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Cognitive radar is an intelligent radar system, and adaptive waveform design is one of the core problems in cognitive radar research.
In the previous studies, it is assumed that the prior information of the target is known, and the definition of target spectrum
variance has not changed. In this paper, we study on robust waveform design problem in multiple targets scene. We hope that
the upper and lower bounds of the uncertainty range of robustness are more close to the actual situation, and establish a finite
time random target signal model based on mutual information (MI). On the basis of the optimal transmitted waveform and
robust waveform based on MI, we redefine the target spectrum variance as harmonic variance, and propose a novel robust
waveform design method based on harmonic variance and MI. We compare its performance with robust waveform based on
original variance. Simulation results show that, in the situation of multiple targets, compared to the original variance, the MI
lifting rate of robust waveform based on harmonic variance relative to the optimal transmitted waveform in the uncertainty
range has great improvement. In certain circumstances, robust waveform based on harmonic variance and MI is more suitable
for more targets.

1. Introduction

The traditional radar’s transmitting and receiving methods
are usually fixed, which are designed in advance by the
radar’s tasks and application scenarios, including radar sys-
tem, waveform parameters, signal processing methods, etc.
The fixed radar system and working mode limit the further
improvement of radar performance. With the electromag-
netic environment becoming more and more complex, the
traditional radar technology dealing with interference is not
enough. For cognitive radar, by extracting and learning the
multi-domain characteristics of the target and environment,
it can determine the nature of the interference and identify
the interference pattern, so as to take targeted countermea-
sures. The research of cognitive radar has been widely con-
cerned all over the world.

Adaptive waveform design is one of the core problems in
cognitive radar research, and experts and scholars all over the
world have done a lot of related work. In [1], an iterative opti-

mization method of radar waveform is proposed. This
method takes energy and SINR as constraints and perfor-
mance optimization indexes, respectively. It combines the
polarization of radar transmitted waveform with filtering
structure for joint robust design. In [2], the authors design
the local strongest detector based on relative entropy and
the best radar transmitted waveform corresponding to the
extended target. In the environment of colored noise, com-
pared with the waveform design method based on mutual
information, the waveform design based on relative entropy
can significantly improve the detection performance of radar.
At the same time, the relationship among the output SNR,
mutual information and relative entropy is also discussed.
In [3], the interference technology of power constraint is
studied. On the basis of the interference technology of mini-
mizing SINR and maximizing mutual information, the mini-
max robust waveform based on SINR and the minimax
robust waveform based on mutual information are proposed,
respectively, in the constraint of the uncertain range of the
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target. Both of them are the optimization criteria to maximize
the waveform design in the worst case. Although the two
optimization criteria are suitable for different situations, their
performances are similar in the worst case. In [4], the optimal
waveform design of radar detection for extended targets in
the specific environment of electronic warfare is studied. In
this design method, a waveform optimization method based
on SNR with clutter effect is proposed. This method studies
the waveform optimization of intelligent radar and silent tar-
get, intelligent radar and silent radar, intelligent radar and
intelligent target in electronic warfare mode. By optimizing
the water-filling method, the waveform design algorithm is
further optimized on the basis of minmax. In [5], a new
waveform design method of cognitive radar is proposed.
The interior point method is used to design the transmitted
waveform so as to achieve the best performance of the radar.
In [6], the authors focus on the radar multi-target detection.
In this paper, a multi-target detection method and an adap-
tive waveform design algorithm based on information theory
are proposed to improve the efficiency of multiple hypothesis
detection. This method studies the multi-target detection
problem by studying the multiple hypothesis tests. The
method is in accordance with the algorithm mentioned
above, so as to further improve the detection efficiency. In
[7], a new target classification waveform based on spectral
variance and information theory is proposed. The advantage
of this waveform lies in its strong real-time performance and
easy application. The correlation measure of information can
be regarded as a range. In this paper, an algorithm is pro-
posed to study the lower bound of the range. This algorithm
can greatly improve the accuracy of detection performance.
In [8], the authors study the robust waveform of orthogonal
frequency division multiplexing, and propose three robust
waveform design criteria based on power as waveform opti-
mization criteria, which are considered as useful energy,
interference and ignored. By optimizing the orthogonal fre-
quency division multiplexing waveform, the transmitted
power constrained by the mutual information of target char-
acteristics and the minimum capacity threshold of the system
is minimized, and the transmitted power is studied in the
worst case. The research shows that, for any target, the robust
waveform will limit the performance in the worst case. In [9],
the authors present a robust waveform design method based
on mutual information. This method can alleviate the situa-
tion that the prior information of radar target cannot meet
the parameter estimation, and further guarantee the perfor-
mance of parameter estimation. In this paper, a hierarchical
game model is proposed, and it is found that under this
model, robust waveform can better guarantee the perfor-
mance of parameter estimation. In [10], the authors put for-
ward two hypotheses: no echo in the target and echo in the
target. By minimizing the mutual information between the
targets to maximize the relative entropy of no echo and echo
in the target, the performance of target detection can be
improved and the target information can be obtained con-
tinuously. This method can not only improve the perfor-
mance of target detection, but also reduce the transmission
error rate. In [11], the authors present a radar waveform
design method based on information theory. This method

is designed for detecting waveforms of multiple targets. In
this design method, the general water-filling waveform is
quoted and extended. At the same time, a waveform design
criterion based on weighted linear sum of mutual informa-
tion is redefined. Under the constraints of the new optimiza-
tion criteria and efficient algorithm, the optimization of
waveform is classified into single wave and multiple waves.
In [12], the authors present an input signal with arbitrary
distribution under the condition of Gaussian noise. The sig-
nal is constrained by limited power. In this paper, the
mutual information of input and output and the minimum
mean square error of the input optimal estimation of given
output are taken as reference parameters, and a new calcula-
tion formula is defined. The formula solves the derivative of
mutual information to SINR, and finds that the result is half
of the minimum mean square error. In [13], the impulse
response of the target is used to replace the scattering behav-
ior of the target. The waveform design with energy and time
as the constraint criteria is studied, and resonance measure-
ment waveform of the target based on information theory is
proposed. By comparing the two schemes of optimal target
detection and optimal information extraction, the former
puts as much energy as possible in the mode of maximum
target scattering while the latter distributes energy in the
condition of maximizing the mutual information between
the target and the radar waveform. In [14], the low resolu-
tion wide bistatic angle studied in the previous multi-input
and multi-output radar scene is improved to high fidelity
bistatic target signal. On this basis, the waveform optimiza-
tion based on bistatic and single base target signals is stud-
ied, respectively, and compared with the situation of non-
optimization, partial optimization of waveform and ignoring
bistatic or single base path. In [15], the authors present a
method of waveform optimization design for MIMO radar
under clutter and colored noise. The method takes low prob-
ability of intercept as the criterion of waveform optimization
design under mutual information constraints, so as to mini-
mize the total power consumption of the system. This
method shows that the total transmitted power is the smal-
lest when the transmitted waveform matches the target, jam-
ming, clutter and noise, and it can effectively improve the
performance of radar with low probability of intercept.

