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Nonlinear hydroelastic interaction among a floating elastic plate, a train of deepwater waves, and a current which decays
exponentially with depth is studied analytically. We introduce a stream function to obtain the governing equation with the
dynamic boundary condition expressing a balance among the hydrodynamic, the shear currents, elastic, and inertial forces. We
use the Dubreil-Jacotin transformation to reformulate the unknown free surface as a fixed location in the calculations. The
convergent analytical series solutions for the floating plate deflection are obtained with the aid of the homotopy analysis method
(HAM). The effects of the shear current are discussed in detail. It is found that the phase speed decreases with the increase of
the vorticity parameter in the opposing current, while the phase speed increases with the increase of the vorticity parameter in
the aiding current. Larger vorticity tends to increase the horizontal velocity. In the opposing current, the horizontal velocity
under the wave crest delays more quickly as the depth increases than that of waves under the wave trough, while in the aiding
current case, there is the opposite effect. Furthermore, the larger vorticity can sharpen the hydroelastic wave crest and smooth

the trough on an opposing current, while it produces an opposite effect on an aiding current.

1. Introduction

Hydroelastic interaction between a floating deformable
plate and water flows has been a long-standing and hot
issue under the rapidly growing demand for exploiting
ocean resources and utilizing marine space. For example,
hydroelastic interaction has become an indispensable factor
during designing a very large floating structure (VLES) as a
storage facility, a mobile offshore base, or even an aircraft
airport, which also is available to analyze the floating ice
sheet in the polar region, ice-breaking with air-cushioned
vehicles, and marine climate.

There is an extensive literature on the theory of nonlinear
hydroelastic interaction between a floating elastic plate and
the water waves. Most of the relevant research is under the
hypothesis that there is no current in oceanic environments,
such as Refs. [1-6]. In fact, there are various reasons such as
wind, thermal, earth rotation, tidal effects, the vertical varia-
tion of water salinity, and temperature which frequently gen-
erate ocean currents. Some authors have considered the

problem of hydroelastic waves propagating on a current.
Schulkes et al. [7] first built the governing equation with
the boundary conditions to research the effect of the uniform
flow in the underlying water on a floating ice plate. It is found
that the flow with constant velocity had an apposite influence
slightly the dispersion at very short wavelengths and the ice
profile was no longer aligned with the source velocity but
rotated through an angle. Bhattacharjee and Sahoo [8] ana-
lyzed the interaction between current and flexural gravity
waves generated due to a floating elastic plate under the
assumptions of linearized theory and studied the effect of
current on the wavelength, phase velocity, and group velocity
of the flexural gravity waves in detail. Bhattacharjee and
Sahoo [9] extended their study [8] to the generation of flex-
ural gravity waves resulting from initial disturbances at a
point and derived asymptotic depressions for the transient
flexural gravity for large distances and times by the applica-
tion of the method of the stationary phase. Mohanty et al.
[10] studied a combined effect of the uniform current and
compressive force on time-dependent flexural gravity wave
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motion in both the cases of single and two-layer fluids and
derived the integral forms of Greens function and the velocity
potential by using the method of stationary phase. Lu and
Yeung [11] studied unsteady hydroelastic waves generated
by point loads in a uniform current and found the flexural
gravity wave motion depended on the ratio of current speed
to phase or group speeds. Wang et al. [12] considered nonlin-
ear hydroelastic waves generated due to a floating elastic
plate in an underlying uniform current and studied analyti-
cally the effects of the uniform current on the nonlinear
hydroelastic waves.

