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This paper deals with a class of one element n-degree polynomial differential equations. By the fixed point theory, we obtain n
periodic solutions of the equation. This paper generalizes some related conclusions of some papers.

1. Introduction

Consider the following one element #-degree polynomial dif-
ferential equation:

dx ! i +
T=Yax, (neN), 1)
i=0

where a;(t) (i=0,1,2,---,n) is the w-periodic continuous
functions on R. When n = 1, equation (1) is a linear differen-
tial equation. With regard to the periodic solution of the
equation, we propose the following:

Proposition 1 (see [1]). Consider the following:

dx
o —ay(t)+at) @)

where a,(t) and a,(t) are w-periodic continuous functions on
R; if [ya,(t)dt # 0, then equation (2) has a unique w-periodic
continuous solution n(t), mod (r) € mod (a,(t), ay(t)), and
1(t) can be written as follows:

t t W
J efsaz(r)drao(s)ds) J a,(t)dt <0,
oo 0
v . 3)
_J eJ‘sul(T)dTaO(S)ds) J a,(t)dt > 0.

t 0

n(t) =

When 7 =2, equation (1) is Riccati’s equation. Riccati’s
equation plays an important role in fluid mechanics and in
the theory of elastic vibration. There are many studies on this
equation [2-9], and there is also a proposition about the peri-
odic solutions of Riccati’s equation, as follows:

Proposition 2 (see [2]). Consider the following equation:

dx

2 =X +ay (D + ag(b), (4)

where a,(t), a,(t), and a,(t) are all w-periodic continuous
functions on R. Suppose that the following conditions hold:

(Hy) ay(t) # 0,
(H,) a3 (t) = 4a,(t)ay(t) > 0,

() a5\ a(t)
‘zun‘V@%@)‘%@ )
| a a,(H) )2 aplt)
< dhk 2M0+¢C%m> a0 |’

then equation (4) has exactly two w-periodic continuous
solutions.

(Hs) sup

te[0w]
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When g, (t) =0, in [10], the author obtained the existence
and more accurate range of two periodic solutions of equa-
tion (4) by means of the fixed point theorem.

It is easy for us to guess under what conditions is equa-
tion (1) satisfied, and are there existing n periodic solutions
of equation (1)?

In this paper, we consider the n-degree polynomial differ-
ential equation for the special case of equation (1) as follows:

dx

= =)=y (D) - &=y (1) (-, (0), (6)

and we give a new criterion to judge the existence of
n periodic solutions on equation (6); these conclusions gen-
eralize the relevant conclusions of References [1, 2, 10].

The rest of the paper is arranged as follows: In Section 2,
some lemmas and abbreviations are introduced to be used
later. In Section 3, the existence of #n periodic solutions on

equation (6) is obtained. We end this paper with a short
conclusion.

2. Some Lemmas and Abbreviations

Lemma 3 (see [11]). Suppose that an w-periodic sequence
{f,(t)} is convergent uniformly on any compact set of R,
f(t) is an w-periodic function, and mod (f,) < mod (f)
(n=1,2,---), then {f,(t)} is convergent uniformly on R.

Lemma 4 (see [12]). Suppose V is a metric space, C is a convex
closed set of V, and its boundary is 0C; if T: V— V isa
continuous compact mapping, such that T(0C) € C, then T
has a fixed point on C.

For the sake of convenience, suppose that f(t) is an w-peri-
odic continuous function on R; we denote

fu= sup f(0),
o (7)
fu=Inf S0

3. Periodic Solutions of the Polynomial
Differential Equation

In this section, we discuss the existence of #n periodic solu-
tions of equation (6).

Theorem 5. Consider equation (6), a(t),y,(t) (i=1,2,---,n)
are all w-periodic continuous functions on R; suppose that
the following conditions hold:

(H))a(t) #0,
(Hz) (V) < Vir)rs

Vt € [0, w], ®

i=1,2,n—1,

then equation (6) has exactly n w-periodic continuous solu-
tions O,(t) (i=1,2,---,n), and

i=1,2,-,n. (9)
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Proof. By (H,), it follows a(t) >0 or a(t) <0. In order to
avoid repetition, we only prove the case of a(t) > 0. As the
proof of the existence of every periodic solution is the same,
for the sake of simplicity, we only prove the existence of the
n-th periodic solution @, (t) of equation (6).

Here, we will divide the proof into two steps.