In [1, 3, 4], the authors focus on the signal to interference
plus noise ratio when they study the optimization of radar
waveform. In [2, 6, 7, 9–11, 13], the authors study on the
basis of the relevant knowledge of information theory. They
focus on maximizing or minimizing mutual information
and relative entropy as the criterion of radar waveform opti-
mization. The waveforms designed in [1, 4, 8, 9] are all min-
max robust waveforms, and in [3, 8, 12], the optimization
criteria are all power. In [7], the authors mainly study spec-
tral variance and information theory, and also mention the
concept of correlation measure range. In [10], the authors
put forward two kinds of hypotheses, and use the related
knowledge of information theory to realize the target func-
tion by minimizing the mutual information of the target
and maximizing the relative entropy of the two hypotheses.
In [11], the authors study the radar waveform based on infor-
mation theory. In the research, the authors improve the
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general water-filling algorithm, classify the single wave and
multi wave, and define a new linear weighting formula based
on mutual information. In the above articles, where the spec-
tral variance is involved, the original variance formula is
used. Most of the research is based on algorithm, research
conditions, criteria, environment and other aspects, and no
researchers focus on the spectral variance. Or some studies
do not consider the actual situation of the target and the
robustness of the waveform Therefore, this paper studies
the multi-target robust waveform optimization method
based on mutual information when the targets are uncertain,
that is, the prior probability of the target is unknown. Or
some studies only consider single target situation. In this
paper, considering the situation of multiple targets, the con-
cept of harmonic mean is introduced, and the variance of tar-
get spectrum is redefined, which is recorded as harmonic
variance. After introducing harmonic variance, the MI lifting
rate of robust waveform based on harmonic variance relative
to the optimal transmitted waveform within the uncertainty
range has great improvement, and we also associate the lift-
ing rate with the number of targets and other factors, so as
to get the relevant conclusions.

2. Random Target Signal Model

During the whole working process, radar transmits electro-
magnetic waves into space, receives the reflected target echo,
and extracts relevant information including the target from
the echo. In general, we think that the detected targets are
random, and their probability of occurrence is uncertain in
the radar’s work scene. Therefore, we introduce random tar-
get signal model based on MI. As shown in Figure 1, the
expression is

y tð Þ = x tð Þ ∗ h tð Þ + x tð Þ ∗ c tð Þ + n tð Þ ð1Þ

In fact, the multi-target model is similar to the single target
model. The corresponding parameters are the same. The dif-
ference is that as the single target expands to multiple targets,
the each target energy spectrum variance changes.We suppose
that multiple targets are transmitted in the same beam. It is
convenient to study all targets as a whole large target.

In this model, xðtÞ represents the transmitted waveform
with limited energy, hðtÞ represents the impulse response of
random target, cðtÞ represents interference signal, which is
Gaussian random process with zero mean, nðtÞ represents
noise, which is also process of zero mean, and yðtÞ represents

the output waveform at the output of the low-pass filter. In
this random target signal model, we let the duration of the
random target be limited. Therefore, we deal with the
impulse response to the random target hðtÞ, such as finding
a window function with a limited duration and making it
perform a certain operation with the impulse response of
the random target to obtain a random target impulse
response, which is a smooth random process. Figure 2 shows
the signal model of random target with finite duration.

In the finite duration signal model of random target, aðtÞ
is function with duration Tl, and gðtÞ is generalized stochas-
tic stationary process. The expression of the model is

h tð Þ = a tð Þg tð Þ ð2Þ

From the expression, we can know that hðtÞ is the prod-
uct of aðtÞ and gðtÞ. So hðtÞ should also be random stationary
process, and it only works on ½0, Tl�. Therefore, the represen-
tation of the random target signal model for the transmitted
waveform based on MI can be expressed as

y tð Þ = x tð Þ ∗ a tð Þg tð Þð Þ + x tð Þ ∗ c tð Þ + n tð Þ ð3Þ

The process described by this model is process with lim-
ited energy, so in this model xðtÞ and hðtÞ are energy-limited
processes. In the random signal model of finite duration, hðtÞ
is also continuous process. From a mathematical point of
view, hðtÞ is continuously integrable function. Making inte-
gration with hðtÞ, the energy constraint of the random signal
model of finite duration can be obtained

EH =
ð
Tl

h tð Þj j2dt =
ð∞
−∞

H fð Þj j2df ð4Þ

We define the energy spectral density (ESD) as

ξH fð Þ = E H fð Þj j2� � ð5Þ

The energy spectrum variance (ESV) is

σ2H fð Þ = E H fð Þ − μH fð Þj j2� � ð6Þ

where μHð f Þ is the mean of the random target spectrum, and
Hð f Þ is obtained by Fourier transform of hðtÞ, which means
Hð f Þ is spectrum response of hðtÞ.

c (t)

h (t)
x (t) y (t)Ideal

LPF

n (t)

Figure 1: Random target signal model for transmitted waveform
based on MI.

h (t)a (t)

g (t)

Tl

Figure 2: Signal model of finite duration for random target.
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3. Optimal Transmitted Waveform Based on
MI under Random Target Situation

We take the MI between the target information and the radar
echo as the criterion, and the symbol is expressed as IðyðtÞ ;
hðtÞjxðtÞÞ. The performance of radar detection under the
condition of random target is studied, so as to design
the relevant optimal transmitted waveform.