All the aforementioned literatures were based on the
assumption that the underlying current is uniform in the
fluid and hence ignore the effects of the vorticity distribution.
However, in many situations, the current velocity in the ver-
tical direction is mostly nonuniform and the vorticity
appears (e.g., wind-driven current and tidal current). Hydro-
elastic waves with a linear shear or constant-vorticity current
were investigated by many authors. Bhattacharjee and Sahoo
[13] analyzed the effect of a linear shear current on the prop-
agation of flexural gravity waves is analyzed in the frame of
linearized shallow-water theory and derived the reflection
and transmission coeflicients based on the conservation of
energy flux and the continuity of the vertical deformation
of the ice sheet. Gao et al. [14] studied hydroelastic solitary
waves in the presence of a linear shear current in the limit
of deep water, and traveling solitary waves on water of infi-
nite depth were computed for different values of vorticity
and new generalised solitary waves were discovered.
Recently, Gao et al. [15] investigated hydroelastic waves on
water of finite depth interacting with a linear shear current
in inviscid flows and derive a nonlinear Schrodinger equation
for quasimonochromatic wavetrains and discuss the various
behaviors of the coefficient of the nonlinear term from the
NLS at different parameter values by employing a conformal
mapping technique.

It is noted that the homotopy analysis method (HAM)
[16, 17], which does not rely on any small physical parame-
ter, has been applied to solve analytically the problem of
the nonlinear wave-current interaction. Cheng et al. [18]
investigated a train of periodic deepwater waves propagating
on a steady shear current with a vertical distribution of vor-
ticity by using the HAM and analyzed the influences of an
exponential shear current on a train of waves in detail. Cang
et al. [19] extend Cheng et al’s study [18] on the effect of a
background shear flow on periodic water waves by introduc-
ing a new parameter which measures the depth of the
background shear current, and the impact of the depth
parameter on the wave phase speed, the velocity profiles,
and the maximum wave height were given. These works
encouraged us to apply the HAM to the complex nonlinear
problem of hydroelastic interaction among a floating elastic
plate, water waves, and exponential shear currents.

In this work, our aim is to obtain accurate analytic
approximations of nonlinear hydroelastic waves generated
due to a floating elastic plate in a current which decays expo-
nentially with depth. The influences of the exponential shear
current on the hydroelastic wave profile, the wave phase
speed, and the horizontal velocity profile are investigated
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and discussed in detail with the aid of the HAM. The
remainder of the paper is organized as follows: In Section
2, the mathematical model of nonlinear hydroelastic interac-
tion among a floating elastic plate, water waves, and expo-
nential shear currents is formulated, and the Dubreil-
Jacotin transformation is introduced to reformulate the orig-
inal moving boundary problem into a fixed one. In Section 3,
we present the solution procedure and the approximation
and iteration of solutions in the frame of the HAM. In Sec-
tion 4, the results of numerical calculations and the influence
of the shear current are shown. Finally, concluding remarks
are given in Section 5.

2. Mathematical Description

Consider an incompressible flow of an inviscid but rotational
fluid with a two-dimensioned case, we choose Cartesian
coordinates oxz in which the x-axis coincides with the
undisturbed fluid-plate interface, while the z-axis points
vertically upward. The floating elastic plate extends to
the infinity along the x-axis. When the traveling waves
exist, we use the moving coordinates (x —ct,z) — (x, 2)
to eliminate time from the fluid-plate region, where c is
the wave speed. The conservation of mass for a two-
dimensional incompressible fluid is

ou+U-c) ov

3 + 3 =0, (1)

where (u, v) are the motions related to wave-current inter-
action in the (x,y) directions, U is the mean x-directed
current, and the wave speed ¢ appears as negative due to
the translation of the coordinate axis. We introduced a
stream function y(x, z), which satisfies exactly

u+U-c= —ang,z),
g 2)
(w2
T oox

Substituting the stream function into the governing
equation derived by Lamb [20], we denote the vorticity
distribution Q as

ov B o(u+U~-c)
ox dy

Here, we study the shear current decay exponentially
with depth, and let Q(y) =y exp (—y), where y is a phys-
ical parameter determining the strength of the fluid vortic-
ity. When u <0, the current moves in the same direction
of wave propagation and then is called the aiding current.
When p>0, the current is called the opposing current
which moves in the opposing direction of wave propaga-
tion [21].
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FiGURE 1: The coordinate transformation.

