Þ
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Figure 2: (a) Different values of α (OHAM-LS; α = 1 dot, α = 0:9 dash, α = 0:8 dash dot, and α = 0:7 long dash) and Rk4 (α = 1, solid) at x1: (b)
Different values of α (OHAM-LS; α = 1 dot, α = 0:9 dash, α = 0:8 dash dot, and α = 0:7 long dash) and RK4 (α = 1, solid) at x2.
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x23 tð Þ = 16420C1 − 8210C2
1 + 8210C2

� �
t1/10

+ 1:62525800 × 108t1/5C2
1,

ð108Þ

x24 tð Þ = −46140C1 + 23070C2
1 − 23070C2

� �
t1/10

− 1:24619300 × 108t1/5C2
1:

ð109Þ

For the calculations of C1 and C2 in x21ðtÞ, x22ðtÞ, x23ðtÞ,
and x24ðtÞ given in Equations (4.79)-(4.82), we apply the
procedure mentioned in Equations (19)-.(21); we obtain
for x21ðtÞ,

c 1½ � = 0, c 2½ � = 0, ð110Þ

and for x22ðtÞ,

c 1½ � = −4:494712729 × 10−13,
c 2½ � = −0:1618198317 × 10−4,

ð111Þ

and for x23ðtÞ,

c 1½ � = −1:096696787 × 10−14,
c 2½ � = 0:599293243 × 10−3,

ð112Þ

and for x24ðtÞ,

c 1½ � = −5:935109529 × 10−12,
c 2½ � = 0:8773054262 × 10−4:

ð113Þ

Substituting these optimal values into Equations (106)-
(109), we have

~x1 tð Þ = 0,
~x2 tð Þ = 0:095566833 × t1/10 − 7:576330095 × 10−17t1/5,
~x3 tð Þ = 3:119322656 × t1/10 + 1:954769053 × t1/5,
~x4 tð Þ = −2:023943344 × t1/10 − 4:389780283 × 10−15t1/5:

ð114Þ

Tables 5 and 6 show the Ck at different values of α for
Example 3. Tables 7 and 8 show the comparisons and the
absolute error between OHAM-LS and RK4 at α = 1. Also,
Figure 3 shows the comparisons of OHAM-LS at α = 1, 0:9,
0:8, and 0:7 with RK4 at α = 1, which verifies the performance
of the present method as an excellent tool for NLPCOPs. For
α = 1, it can be seen that the approximate analytical solution
agrees with the ideal solution. Thus, as α approaches 1, the
classical solution for the system is recovered.

Table 5: Control-convergence parameters Ck at different values of α.

Variable x2 tð Þ x2 tð Þ x3 tð Þ
α C1 C2 C1

1 −4:470470112 × 10–13 −0:1542801253 × 10–3 −1:0784243190 × 10–4

0.9 −4:494712729 × 10–13 −0:1618198317 × 10–3 −1:096696787 × 10–4

0.8 −4:5167327196 × 10–13 −0:1832920121 × 10–3 −1:1079094521 × 10–4

0.7 −4:5371220162 × 10–13 −0:2087212810 × 10–3 −1:1261409123 × 10–4

Table 6: Control-convergence parameters Ck at different values of α.

Variable x3 tð Þ x4 tð Þ x4 tð Þ
α C2 C1 C2

1 −0:5711237191 × 10–3 −5:921274832 × 10–12 0:8973526178 × 10–4

0.9 0:599293243 × 10–3 −5:935109529 × 10–12 0:8773054262 × 10–4

0.8 −0:6190253261 × 10–3 −5:953158452 × 10–12 0:8696526178 × 10–4

0.7 −0:62131534211 × 10–3 −5:975232801 × 10–12 0:8572034710 × 10–4

Table 7: Comparisons and absolute error between OHAM-LS and
RK4, α = 1.

tk
OHAM-
LSx2 tð Þ

OHAM-
LSx3 tð Þ tð Þ

OHAM-
LSx4 tð Þ RK4x2 tð Þ

0.000 0.000000 0.000000 0.000000 0.000000

0.001 0.834165 1.835129 -0.805509 0.834260

0.002 0.894101 1.886099 -0.859211 0.894137

0.003 0.931112 1.928753 -0.963765 0.931137

0.004 0.958211 1.965657 -0.978625 0.958313

0.005 0.979623 1.998334 -0.991899 0.979937

Table 8: Comparison and absolute error between OHAM-LS and
RK4, α = 1.

tk RK4x3 tð Þ RK4x4 tð Þ Error x2 tð Þ Error x3 tð Þ Error x4 tð Þ
0.000 0.000000 0.000000 0.000000 0.000000 0.000000

0.001 1.835278 -0.805746 9.5E-05 0.000149 -0.000237

0.002 1.886124 -0.859310 3.6E-05 2.5E-05 -9.9E-05

0.003 1.928838 -0.963858 2.5E-05 8.5E-05 -9.3E-05

0.004 1.965795 -0.978831 0.001372 0.000138 -0.000206

0.005 1.998449 -0.991990 0.000314 0.000115 -9.1E-05
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Figure 3: (a) Different values of α (OHAM-LS; α = 1 dot, α = 0:9 dash, α = 0:8 dash dot, and α = 0:7 long dash) and Rk4 (α = 1, solid) at x2: (b)
Different values of α (OHAM-LS; α = 1 dot, α = 0:9 dash, α = 0:8 dash dot, and α = 0:7 long dash), and RK4 (α = 1, solid) at x3: (c) Different
values of α (OHAM-LS; α = 1 dot, α = 0:9 dash, α = 0:8 dash dot, and α = 0:7 long dash), and RK4 (α = 1, solid) at x4.
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5. Conclusions

In this paper, we implemented OHAM-LS for solving non-
linear FOGBDS from the optimization problem. The frac-
tional derivative is considered in a new conformable
fractional derivative sense. The optimization minimization
approach of the least square method helps to obtain optimal
values of the Csj for accurate approximate analytical solu-
tions. The comparisons between the fourth-order Runge-
Kutta (α = 1) and OHAM-LS show that our present method
performs rapid convergence to the expected optimal solu-
tions of the optimization problem. The results obtained are
in close agreement with the exact solution, and those from
the RK4 and OHAM-LS are reliable, dependable, and effi-
cient for finding an approximate analytical solution for non-
linear FOGBDS optimization problem.
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