As mentioned in equations (1) and (3), hðtÞ and gðtÞ are
generalized stationary Gaussian random processes. We use
the random target signal model for the transmitted waveform
based on MI, and substitute (2) into (3), then the target echo
output by the low-pass filter can be obtained

y tð Þ = ys tð Þ + yn tð Þ = x tð Þ ∗ h tð Þ + x tð Þ ∗ c tð Þ + n tð Þ ð7Þ

where ysðtÞ represents the signal portion of the target
echo, and ynðtÞ represents the noise interference part of the
target echo

ys tð Þ = x tð Þ ∗ h tð Þ
yn tð Þ = x tð Þ ∗ c tð Þ + n tð Þ

ð8Þ

We define that SSð f Þ is the average power of ysðtÞ in a
finite continuous time, and SNð f Þ is the average power of
ynðtÞ in a finite continuous time for a Gaussian stochastic
process. Mutual information is a measure of the correlation
between two event sets. Mutual information is usually repre-
sented by joint probability distribution function and edge
probability distribution function. In the case of continuous
random variables, the mutual information formula can be
expressed in the form of integral, so the mutual information
between the target information and the radar echo is
expressed as

MI = I y tð Þ ; g tð Þ x tð Þjð Þ = Tl

ð
BW

ln 1 + SS fð Þ
SN fð Þ

� �
df ð9Þ

It can be further sorted out that

MI = Tl

ð
BW

ln 1 + σ2
H fð Þ X fð Þj j2

Tl Scc fð Þ X fð Þj j2 + Snn fð Þ� �
" #

df ð10Þ

In the formula, Sccð f Þ is the power spectral density (PSD)
of the interfering signal, and Snnð f Þ is the PSD of the noise
signal. Detailed derivation can be found in reference [13].

The transmitted waveform based onMI is to optimize the
detection performance of the radar system by promoting the
mutual information between the target information and the
radar echo under certain energy constraints. Therefore, we
should maximize the mutual information between target
information and the radar echo under certain energy con-
straints, and then the optimal transmitted waveform based
on MI is obtained. The energy constraint isð

BW
X fð Þj j2df ≤ EH ð11Þ

We design the optimal transmitted waveform based on
MI by maximizing the mutual information between target
information and radar echo under certain energy constraints.
In other words, we need to find the maximum value of
mutual information of independent variables limited by
energy constraints. Therefore, we use the Lagrange multiplier
method, let (10) be the objective function, and (11) be the
constraint condition, then we can obtain

L X fð Þj j2, λ� 	
= Tl

ð
BW

ln 1 + σ2H fð Þ X fð Þj j2
Tl Scc fð Þ X fð Þj j2 +�

Snn fð Þ

" #
df

+ λ EH −
ð
BW

X fð Þj j2df
� �

ð12Þ

As shown in formula (10), the mutual information
between target information and radar echo is a function of
jXð f Þj2. Then, the objective function (12) is also a function
of jXð f Þj2. We can consider that jXð f Þj2 is the argument of
the function, and LðjXð f Þj2Þ is the dependent variable. We
want LðjXð f Þj2Þ to be the largest, so equation (12) can be
written as

L X fð Þj j2, λ� 	
= Tl

ð
BW

ln 1 + σ2
H fð Þ X fð Þj j2

Tl Scc fð Þ X fð Þj j2 + Snn fð Þ� �
" #

df

− λ
ð
BW

X fð Þj j2df

ð13Þ

It can be further sorted out that

L X fð Þj j2� 	
= Tl ln 1 + σ2

H fð Þ X fð Þj j2
Tl Scc fð Þ X fð Þj j2 + Snn fð Þ� �

" #

− λ X fð Þj j2
ð14Þ

As we want to achieve the goal of maximizing the
objective function, mathematically, we achieve this goal
by derivation. That is, we solve the derivative of independent
variable LðjXð f Þj2Þ for jXð f Þj2, and then let its derivative
equal to zero, that is

dL X fð Þj j2� 	
d X fð Þj j2

= 0 ð15Þ

The derivative results can be organized as

λ = Snn fð Þσ2H fð Þ
A fð Þ X fð Þj j4 + B fð Þ X fð Þj j2 + C fð Þ

ð16Þ
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where Að f Þ, Bð f Þ and Cð f Þ are simplified alternatives

A fð Þ = Scc fð Þ TlScc fð Þ + σ2
H fð Þ� 	

Tl

B fð Þ = Snn fð Þ 2TlScc fð Þ + σ2H fð Þ� 	
Tl

C fð Þ = Snn fð Þj j2

ð17Þ

Defining A = Tl/λ, because λ > 0, so the value of A
must be positive. Meanwhile, we must ensure that the value
of jXð f Þj2 also be positive, and the expression of jXð f Þj2 is
as follows

X fð Þj j2 = max 0, −R fð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 fð Þ + S fð Þ A −D fð Þð Þ

q� �
ð18Þ

where Dð f Þ, Rð f Þ and Sð f Þ are simplified alternatives

D fð Þ = Snn fð Þ
σ2H fð ÞTl

R fð Þ = Snn fð Þ 2TlScc fð Þ + σ2H fð Þ� 	
2Scc fð Þ TlScc fð Þ + σ2H fð Þ� 	

S fð Þ = Snn fð Þσ2H fð Þ
Scc fð Þ TlScc fð Þ + σ2H fð Þ� 	

ð19Þ

For simple calculation, the first-order Taylor approxima-
tion is used for calculation.

We define

Q fð Þ = −R fð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 fð Þ + S fð Þ A −D fð Þð Þ

q
ð20Þ

Available waveform is

X fð Þj j2 = max 0, B fð Þ A −D fð Þð Þ½ � ð21Þ

where �Bð f Þ and �Dð f Þ are simplified alternatives

�B fð Þ = σ2
H fð Þ

2TlScc fð Þ + σ2
H fð Þ

�D fð Þ = TlSnn fð Þ
σ2
H fð Þ

ð22Þ

�A is the first order Taylor series of A, which is still a
constant.