The impermeable bottom condition at deep water can be
written as

0

a_‘ﬁ =0, (z=-00). (4)
With the assumption that there is no cavitation between

the fluid and the plate with on draft, the unknown fluid-

plate interface z = {(x) is a streamline. Without loss of gener-

ality, the kinematic boundary conditions on z = {(x) can be

written as

y =0. (5)

The nonlinear dynamic boundary conditions on the
unknown fluid-plate interface streamline is described as

1 2 p e _
5|VV/| +?+9C—Qa (6)
where p, is the pressure on the plate-water interface, Q an
unknown Bernoulli’s constant on the fluid-plate interface
streamline, p is the uniform densities of the fluid, and g is
the gravitational acceleration.

As the surface pressure is equal to the pressure of the

plate, we model the floating elastic plate as a linear Kirch-
hoff-Love plate [5].

0*¢
pe:Dw +m.g, (7)

where the flexural rigidity of the plate is expressed by
D=Ed’/[12(1 -v?)] with Young’s modulus E, the constant
thickness d, and Poisson’s ratio v of the plate, respectively.
m, (= p,d) is the mass of the plate in a unit length with the
uniform densities p, of an elastic plate. Substituting Equation
(7) into Equation (6) yields the full form of the dynamic
boundary condition as
1 1( o
3 |Vy|* + g¢ + , (Da_xi + meg> =Q. (8)
It is difficult to directly solve the above Equations (3),
(4), (5), and (8) in which the boundary conditions (5) and
(8) satisfy the unknown fluid-plate interface z={(x). So
we use the Dubreil-Jacotion transformation [18, 19, 21] to
convert Cartesian coordinates oxz into Cartesian coordi-
nates oxy in which the z-axis points vertically downward,

and then, the unknown interface z={(x) is reformulated
as the fixed location y =0, as shown in Figure 1. Here, we

consider that z(x, y) is a periodic function in the x direction
with the period 2.

For the sake of clarity, we introduce the following dimen-
sionless quantities

* * * k * (1//) * k e
ko2 =kt = Ryt = 2 e R
x* =kx,z" =kz,y v () k) m, ,

pjz&,D*=k4—l,E*=k—E,H*=kH,

p (P9) (P9)

)

where variables with * are dimensionless. By the Dubreil-
Jacotion transformation and the nondimensionalization
(9), Equations (3), (8), and (4) are reformulated as (after
omitting the =)

9%z [0z 2_26282 0’z s 0z\ 2| 9%z
a2 \ay) ~axayavay ) |3

- (;;)w (v>0)

(10)

— =0, (y=+0c0), (12)

respectively, where both & = ¢?/c} and k = kQ/g are unknown
constants, and ¢ = g/k is known linear phase speed without
any background current.

3. Analytical Approach Based on the HAM

3.1. Solution Expressions. From physical points of view, our
hydroelastic problem is made of a train of deepwater hydro-
elastic waves, a uniform current due to the moving coordi-
nates, and shear currents with exponential decay on depth.
In case of the pure deepwater hydroelastic waves, the periodic
wave deflection can be expressed by

+00

z= Z «,, cos (mx), (13)

m=0



where «,, is an unknown coefficient to be derived [5].
Considering the shear currents with vorticity distribution
O(y) =pexp (—y), Equation (10) contains the term exp
(—y), so it is suitable that z(x, y) should contain the term
exp (—ny), where n is an integer. As hydroelastic wave
deflections with shear currents are still periodic in the x direc-
tion, then z(x,vy) should also contain the term cos (mx).
Besides, the uniform currents caused by the coming coordi-
nates do not give rise to the interaction between the hydroelas-
tic waves and the currents. So we consider the solution
expression of the hydroelastic wave deflection as

+00 +00

2ny) =Y+ ) Y @, exp (—ny) cos (mx),  (14)

n=0 m=0

where a,,, is an unknown coefficient to be derived.

According to the solution expressions (14), we may con-
struct the initial estimation of the hydroelastic wave deflec-
tion as

f(oy) =yt o exp (y)cos (1), (15)

where H is an unknown dimensionless wave height to be
derived [18].