(1) We prove the existence of n periodic solutions of
equation (6). Suppose

S={p(t) e C(RR) lp(t+w)=9(t)},  (10)

given any ¢(t), y(t) € S, the distance is defined as fol-
lows:

p(e,y) = sup [p(t) —y(t)]- (11)

te[0,w]

Thus, (S, p) is a complete metric space. Take a convex
closed set B, of S as follows:

)

B, ={¢(t) €S|(v,) < o(t (12)
) cmod (a,y,,+y,) }-

< (V)  mod (g

Given any ¢(t) € B,,, consider the following:

% a(t)(e(t) = yi(1) - ((t) = y,(t)) -

=f(0)(x=y,(1) = F(O)x = f()y,(1)-

(x=v,(1))

Here

f(t)=a(t)((t) =y, (1)) -

(o(t)
-3l e

(@(t) = Yur (1))-
By (H,), (H,), and equation (12), we get that

0<ap((v,), - (v,
- (Y)u ) ( n—l)M)
<f(t)<ayu((y ) (Vl) ) (()u
-V ) ( = (Ve I)L)

(1) )
(15)

hence, we have

wa(t)dt >0, (16)

0

and because a(t),y,(t) (i=1,---,n) are w-periodic
continuous functions on R, it follows that f(¢), f(t)
y,(t) are w-periodic continuous functions on R, by
equation (16). According to Proposition 1, equation
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(13) has a unique w-periodic continuous solution as
follows:

w#fﬂﬁwwwmw» (17)

t

and
mod (1) S mod (f (1), f()y,(t))- (18)

By equations (12) and (14), it follows that
mod (f(1)) € mod (4,7, ,)
mod (f(t)y,(t)) Smod (a,y},++y,),
hence we have

mod (r) Smod (a, ¥, y,)- (20)
By equations (12), (15), and (17), we get

00200, e o

t

~= |0 ([ geoyae)

t s

vmnimﬂ

t

(21)

e T)dt
:_(yn)L eJﬂwOf( ) - 1:| = ()}n)L’

and

TCEAN RO

=—<ynxwt“”eﬁf“”’d(j{fuodr)

t s
<[]
n/M

t

(22)

[ T)dr
rmde“—ﬂﬂmw

hence, #(t) € B,
Define a mapping as follows:

H@@=fﬂﬁwﬁ@n@ﬁ (23)

t
Thus, if given any ¢(¢) € B,, then (T¢)(¢) € B,, hence
T:B,— B,.

Now, we prove that the mapping T is a compact
mapping.

Consider any sequence {¢,(t)} <B,(k=1,2,-),
then it follows that

(Ya)r < @(t) < (Vu)aro
mod (¢,) Smod (a, 7,57, )» (24)
(k=1,2,---),

on the other hand, (T, )(t) = x, (¢) satisfies

dx
Z'}(t) =a(t)(@(t) =1 (1)) - (@x(t)

1)+ (%, (0 = 7,(0))-

(25)

Thus, we have

dxq,k (t)

o <2ay (V) = 0)1) = (V)

= (vi)) ((Vn)M - (yn—l)L) Vol ar

mod (xq)k(t)) cmod (a, ¥, Y,)s
(26)
hence {(dx, (t))/dt} is uniformly bounded; there-

fore, {x,, (t)} is uniformly bounded and equicontin-

uous on R, by the theorem of Ascoli-Arzela, for any
sequence {x(Pk(t)} C B, there exists a subsequence

(also denoted by {x,, (¢)}) such that {x, (t)} is con-

vergent uniformly on any compact set of R, by equa-
tion (26), combined with Lemma 3, {x, (1)} is

convergent uniformly on R, that is to say, T is rela-
tively compact on B,,.

Next, we prove that T is a continuous mapping.
Suppose {¢,(t)} <B,,¢(t) € B,, and

Pi(t) — (1) - (k—00). (27)
Denote

Fr®)=a(t)(@(t) = yi(1)) -+ ((1) (28)
=¥i(0) - (@k(t) = ¥ (1),

then we have

fit) —f(t),  (k——>00), (29)

and

0<a (V)= o)a) = (e = Wdae) = (V) = Vi)
<fi(®)
Say (V= 0) = (Ve = ) = (Yt = Wucn)r)-
(30)
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By equation (23), we have where £ is between f fi(r)dr andf f(z)dr; thus, & is

between
[(Tey)(t) = (To) (1))
J el simieg ()ds—J°°ef§f<”‘”f<s>yn(s)ds

t

“L((Vn)L - (Vl)M) ((Vn)L - (Yi)M) ((Yn)L
= (Vuet)ar) (E=9)s

j el IO (£, () = £, ()ds
o[ (e s

- J:mef U (£, ()= £(5)) ()