The form after the first-order Taylor series approxima-
tion still needs us to solve the value of jXð f Þj2, and then the
mutual information between the target information and the
radar echo can be obtained by calculation. We can see that
when the value of Sccð f Þ is 0, the value of �Bð f Þ is always 1.
That is to say, when there is no clutter, that is, in the case
of pure noise, the clutter factor is 1.

4. Robust Waveform Design Based on
Harmonic Variance and MI

In the actual working scene of the radar, most of the target
information is not completely known, which leads to the real
target cannot be accurately detected. We believe that there is
a certain uncertainty range in the real target spectrum. The
uncertainty range represents the uncertainty of its target.
The larger the uncertainty range is, the greater the uncer-
tainty of the target is. Meanwhile, we believe that there is
an optimal transmitted waveform in the uncertainty range,
which makes the detection performance of radar system
improve as much as possible. If a waveform can be found
so that it can get the optimal transmitted waveform in the
most unfavorable case of the uncertainty range, then it will
be able to make the detection performance of the radar sys-
tem better than that of the radar system under the optimal
transmitted waveform. Therefore, we get harmonic robust
transmitted waveform design. Here, we will focus on the
multi-target situation.

In the working process of radar, for multi-target scene,
because the information of each target is not completely
known, the occurrence probability of each target is uncertain.
However, the sum of occurrence probability of these targets
should be equal to 1.

Supposing in the multi-target scene, there exists an upper
bound and a lower bound in the uncertainty range, and the
lower bound is known. Let the uncertainty range beεi, then

Hi fð Þ ∈ εi = lik ≤Hi f kð Þ ≤ uik, k = 1, 2⋯ , kf g ð23Þ

where i = 1, 2:⋯, k represent different targets, and the uncer-
tainty range of each target is different.

There is an energy constraint in the optimal transmitted
waveform design based on MI mentioned above. Similarly,
there is also an optimal criterion in the design of the har-
monic robust transmitted waveform. The criterion is a func-
tion regarding jXð f Þj2 and σ2Hð f Þ, and it can be written as
ξðjXð f Þj2, σ2Hð f ÞÞ. It should be noted that in the case of single
target and multiple targets, σ2

Hð f Þ is different. Harmonic
transmitted waveform design method should meet

max
X fð Þj j2

min
H fð Þj j∈ε

ξ X fð Þj j2, σ2
H fð Þ� 	 Ð

BW
X fð Þj j2df≤EH

����
� 


ð24Þ

The solution to the maximin optimal problem is

ξ Xmax min fð Þ�� ��2, σ2H fð Þ
� ����Ð

BW
Xmax min fð Þj j2df≤EH

≥ ξ Xmax min fð Þ�� ��2, σ2Hworst
fð Þ

� ����Ð
BW

Xmax min fð Þj j2df≤EH

≥ ξ X fð Þj j2, σ2Hworst
fð Þ

� ����Ð
BW

X fð Þj j2df≤EH

ð25Þ

It can be seen from the above inequality that ξðjXð f Þj2,
σ2
Hworst

ð f ÞÞjÐ
BW

jXð f Þj2df≤EH
represents the optimal transmitted
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waveform in the most unfavorable situation of Hð f Þ, that is,
in caseHworstð f Þ. The worst target waveform spectrum corre-
sponding to Hworstð f Þ in the most unfavorable situation in
uncertainty range can minimize the objective function out-
put at the end of the receive filter, so that the harmonic robust
transmitted waveform in this uncertainty range is the best.
Next, we will introduce the MI-based harmonic robust wave-
form design in multi-target situations.

It can be seen from formula (24) that the harmonic
robust transmitted waveform based on MI should meet the
following criteria

max
~X fð Þj j2

min
Hi fð Þj j∈εi

MI ~X fð Þ�� ��2, σ2H fð Þ
� ����Ð

BW
~X fð Þj j2df≤EH

( )
ð26Þ

From the above, the expression of MI is

MI ~X fð Þ�� ��2� �
= Tl

ð
BW

ln 1 + σ2
H fð Þ ~X fð Þ�� ��2

Tl Scc fð Þ ~X fð Þ�� ��2 + Snn fð Þ
� �

2
4

3
5df
ð27Þ

We use the Lagrange multiplier method and introduce a
Lagrange multiplier to get

L ~X fð Þ�� ��2, λ� �
= Tl

ð
BW

ln 1 + σ2
H fð Þ ~X fð Þ�� ��2

Tl Scc fð Þ ~X fð Þ�� ��2 + Snn fð Þ
� �

2
4

3
5df

+ λ EH −
ð
BW

~X fð Þ�� ��2df� �
ð28Þ

We will regard j~Xð f Þj2 as an argument of a function. If

you want to make Lðj~Xð f Þj2Þ maximum, formula (28) can
be written in the following form

L ~X fð Þ�� ��2, λ� �
= Tl

ð
BW

ln 1 + σ2
H fð Þ ~X fð Þ�� ��2

Tl Scc fð Þ ~X fð Þ�� ��2 + Snn fð Þ
� �

2
4

3
5df

− λ
ð
BW

~X fð Þ�� ��2df
ð29Þ

It can be further sorted out that

L ~X fð Þ�� ��2� �
= Tl ln 1 + σ2H fð Þ ~X fð Þ�� ��2

Tl Scc fð Þ ~X fð Þ�� ��2 + Snn fð Þ
� �

2
4

3
5

− λ ~X fð Þ�� ��2
ð30Þ

Solve the derivative of independent variable j~Xð f Þj2 for

Lðj~Xð f Þj2Þ, and then its derivative is equal to zero, that is

dL ~X fð Þ�� ��2� �
d ~X fð Þ�� ��2 = 0 ð31Þ

The derivative results can be organized as

~λ = Snn fð Þσ2H fð Þ
~A fð Þ ~X fð Þ�� ��4 + ~B fð Þ ~X fð Þ�� ��2 + ~C fð Þ

ð32Þ

where ~Að f Þ, ~Bð f Þ and ~Cð f Þ are simplified alternatives

~A fð Þ = Scc fð Þ TlScc fð Þ + σ2H fð Þ� 	
Tl

~B fð Þ = Snn fð Þ 2TlSnn fð Þ + σ2H fð Þ� 	
Tl

~C fð Þ = Snn fð Þj j2

ð33Þ

Defining ~A = Tl/~λ, because ~λ ≥ 0, so the value of A must
be positive. At the same time, we must also guarantee that

the value of j~Xð f Þj2 be positive. For simplicity of calculation,
we introduce a first-order Taylor series, and the expression
after first-order Taylor series approximation is as follows