3.2. Deformation Equations. We construct three homotopies
Z(x,v;q), A(q), and I'(q). These homotopies are governed
by the following zeroth-order deformation equations for
the governing equation (10) and two boundary conditions
(11) and (12) as

(=@ Z1[Z2(xy;9) -2 ¥)] =N [Z(x y5q)l, - (y>0),

(16)

(1-q@)Z,[Z(% v 9) = 2o(% ¥)] = 96, NL [Z(x, 5 9), A(q), T'(q)]
(y=0),
(17)

0Z(x,y5q)

= =0, (y=+00), (18)

respectively, with the wave height
Z(0,059) - Z(m,0;q)=H. (19)

where q€[0,1] is the embedding parameter. When ¢
increases from 0 to 1, Z(x,¥;q) varies continuously from
its initial estimation z,(x, ) to the exact solution z(x, ), A
(q) deforms continuously from its initial estimation &, to
the exact solution 8, and I'(q) is from «, to «. ¢, is a nonzero
convergence-control parameter. Based on the governing

Advances in Mathematical Physics

-6 T T 1
-1 -0.5 0 0.5
o
——m=1 ——-m=3
- m=2 —-m=5

FIGURE 2: Residual squares of log, &L, of the mth order homotopy
approximation c.

equation (10) and the boundary condition (11), /4[] and
A, ]| are the nonlinear operators defined by

0*Z (0Z\* 0Z0Z 0°Z
M[Z(xvs5q))= e (W’) " 9x 0y dxdy

A K AN AN
[1(a—> i (57) 2w

respectively.

If we only choose the unique linear term 9°/dy? in the
equation (10) as the auxiliary linear operators &, we would
get a solution z(x, ¥) in the power series of ¥ which cannot
satisfy the impermeable bottom condition (12). We can obey
the solution expression (14) under the physical consider-
ations to choose the following auxiliary linear operator

?u  u
gl[u]:a_lljz+w, (21)

where &, [0] =0.

The nonlinear boundary condition (11) does not contain
any linear term. Here, we still follow the solution expression
(14) to choose another auxiliary linear operator

ou
Zuj=u+ w, (22)

where &,[0] = 0.



Advances in Mathematical Physics

0.055
0.05
o
0.045
0.04 T T T T T 1
06 -04 -02 0 02 04 06
X
— u=-025 ——-u=015
——-pu=-015 ©=025
—— =0

(a) Wave elevations near the crest

5
-0.04 4
-0.042
-0.044
—-0.046
—-0.048
-0.05 T T T T T T ]
2.6 2.8 3 3.2 3.4 3.6 3.8
X
 u=-025 e u=0.15
—e-u=-015 u=025
- u=0

(b) Wave elevations near the trough

FIGURE 3: Variation of the hydroelastic wave profiles versus x for different vorticity parameter .
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FI1GURE 4: The influence of the vorticity parameter y on the phase
velocity 8(= c?/c3) for different wave amplitude H.

Expanding the unknown function Z(x, y ; g) and the two
unknown constants A(g) and I'(g) into the Maclaurin series
about g at ¢ =0,

20y:0)= Y 2o p)a" @)
ag)= Y 6,4 ()
r@)= Y s 25)

3.5

0 0.2 0.4 0.6
H
— u=-025 ——-u=015
- - u=-015 -~ u=025
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FIGURg 5: The influence of the wave amplitude H on the phase
velocity 8(= ¢?/cj) for different vorticity parameter .

where

(2 (500} = o (20530, A0 T o

(26)

We substitute these series (23), (24), and (25) into the
zeroth-order deformation equations (16) and (17) and differ-
entiate the zero-order deformation equations m times about
¢> then divide them by m!. Setting q =0, we can obtain the
linear PDEs (i.e., high-order deformation equations in the
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F1GURE 6: The influence of Young’s modulus E on the phase velocity 8(= ¢?/c3) for different wave amplitude p.