(32)

and

“M((Yn)M - (V1)L) ((Vn)M - (Vi)L) ((Yn)M
- (Yn—l)L) (t=s),
(s)|ds (33)

(¢] ) e

(] (o) - £ )63, (s

t s

+00
< <J e
t
+00
g
t

(r)dr

)P(f o f) hence we have
(31)

+00

(T ) (1) - (To)(t)| < (J e“L((Yn)f(Yl)M)"'((Y;«)f()’f),w)"'((Yn)f(}’n_l)m)(f*s)h,n (s)|ds

t

+ J+OoeaL((Yn>l,_<y1)M)'“((yn)l,_(Yi)M)'“((Yn)l,_(yn—l)M)(t_5> (s—1t) |f($)}/n($)|d5) o(fof)

t

Valut (34)

= {aL((Vn)L - (Y1)M) ((Yn)L - (Vi)M) ((Yn)L - (Yn—l)M)

|yn|M((Yn)M B (Yl) ) ((Yn)M (yz) ) ((yn)M - (Yn—l)L)}
' [aL((Vn)L - (Yl)M) ((Vn)L - (Yz)M) ((yn)L - (Yn—l)M)]z plief)

(2) We prove that equation (6) has exactly n periodic

By equation (29) and the above inequality, it follows solutions.

that
Let us discuss the possible range of x(t) of equation
(To,)(t) — (Te)(t) (k — 00), (35) (6); we divide the initial value x(t,) = x, into the fol-
lowing parts:
hence, T is continuous; therefore, T : B, — B, is a
continuous compact mapping, and by equation Xy € (—OO, (Y1 )
(23), it is easy to see, T(0B,) < B,; according to
Lemma 4, T has a fixed point on B,, and the fixed [ Y1) (11) ]’
point is the w-periodic continuous solution @, (t) of (YD) ar (2)1)>

equation (6), and [ an ], (38)
(V)L SPu(t) < (Vo) pre (36) ((VZ)M’ (Vs)L)’ ((Vn D (V)L )

. . . . [(yn)L’ (Yn) }
Similarly, we can prove the existence of the periodic
solutions @;(t) (i=1,2,--,n—1) of equation (6), ((Va)ap +00)-
and we have

We will only prove the following cases. For the sake
(Y < Pi(t) < (yi)yy (=1, 25000 sn=1).  (37) of convenience, suppose # is an even number.
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Remark 1. If n is an odd number, the proof is similar, and we
omit it here.

Let

ftx)=a(t)(x =y, (1)) - (x=y,(1)) = (x =y, (1)) (39)

@)

(ii)

If xp€(~00,(y,),)

Consider equation (6). We have dx/dt|<t0)xo) =f
(tg»%9) > 0. Thus, x(t) may stay at (—oo, (y,);) or
enter into [(y,),, (y,),,] at some time t. If x(¢) stays
at (-o0, (y,),), then dx/dt = f(t,x) > 0. Thus, x(t)
cannot be a periodic solution of equation (6). If x(t)
enters into [(y,);,(y;),] at some time ¢, then
there is not a t,(t; > t,) such that x(t;) =x(¢t,) =
Xo; thus x(t) can also not be a periodic solution
of equation (6).

If x,€[(y,)(y,)y)> then equation (6) has an
w-periodic continuous solution x(t)=®,(t) with
initial value x(t,) = @, (¢,)

As f(t,y,) =f(t,y,) =0, by differential mean value
theorem, it follows that

FBE(0) =0, (r, (1) <& (1) <p,(t).  (40)
By equation (39), we have
A(SAGIN (41)
£ (B yy(t) >0 (42)
Note that
(Y1) SP1(E) < (V1) - (43)
By equations (41) and (43), it follows that
£ (6@, (1) <O0. (44)

Now, suppose that there is another w-periodic con-
tinuous solution ¥, (¢) of equation (6) which satisfies

(Y <¥i(t) < (viu (45)
Because f (¢, x) is a polynomial function with contin-
uous partial derivatives to x, equation (6) satisfies
the existence and uniqueness of solutions to initial
value problems of differential equations, thus

D, (£) =¥, (£)| > 0(VL €R). (46)

By equations (41) and (45), it follows that
£ 9,(1) <o. (47)

Consider the following equation:

d[(pl(t) B 'lyl(t)]

- (@1 (0) - £ (8,74 (1)

=flt.¥1(1) +0(@, (1) = ¥,(1))) (@ (1)
—¥, (1), (0<6<1).
(48)

Thus, we have

[y(6) = ¥4 (1) = [@,(0) — W, (0)] )/ #1 I UPE O

(iii)

(49)