X
_max min

fð Þ
����

����
2
= max 0, −R

_
fð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R
_2

fð Þ + S
_

fð Þ A
_
−D

_
fð Þ

� �r" #

ð34Þ

where D
_ð f Þ, R_ð f Þ and S

_ð f Þ are simplified alternatives

D
_

fð Þ = Snn fð Þ
Tlσ

2
H fð Þ ð35Þ

R
_

fð Þ = Snn fð Þ 2TlScc fð Þ + σ2
H fð Þ� 	

2Scc fð Þ TlScc fð Þ + σ2H fð Þ� 	 ð36Þ

S
_

fð Þ = Snn fð Þσ2H fð Þ
Scc fð Þ TlScc fð Þ + σ2

H fð Þ� 	 ð37Þ

Formula (35), (36), and (37) are the results of first-order
Taylor approximation. From the above derivation, we can get
the right half of inequality (25), that is

MI ~X
max min

fð Þ
��� ���2, σ2Hworst

fð Þ
� �����Ð

BW
~X
max min

fð Þ
�� ��2df≤EH

≥MI ~X fð Þ�� ��2, σ2Hworst
fð Þ

� ����Ð
BW

~X fð Þj j2df≤EH

ð38Þ

We substitute the designed waveform spectrum result
into the expression (27) of MI, and perform approximate
integral operation on it
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We define ~Qð f kÞ = −~Rð f kÞ +ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~R2ð f kÞ + ~Sð f kÞð~A − ~Dð f kÞÞ

q
, therefore, Hworstð f Þ is the

most unfavorable spectrum in the uncertain range, which is
the worst case. We define the target spectrum variance as

σ2L fð Þ = 1
M

〠
M

i=1
PiLi fð Þ − M

∑M
i=1 1/PiLi fð Þð Þ

�����
�����
2

ð40Þ

where Hworstð f Þ = Lð f Þ, pi is the occurrence probability of
each target, andM is the target number. Therefore, we can get

MI ~X
max min

fð Þ
��� ���2, σ2

H fð Þ
� �����Ð

BW
~X
max min

fð Þ
�� ��2df≤EH

≥MI ~X
max min

fð Þ
��� ���2, σ2

Hworst
fð Þ

� �����Ð
BW

~X
max min

fð Þ
�� ��2df≤EH

ð41Þ

It can be seen that harmonic transmitted waveform
design technology considers the transmitted waveform in
the worst case, so when designing the waveform, we only con-
sider the lower bound of the uncertainty range. In the uncer-
tainty range, harmonic robust transmitted waveform design
concerns that how the transmitted waveform is affected by
the uncertainty of the target spectrum. On the basis of
guaranteeing the original function of harmonic robust trans-
mitted waveform, the MI-based harmonic robust transmitted
waveform design pays more attention to the relative improve-
ment and the relationship with target number of its wave-
form’s MI comparing to that of the optimal waveform in
this uncertainty range.

5. Advantage of Harmonic Variance and
Analysis of Performance Parameter

In the radar working environment, the target captured by the
radar system can be either a single target or multiple targets.
For multi-target detection, the probability of each target
appearing is uncertain.

In actual scenes, the real target cannot be accurately cap-
tured, and the robust waveform design uses spectrum estima-
tion to detect the uncertainty range of the target spectrum.
The larger the difference of spectrum amplitude between
the upper and lower bounds of the uncertainty range is, the
greater the uncertainty of the target spectrum is. The real tar-
get spectrum changes within this uncertainty range, and
robust technology is a good way to guarantee performance
in the most unfavorable situations.

The optimal waveform design of the upper and lower
bounds of the uncertainty range can greatly improve the per-
formance of the radar system. In the robust waveform design,
the lower limit of the target uncertainty range is themost unfa-
vorable target spectrum. Therefore, only the lower bound of
the uncertainty range needs to be considered. In other words,
we should only consider the most unfavorable conditions. In
the robust waveform design, the target spectrum is Hð f Þ and
the target energy spectrum variance (ESV) is σH

2ð f Þ. Since
we only consider the situation under the most unfavorable
conditions, jLð f Þj is the target spectrum under the most unfa-
vorable conditions, then σL

2ð f Þ is the ESV in the most unfa-
vorable case, that is σL

2ð f Þ is the lower bound of σH
2ð f Þ.

Therefore, our follow-up research will be based on σL
2ð f Þ.

We take into account that if the robust technology is still
applicable when the most unfavorable conditions become
more unfavorable, then the uncertainty range applicable to
the robust technology can be increased. For the most unfa-
vorable conditions, we only need to consider the σL

2ð f Þ,
that is, reducing the target spectral variance in the most
unfavorable situation.

MI ~X
max min

fð Þ
��� ���2,H fð Þ

� �

= Tl 〠
k

k=1
Δf ln 1 +

σ2
H f kð Þ ~X

max min
f kð Þ

��� ���2
Tl Scc f kð Þ ~X

max min
f kð Þ

��� ���2 + Snn f kð Þ
� �

2
664

3
775

= Tl 〠
k

k=1
Δf ln 1 +

σ2
H f kð Þ ⋅max Snn f kð Þ, Scc f kð Þ~Q f kð Þ + Snn f kð Þ

� �
Tl ⋅max Snn f kð Þ, Scc f kð Þ~Q f kð Þ + Snn f kð Þ

� �
2
4

3
5

≥ Tl 〠
k

k=1
Δf ln 1 +

σ2
L f kð Þ ⋅max Snn f kð Þ, Scc f kð Þ~Q f kð Þ + Snn f kð Þ

� �
Tl ⋅max Snn f kð Þ, Scc f kð Þ~Q f kð Þ + Snn f kð Þ

� �
2
4

3
5

=MI ~X
max min

fð Þ
��� ���2,Hworst fð Þ

� �

ð39Þ
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In mathematics, averages are divided into three catego-
ries: arithmetic averages, harmonic averages, and geometric
averages. Among these averages, geometric averages are
mainly used to calculate the average development rate, while
the other two averages are relatively broad usage. Therefore,
we consider and compare the arithmetic average and the har-
monic average. An example is as follows: suppose that there
are two students A and B who participate in the selection of
the competition, and finally determine the candidate to pass
the selection based on the average of the two students’ results
in each project. The scores for A are 40, 86, 79, 78, 84, 81, 92,
and the scores for B are 56, 76, 72, 83, 80, 81, 78, respectively.