HAM) for the unknown function z,,(x, ) and the unknown
constants d,, and «,,. In order to make our equations closed,
we consider

2,(0,0)-z,(m,0)=H, (n=0), (27)

to relate the solutions and the wave height H.

3.3. Optimal Convergence-Control Parameters. To ensure the
accuracy of our HAM-based series solutions, we define the
total squared error e, as follows:

83;1 = sm,l + 8m,2’ (28)

where

M M
Em1 = 1+MZZZ

i=0 j=0

2 Y3 9)]|vciany—iay) >

E

2

2 x’w q) ( ) F(q)”x:iﬁ\x,wzo) ’

" (29)

where ¢, , are the residual square errors of Equations (10)
and (11), respectively. Ax=Ay =n/M. In this paper, we
choose M = 10. The optimal convergence-control parameter
¢, can be acquired by the minimum value of €’ in the resid-
ual plot as shown in Figure 2
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Ficure 7: The influence of the plate’s thickness d on the phase velocity 8(= c?/c3) for different wave amplitude p.

3.4. Iteration of Solutions. Substituting the initial estimation 5 1 1 s, 1

of hydroelastic wave deflection (15) into the high-order K_ﬂ B R TR T RO RKO)
deformation equations, we can obtain every order analytic 11 1 R
solution from these deformation equations by performing + (ﬂ - g.“) exp (~y) + 16 &P (—21#)} GH

symbolic computation using Mathematica 8.0. First, one- . )

order solution for the unknown function z(x, ¥) is acquired x exp (—2y) cos (2x) + {— <— + —D> - —pexp (—y)
. . 384 96 256

from the one-order deformation equations as follows:

1 1 R
+ 382 &P (=2y) + Zgg X €*P (—31//)} coH” exp (=3v) cos (3x),

2(xy) = {# exp (—y) - in exp (-2y) + gqu exp (—W)} % (30)

11 3., 3
+ {( 1 ED E(‘50+1c() 3—2H S_ZDH ) exp (—y)
where the initial solutions &, of & and x, of x are still
unknown. We use the relation (27) for the wave amplitude
_3 Hu exp (~4y) | coH cos t(x) and the vertical displacement to determine &, and x, as
E7 ke 0
follows:

3 1,
T oHexp (=2y) + T6H exp (-3y)
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(31)

respectively. Once the convergence control parameter c,
and important physical parameters H, D, u, and m, are
given, we can get the corresponding solutions for our
hydroelastic problem. If we continue with the one-order
approximations by utilizing the high-order deformation
equations, the higher-order approximations can be
acquired iteratively.

4. Result Analysis

First, we illustrate the total squared residual error ¢! of our
solutions at several different orders versus ¢, with the case
of u=0.1, H=0.1, d=0.01, p,= 0.9, E=12822.8 (i.e,, the
dimensional E =109 Pa), and v =0.33 and take these data
hereinafter for computation unless otherwise stated. As
shown in Figure 2, we find that ¢ in Equation (28) decreases
firstly and then increases in the interval [-1.0, 0]. And as the
order m increases, € decreases gradually about —0.4. Then,
the optimal value of ¢, can be chosen as —0.4. This illustrates

that our HAM-based series solutions are accurate and con-
vergent for the nonlinear hydroelastic interaction.

The plate deflections at the crest and the trough in the
case of H=0.1 and -0.25<u<0.25 are shown in
Figures 3(a) and 3(b), respectively. It is found that, for a given
wave height H, the aiding exponential shear current (u < 0)
tends to sharpen the crest and smoothen the trough, while
the opposing shear current (u > 0) has the opposite effect.
And the effect of the shear current on plate deformation is
more obvious at the trough than at the crest. This might
explain why the aiding exponential shear current tends to
shorten the maximum wave height while the opposing one
tends to enlarge it.