By equations (43) and (45), it follows that
(Y1) S¥1(6) +0(@y(£) =¥y (1)) < (yy)p (50)

By equations (41) and (50), it follows that
LB (1) +0(D (1) = ¥, (1))] <O. (51)

By equations (49) and (51), it follows that
|9y (1) =¥, (t)| — O(t — +00), (52)

By equations (46) and (52), this is a contradiction,
thus ¥, (f) cannot be a periodic solution of equation
(6), that is to say, equation (6) has exactly a unique
w-periodic continuous solution @, (¢) which satisfies

() @u(1) < (y1)yr

Ifxo € ((yi)ap (v2)1)

Consider equation (6). We have dx/dt| ., =f
(ty»X) <0. Thus, x(t) may stay at ((y,),, (v,);)
or enter into [(y,),, (y,),,] at some time t. If x(t)
stays at ((y;),p (v,),)» we have dx/dt = f(t, x) <0,
then x(t) cannot be a periodic solution of equation
(6). If x(t) enters into [(y,),, (y,),,] at some time t,
then there is not a t,(t, >#,) such that x(¢,)=
x(ty) =xy; thus, x(#) can also not be a periodic
solution of equation (6).

Similarly, if xy€([(y,) (Vi)y)i=2,3,n, we
can prove that equation (6) has exactly a unique
w-periodic continuous solution @,(¢) which sat-
isfies (y;), <@;(t) <(y;), (i=2,3,---,n).

Similarly, if x, € ((y;) > (Viz1)p)s =253, -+ 1, then
the solution x(t) of equation (6) with an initial
value x(t,) =x, cannot be a periodic solution of
equation (6).



(iv) If x4 € ((y,) p+00)

Consider equation (6). We have dx/dt|, . ,=f(to
%y) > 0. Thus, x(f) may stay at €((y,), +00) or x(t)
— +00,(t — +00). If x(t) stays at ((y,,),;» +00),
we have dx/dt = f(t,x) >0, then x(¢) cannot be a
periodic solution of equation (6). If x(t) — +00,
(t — +00), then x(f) can also not be a periodic
solution of equation (6).

To sum up, equation (6) has exactly n w-periodic
continuous solutions @,(¢)(i=1,2,--,n) which

satify

)L <) <)y ((=120mm). (53)

This is the end of the proof of Theorem 5.
Remark 2. 1f n =1, Theorem 5 is exactly Proposition 1.
Remark 3. If n =2, Theorem 5 is exactly Proposition 2.

4. Conclusion

Consider the following Riccati’s differential equation:

%§:(ﬂﬁ+bay+dﬂ, (54)

about the periodic solutions on equation (54), there is a con-
clusion as follows:

Theorem 6 (see [13]). Consider equation (54); a(t), b(t), and
c(t) are all w-periodic continuous functions on R. Suppose that
the following conditions hold:

(H))a(t) >0, (55)

then equation (54) has at most two w-periodic continuous
solutions.

What conditions are the coeflicient functions of the
equation satisfled? The equation has exactly two periodic
solutions. Proposition 2 gives the answer.

Consider the following Abel’s differential equation:

dx 3 2
o =a(t)x’ + b(t)x" +c(t)x +d(t), (56)

about the periodic solutions on equation (56), we have the
following result.

Theorem 7 (see [13]). Consider equation (56), a(t), b(t), c(¢),

and d(t) are all w-periodic continuous functions on R. Sup-
pose that the following conditions hold:

(H)a(t) >0, (57)
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then equation (56) has at most three w-periodic continuous
solutions.

We cannot help but ask: What conditions are the coefhi-
cient functions of the equation satisfied? The equation has
exactly three periodic solutions. We show the following
answer.

Corollary 8. Consider the following Abel’s differential equa-
tion:

O OOl -l (58)

Here, a(t),y,(t) (i=1,2,3) are all w-periodic continuous
functions on R. Suppose that the following conditions hold:

(H,)a(t)#0,

(59)
(H) (Y)ar < (2 < (V2)ar < (¥3)po

then equation (58) has exactly three w-periodic continuous
solutions @, (t), @,(t), and O,(t), and

(Y1) <Pi(8) < (V) ap
(V2)L S DPo(8) < (V2)ap (60)
(V3)p < Ps(t) < (v3) -

For n>3,n € N, equation (1) has not always the most
n periodic solutions (see [13]). But in this paper, we
obtain a new criterion for the existence of #n periodic solu-
tions of periodic equation (6); the size range of »n periodic
solutions is also given. It can be said that this paper is a gen-
eralization of the conclusions of the related articles on peri-
odic solutions.
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