If calculated with the arithmetic mean, then

�XA = 1
n
〠X = 77:1429

�XB =
1
n
〠X = 75:1429

ð42Þ

The result is admission A.
If the harmonic mean is used, then

�XA =
n

∑1/n = 71:3567

�XB =
n

∑1/n = 73:9815
ð43Þ

The result is admission B.
It can be seen from above that A is only due to the

achievement of a project with a score of 40, which leads to
a relatively small harmonic mean. It means that the harmonic
mean pays more attention to the influence of smaller values.
According to the variance standard formula and the har-

monic mean formula, we introduce a new the target spectral
variance. In order to facilitate the distinction, the new target
spectral variance will be called the harmonic target spectral
variance (HESV), referred to as the harmonic variance (HV).

Let the HESV be σL
2ð f Þ and its expression is

σ2
L fð Þ = 1

M
〠
M

i=1
PiLi fð Þ − M

∑M
i=1 1/PiLi fð Þð Þ

�����
�����
2

ð44Þ

The expression of the original target ESV is

σ2H fð Þ = 〠
M

i=1
Pi Hi fð Þj j2 − 〠

M

i=1
PiHi fð Þ

�����
�����
2

ð45Þ

We simulated the original target ESV and HV under
exactly the same conditions. As can be seen from Figure 3,
the HV value is much smaller than the original ESV value.
It means that the harmonic variance can well meet our needs
to reduce the lower bound of the uncertainty range.

At the same time, in Figures 4 and 5, we simulate the
fuzzy model and waveform spectrum results based on har-
monic variance for multiple targets. Taking three targets as
an example, Figure 4 shows the uncertain range of three
targets. During the range, the upper bound of the uncer-
tainty range is composed of the spectrum of the real target
plus a random number, and the lower bound is composed
of the spectrum of the real target minus a random number.
Figure 5 shows the waveform spectrum of the three targets
based on the harmonic variance results. In Figure 5, the
first small graph shows the spectrum of the real target
ESV, the most unfavorable target ESV, and the interference
signal of the three targets. The second small graph shows
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Figure 3: Comparison of the numerical values of the original target ESV and HV.
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the optimal transmitted waveform spectrum and the har-
monic robust spectrum based onMI in the uncertainty range.
In Figure 5, we can see that the main energy is allocated
around the sampling frequency with a normalized frequency
of -0.2 and 0.1, respectively, and the designed optimal trans-
mitted waveform spectrum and the robust waveform spec-
trum based on MI in the uncertainty range are the same as
and the real target spectrum. That is to say, after replacing
the original variance with the harmonic variance, the robust
waveform can still achieve its original features.

In robust waveform design, we concern how the trans-
mitted waveform designed based on MI is affected by the
uncertainty of the target spectrum. The design process in
the most unfavorable situation, that is, the lower bound of
the uncertainty range, can ensure the performance of the
radar system and design the robust waveform. After modify-
ing the variance in the robust waveform to the harmonic var-
iance, the part we pay more attention to is the MI lifting rate
of robust waveform based on harmonic variance relative to
the optimal transmitted waveform in the uncertainty range.
Let the relative lifting rate be η, the MI of robust waveform
based on harmonic variance be MIHESV , and the MI of the
optimal transmitted waveform in the uncertainty range be
MIESV . We can obtain the formula for the lift rate

η = MIHESV −MIESV
MIESV

ð46Þ

The improvement of the lifting rate means that the MI of
the harmonic robust waveform is improved more than that
of the optimal transmitted waveform in the uncertainty

range, which means that the performance improvement of
the harmonic robust waveform is better than the optimal
transmitted waveform in the uncertainty range.

6. Simulation Results and Analysis

In order to prove our ideas more intuitively, we conducted
related simulation experiments. In the simulation experi-
ment, we set the number of sampling points to 256 and the
sampling interval to 1/256, and we assume that the interfer-
ence waveform, noise waveform, and target energy spectrum
variance are all known. It is known that the occurrence fre-
quency of the target is less than 1 and is a positive value. At
the same time, the total appearance probabilities of the tar-
gets should be 1.

6.1. Comparative Analysis of MI Lifting Rate Based on Original
Target Spectrum Variance and Harmonic Variance. In order
to compare the lifting rate situation of original target spec-
trum variance and harmonic variance, we conduct a lot of
simulations and analyze them. The following six Figures 6-
8 show the comparison of MI performance based on original
variance and harmonic variance with three, four and five tar-
gets, respectively. We know that MI can be used to represent
the detection performance of the radar system. The figures
clearly show that the MI of the robust waveform based on
harmonic variance is higher than that of the optimal trans-
mitted waveform in the uncertainty range. That is to say,
the performance of the robust waveform based on harmonic
variance is better than that of the optimal transmitted wave-
form in the uncertain range.
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Figure 4: Fuzzy model of multiple targets.
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After determining that the designed robust waveform
based on harmonic variance can still achieve the effect of
the original variance, we aim at MI lifting rate with harmonic
variance to research. According to the data in Figure 6 to
Figure 8, we calculated the relative lifting rate η. As shown
in Tables 1–3, RESV (Relative lifting rate of ESV) in the table

is the relative lifting rate based on the original target spec-
trum variance, and RHESV (Relative lifting rate of HESV)
is the relative lifting rate based on the harmonic variance.
In order to facilitate observation, we integrated the calculated
relative lifting rates of the target numbers three, four, and five
into one graph (Figure 9). The first small figure is the relative
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Figure 5: Waveform spectrum results of multiple targets.
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Figure 6: MI comparison of three targets based on the original variance and harmonic variance.
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lifting rate of the harmonic variance and the original variance
in the situation of three targets, and the second small figure
and the third small figure are four targets and five targets,

respectively. We can clearly see that under the same condi-
tions, RHESV is higher than RESV, no matter what the num-
ber the target is.
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Figure 7: MI comparison of four targets based on original variance and harmonic variance.
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Figure 8: MI comparison of five targets based on original variance and harmonic variance.
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6.2. Comparative Analysis of MI Lifting Rate and the Number
of Targets Based on Harmonic Variance under the Condition
of Unequal Probability of Targets. For multi-target scenarios,
there are multiple targets in the radar launch environment
that need to be detected, and the occurrence probability of
each target among all the targets is uncertain. In most cases,
the occurrence probability of each target is not exactly the
same, but the total occurrence probability of these targets is
1. Next, we will study the case in which the occurrence prob-
ability of each target is not equal.