In Figure 4, we show a fourth-order dispersion relation
for the phase speed 8(=c*/c%) as a function of the vorticity
parameter p with several given wave heights H. And
Figure 5 shows the phase speed 8(=c*/cj) as a function of
the wave heights H with several given vorticity parameter
u. It is found that, for both an opposing current and an aid-
ing current, the larger value of the wave height increases
the wave phase speed, while the phase speed decreases with
the increase of the vorticity parameter in the opposing cur-
rent, but the phase speed increases with the increase of the
vorticity parameter in the aiding current. As shown in
Figures 4 and 5, the phase speed § is close to 1 when H
is very small (linear waves) and y (no current). It is demon-
strated that our result is compatible with the dispersion
relation in deep water § = (1+D)/(1+m) [22] from the
linearized theory of hydroelastic waves with no current.

The effects of Young’s modulus of the plate are shown in
Figure 6, from which we can see that for both an opposing
current and an aiding current, the phase speed § increases
with increasing Young’s modulus. The effects of the plate
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thickness d on the phase speed § are studied. Figure 7 shows
that a larger d increases the phase speed, which is similar to
effects for Young’s modulus of the plate in Figure 6.

Figure 8 shows the horizontal velocity profiles u(=1 +

z, (%, ¥) ") in the aiding shear currents for different vorticity

parameters p. We find that the horizontal velocity under
the wave crest is in the same direction, while the horizon-
tal velocity under the wave trough changes from the same
direction into the opposing direction when the absolute
value of y decreases to about 0.05. Figure 9 shows the hor-
izontal velocity profiles in the opposing shear currents for
different vorticity parameters p. We observe that the hor-
izontal velocity under the wave trough is in the opposing
direction, while the horizontal velocity under the wave
crest changes from the opposing direction into the same
direction when the value of y decreases to about 0.05.
As shown in Figures 8 and 9, we observe that for both
an opposing current and an aiding current, a larger u
tends to increase the horizontal velocity u. Besides, in
the opposing current, the horizontal velocity u under the
wave crest delays more quickly as y increases than that
of waves under the wave trough, while in the aiding cur-
rent case, we observe the opposite effect.

5. Conclusions

In this work, we are concerned with nonlinear hydroelastic
waves generated due to a floating elastic plate interacting
with a shear current which decays exponentially with depth.
We introduce a stream function to obtain the governing
equation with the boundary conditions expressing a balance
among the hydrodynamic, the shear currents, elastic, and
inertial forces. In order to simplify the algorithm, we transfer
the nonlinear boundary value problem from an unknown

free surface into a known boundary by means of Dubreil-
Jacotin transformation. In the frame of the HAM, we
consider the solution expression of the hydroelastic wave
deflection as a series with a set of base functions exp (—ny)
cos (mx) based on physical points of view. Numerical results
demonstrate the validity and convergence of our HAM-based
analytical solutions for the nonlinear hydroelastic interaction
a wave-current coexisting fluid.

The effects of some important physical parameters on
the plate deflections, the phase speed, and the horizontal
velocity profiles are considered in detail. We find that a
larger aiding shear current tends to sharpen the crest
and smoothen the trough of the plate deflections, while
the opposing shear current has the opposite effect, and
both opposing and aiding current on plate deformation
all have a more obvious effect on the trough than on
the crest.

For both an opposing current and an aiding current, the
larger wave height H increases the wave phase speed §, while
the aiding exponential shear currents tend to increase the
wave phase velocity, but the opposing exponential shear cur-
rents tend to decrease it. It is noted that our result is compat-
ible with the dispersion relation in deep water from the
linearized theory of hydroelastic waves with no current.

The horizontal velocity under a shear current is in the
same direction, while the velocity’s direction changes as
the value of vorticity parameters y decreases. But in the
case of an opposing current, the horizontal velocity under
the wave crest delays more quickly as y increases than
that of waves under the wave trough, while in the aiding
current case, there is an opposite effect. All of those results
obtained here can help us further understand hydroelastic
interaction between a floating elastic plate and wave cur-
rent in the real ocean.
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study are available from the corresponding author by
request (Ping Wang, Email: pingwang2003@126.com).
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