We take the target with the number three, four, five, six,
seven, randomly determine their occurrence probability,
and make the total probability of the targets be 1. We conduct
a simulation analysis, and obtain the MI performance com-
parison between the original variance and harmonic variance
with the number of targets three, four, five, six, seven. Then
we further calculate the MI lifting rate of robust waveform
based on harmonic variance relative to the optimal transmit-
ted waveform in the uncertainty range when the target num-
ber is three, four, five, six, seven. Table 4 shows the MI lifting

Table 1: The relative lifting rate of three targets.

1 2 3 4 5 6 7 8 9 10

RESV 0.6000 0.7143 0.6471 0.5957 0.5490 0.4727 0.4561 0.4166 0.3870 0.3438

RHESV 0.7333 0.7272 0.6981 0.7000 0.6667 0.6429 0.6216 0.5897 0.6000 0.5663

Table 2: The relative lifting rate of four targets.

1 2 3 4 5 6 7 8 9 10

RESV 0.6667 0.7067 0.6522 0.6038 0.5546 0.5600 0.5185 0.5000 0.4828 0.4533

RHESV 0.9048 0.7742 0.7368 0.7045 0.6667 0.5849 0.5714 0.5333 0.4921 0.4769

Table 3: The relative lifting rate of five targets.

1 2 3 4 5 6 7 8 9 10

RESV 0.6364 0.7500 0.7500 0.6957 0.6800 0.5926 0.5634 0.5333 0.4839 0.4688

RHESV 1.5714 1.3043 1.1333 1.0294 0.9000 0.8605 0.8174 0.7200 0.6731 0.6296
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Figure 9: Comparison of relative lifting rate.
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rate of robust waveform based on harmonic variance relative
to the optimal transmitted waveform in the uncertainty range
with different target numbers.

In order to facilitate observation and analysis, we put MI
lifting rate η with target number three, four, five, six, seven in
a graph for comparison, as shown in Figure 10. From the fig-
ure, we can intuitively see that as the number of targets
increases, MI lifting rate of robust waveform based on har-
monic variance relative to the optimal transmitted waveform
in the uncertainty range also increases. That is to say, under
the same conditions, the greater the number of targets is,
the more theMI lifting rate of robust waveform based on har-
monic variance relative to the optimal transmitted waveform
in the uncertainty range is. Meanwhile the radar performance
improves more. In short, under the same conditions as the
optimal transmitted waveform in the uncertain range, the
more the number of targets is, the better performance the
robust waveform based on harmonic variance is.

6.3. Comparative Analysis of MI Lifting Rate and the Number
of Targets Based on Harmonic Variance under the Condition
of Equal Probability of Targets.We can determine that in the
case of multiple targets, the occurrence probability of each
target is uncertain. In most cases, the occurrence probability
of each target is not the same, but the total occurrence prob-
ability is 1. However, in many cases of unequal probability,
the case of equal probability of all targets can be regarded
as a special case of unequal probability. Then, we also distin-
guish the case of equal probability of all targets from the case
of unequal probability, and consider the research separately.

Figures 11 and 12 show the relationship between the rel-
ative lifting rate and the number of targets in the situation of
unequal probability and equal probability target when adopt-
ing harmonic variance. In the figure, the abscissa is the target
number, and the ordinate is the relative lifting rate, and each
line represents its waveform energy distribution is exactly the
same. As can be seen in Figure 11, the line starts to rise
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Figure 10: MI lifting rate of robust waveform based on harmonic variance relative to the optimal transmitted waveform in the uncertainty
range with different target numbers.

Table 4: MI lifting rate of robust waveform based on harmonic variance relative to the optimal transmitted waveform in the uncertainty range
with different target numbers.

1 2 3 4 5 6 7 8 9 10

Three targets 0.7333 0.7272 0.6981 0.7000 0.6667 0.6429 0.6216 0.5897 0.6000 0.5663

Four targets 0.9048 0.7742 0.7368 0.7045 0.6667 0.5849 0.5714 0.5333 0.4921 0.4769

Five targets 1.5714 1.3043 1.1333 1.0294 0.9000 0.8605 0.8174 0.7200 0.6731 0.6296

Six targets 2.0000 1.8750 1.3333 1.2857 1.0000 1.0000 0.9474 0.8750 0.7273 0.7333

Seven targets 2.1111 1.9067 1.5500 1.3333 1.2222 1.0667 0.9394 0.8857 0.8108 0.7436
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abruptly at the abscissa of 4, that is, when the target probabil-
ities are not equal, the relative lifting rate of the target num-
ber greater than or equal to 4 is much better than the lifting
rate of the target number less than 4. In a word, in the situa-
tion of unequal probability, the robust waveform design

based on harmonic variance is more suitable for the case
when the number of targets is more than 4. In Figure 12,
although the line has some fluctuations before the abscissa
5, it starts to rise abruptly at abscissa 5, that is, when the tar-
get probabilities are equal, the relative lifting rate of the target
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Figure 11: The relationship between the relative lifting rate and the number of targets in the situation of unequal probability target.
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Figure 12: The relationship between the relative lifting rate and the number of targets in the situation of equal probability target.

14 Advances in Mathematical Physics



number greater than 5 is much better than that of the target
less than or equal to 5. In a word, in the situation of equal
probability, the robust waveform design based on harmonic
variance is more suitable for the case when the number of tar-
gets is more than 5.

7. Conclusion

Adaptive waveform design is very important for cognitive
radar. Generally, in the real scene, the targets detected by
the radar are not known, and they are all random. We should
consider the uncertainty of target and use robust technology
for transmitted waveform. Therefore, on the basis of a variety
of radar transmitted waveforms that have been studied, we
set up a random target signal model based on MI and derive
the optimal transmitted waveform. The real targets are ran-
dom, so their emergence has certain uncertainty. The real
target spectrum has certain uncertainty range. In order to
make the worst case represented by the lower bound of the
range more unfavorable, we introduce harmonic variance to
make the lower bound smaller. Then we define the MI lifting
rate of robust waveform based on harmonic variance relative
to the optimal transmitted waveform in the uncertainty
range. Simulation results show that, in the situation of multi-
ple targets, compared to the original variance, the MI lifting
rate of robust waveform based on harmonic variance relative
to the optimal transmitted waveform in the uncertainty range
has great improvement. Under the same conditions as the
optimal transmitted waveform in the uncertain range, the
more the number of targets is, the better performance the
robust waveform based on harmonic variance is. In the situ-
ation of unequal probability, the robust waveform design
based on harmonic variance is more suitable for the case
when the number of targets is more than 4. In the situation
of equal probability, the robust waveform design based on
harmonic variance is more suitable for the case when the
number of targets is more than 5. In a word, robust waveform
based on harmonic variance and MI is more suitable for
more targets.

Data Availability

All data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work was supported by the Natural Science Foundation
of Hebei Province (No. F2018501051).

References

[1] X. Cheng, A. Aubry, D. Ciuonzo, A. De Maio, and X. Wang,
“Robust waveform and filter Bank Design of Polarimetric

Radar,” IEEE Transactions on Aerospace and Electronic Sys-
tems, vol. 53, no. 1, pp. 370–384, 2017.

[2] Z. Zhu, S. Kay, and R. S. Raghavan, “Information-theoretic
optimal radar waveform design,” IEEE Signal Processing Let-
ters, vol. 24, no. 3, pp. 274–278, 2017.

[3] L. Wang, P. V. Brennan, H. Wang, and K. K. Wong, “Minimax
robust jamming techniques based on signal-to-interference-
plus-noise ratio and mutual information criteria,” IET Com-
munications, vol. 8, no. 10, pp. 1859–1867, 2014.

[4] W. Yuxi, H. Guoce, and L. Wei, “Waveform design for radar
and extended target in the environment of electronic warfare,”
Journal of Systems Engineering and Electronics, vol. 29, no. 1,
pp. 48–57, 2018.

[5] B. Wang, J. Wang, X. Song, and Y. Han, “A new waveform
design method for cognitive radar,” in 2009 Third Interna-
tional Symposium on Intelligent Information Technology Appli-
cation, pp. 176–179, Shanghai, China, November 2009.

[6] L.Wang, W. Zhu, Y. Zhang, Q. Liao, and J. Tang, “Multi-target
detection and adaptive waveform Design for Cognitive MIMO
radar,” IEEE Sensors Journal, vol. 18, no. 24, pp. 9962–9970,
2018.

[7] H.-S. Kim, N. A. Goodman, C. K. Lee, and S. I. Yang,
“Improved waveform design for radar target classification,”
Electronics Letters, vol. 53, no. 13, pp. 879–881, 2017.

[8] C. Shi, F. Wang, M. Sellathurai, J. Zhou, and S. Salous, “Power
minimization-based robust OFDM radar waveform design for
radar and communication systems in coexistence,” IEEE
Transactions on Signal Processing, vol. 66, no. 5, pp. 1316–
1330, 2018.

[9] B. Wang, X. Chen, S. Li, F. Xin, and J. Wang, “Robust wave-
form design based on jammer games in cognitive radar,” in
2018 10th International Conference on Communications, Cir-
cuits and Systems (ICCCAS), pp. 195–198, Chengdu, China,
December 2018.

[10] Y. Yao, P. Miao, and Z. Chen, “Cognitive waveform optimiza-
tion for phase-modulation-based joint radar-communications
system,” IEEE Access, vol. 8, pp. 33276–33288, 2020.

[11] A. Leshem, O. Naparstek, and A. Nehorai, “Information theo-
retic adaptive radar waveform design for multiple extended
targets,” IEEE Journal of Selected Topics in Signal Processing,
vol. 1, no. 1, pp. 42–55, 2007.

[12] D. Guo, S. Shamai, and S. Verdu, “Mutual information and
minimum mean-square error in Gaussian channels,” IEEE
Transactions on Information Theory, vol. 51, no. 4, pp. 1261–
1282, 2005.

[13] M. R. Bell, “Information theory and radar waveform design,”
IEEE Transactions on Information Theory, vol. 39, no. 5,
pp. 1578–1597, 1993.

[14] J. Bae and N. A. Goodman, “Target recognition with high-
fidelity target signatures and adaptive waveforms in MIMO
radar,” in 2015 IEEE 6th International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAM-
SAP), pp. 285–288, Cancun, Mexico, December 2015.

[15] C. Shi, F. Wang, M. Sellathurai, and J. Zhou, “Low probability
of intercept-based distributed MIMO radar waveform design
against barrage jamming in signal-dependent clutter and
coloured noise,” IET Signal Processing, vol. 13, no. 4,
pp. 415–423, 2019.

15Advances in Mathematical Physics


	Multi-Target Robust Waveform Design Based on Harmonic Variance and Mutual Information
	1. Introduction
	2. Random Target Signal Model
	3. Optimal Transmitted Waveform Based on MI under Random Target Situation
	4. Robust Waveform Design Based on Harmonic Variance and MI
	5. Advantage of Harmonic Variance and Analysis of Performance Parameter
	6. Simulation Results and Analysis
	6.1. Comparative Analysis of MI Lifting Rate Based on Original Target Spectrum Variance and Harmonic Variance
	6.2. Comparative Analysis of MI Lifting Rate and the Number of Targets Based on Harmonic Variance under the Condition of Unequal Probability of Targets
	6.3. Comparative Analysis of MI Lifting Rate and the Number of Targets Based on Harmonic Variance under the Condition of Equal Probability of Targets

	7. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

