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This paper deals with a class of one element n-degree polynomial differential equations. By the fixed point theory, we obtain n
periodic solutions of the equation. This paper generalizes some related conclusions of some papers.

1. Introduction

Consider the following one element n-degree polynomial dif-
ferential equation:

dx
dt

= 〠
n

i=0
ai tð Þxi,  n ∈N+ð Þ, ð1Þ

where aiðtÞ ði = 0, 1, 2,⋯, nÞ is the ω-periodic continuous
functions on R. When n = 1, equation (1) is a linear differen-
tial equation. With regard to the periodic solution of the
equation, we propose the following:

Proposition 1 (see [1]). Consider the following:

dx
dt

= a1 tð Þx + a0 tð Þ, ð2Þ

where a1ðtÞ and a0ðtÞ are ω-periodic continuous functions on
R; if

Ð ω
0 a1ðtÞdt ≠ 0, then equation (2) has a unique ω-periodic

continuous solution ηðtÞ, mod ðηÞ ⊆mod ða1ðtÞ, a0ðtÞÞ, and
ηðtÞ can be written as follows:

η tð Þ =

ðt
−∞

e
Ð t

s
a1 τð Þdτa0 sð Þds,

ðω
0
a1 tð Þdt < 0,

−
ð+∞
t

e
Ð t

s
a1 τð Þdτa0 sð Þds,

ðω
0
a1 tð Þdt > 0:

8>>><
>>>:

ð3Þ

When n = 2, equation (1) is Riccati’s equation. Riccati’s
equation plays an important role in fluid mechanics and in
the theory of elastic vibration. There are many studies on this
equation [2–9], and there is also a proposition about the peri-
odic solutions of Riccati’s equation, as follows:

Proposition 2 (see [2]). Consider the following equation:

dx
dt

= a2 tð Þx2 + a1 tð Þx + a0 tð Þ, ð4Þ

where a2ðtÞ, a1ðtÞ, and a0ðtÞ are all ω-periodic continuous
functions on R. Suppose that the following conditions hold:

H1ð Þ a2 tð Þ ≠ 0,
H2ð Þ a21 tð Þ − 4a2 tð Þa0 tð Þ > 0,

H3ð Þ sup
t∈ 0,ω½ �

−
a1 tð Þ
2a2 tð Þ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 tð Þ
2a2 tð Þ

� �2

−
a0 tð Þ
a2 tð Þ

s0
@

1
A

< inf
t∈ 0,ω½ �

−
a1 tð Þ
2a2 tð Þ +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 tð Þ
2a2 tð Þ

� �2

−
a0 tð Þ
a2 tð Þ

s0
@

1
A,

ð5Þ

then equation (4) has exactly two ω-periodic continuous
solutions.
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When a1ðtÞ ≡ 0, in [10], the author obtained the existence
and more accurate range of two periodic solutions of equa-
tion (4) by means of the fixed point theorem.

It is easy for us to guess under what conditions is equa-
tion (1) satisfied, and are there existing n periodic solutions
of equation (1)?

In this paper, we consider the n-degree polynomial differ-
ential equation for the special case of equation (1) as follows:

dx
dt

= a tð Þ x − γ1 tð Þð Þ⋯ x − γi tð Þð Þ⋯ x − γn tð Þð Þ, ð6Þ

and we give a new criterion to judge the existence of
n periodic solutions on equation (6); these conclusions gen-
eralize the relevant conclusions of References [1, 2, 10].

The rest of the paper is arranged as follows: In Section 2,
some lemmas and abbreviations are introduced to be used
later. In Section 3, the existence of n periodic solutions on
equation (6) is obtained. We end this paper with a short
conclusion.

2. Some Lemmas and Abbreviations

Lemma 3 (see [11]). Suppose that an ω-periodic sequence
f f nðtÞg is convergent uniformly on any compact set of R,
f ðtÞ is an ω-periodic function, and mod ð f nÞ ⊆mod ð f Þ
ðn = 1, 2,⋯Þ, then f f nðtÞg is convergent uniformly on R.

Lemma 4 (see [12]). Suppose V is a metric space, C is a convex
closed set of V , and its boundary is ∂C; if T : V ⟶ V is a
continuous compact mapping, such that Tð∂CÞ ⊆ C, then T
has a fixed point on C.

For the sake of convenience, suppose that f ðtÞ is an ω-peri-
odic continuous function on R; we denote

f M = sup
t∈ 0,ω½ �

f tð Þ,

f L = inf
t∈ 0,ω½ �

f tð Þ:
ð7Þ

3. Periodic Solutions of the Polynomial
Differential Equation

In this section, we discuss the existence of n periodic solu-
tions of equation (6).

Theorem 5. Consider equation (6), aðtÞ, γiðtÞ ði = 1, 2,⋯,nÞ
are all ω-periodic continuous functions on R; suppose that
the following conditions hold:

H1ð Þ a tð Þ ≠ 0, ∀t ∈ 0, ω½ �,
H2ð Þ γið ÞM < γi+1ð ÞL, i = 1, 2,⋯, n − 1,

ð8Þ

then equation (6) has exactly n ω-periodic continuous solu-
tions ΦiðtÞ ði = 1, 2,⋯,nÞ , and

γið ÞL ≤Φi tð Þ ≤ γið ÞM , i = 1, 2,⋯, n: ð9Þ

Proof. By ðH1Þ, it follows aðtÞ > 0 or aðtÞ < 0. In order to
avoid repetition, we only prove the case of aðtÞ > 0. As the
proof of the existence of every periodic solution is the same,
for the sake of simplicity, we only prove the existence of the
n-th periodic solution ΦnðtÞ of equation (6).

Here, we will divide the proof into two steps.

(1) We prove the existence of n periodic solutions of
equation (6). Suppose

S = φ tð Þ ∈ C R, Rð Þ ∣ φ t + ωð Þ = φ tð Þf g, ð10Þ

given any φðtÞ, ψðtÞ ∈ S, the distance is defined as fol-
lows:

ρ φ, ψð Þ = sup
t∈ 0,ω½ �

φ tð Þ − ψ tð Þj j: ð11Þ

Thus, ðS, ρÞ is a complete metric space. Take a convex
closed set Bn of S as follows:

Bn = φ tð Þ ∈ S γnð ÞL
�� ≤ φ tð Þ�

≤ γnð ÞM ,  mod φð Þ ⊆mod a, γ1,⋯,γnð Þ�: ð12Þ

Given any φðtÞ ∈ Bn, consider the following:

dx
dt

= a tð Þ φ tð Þ − γ1 tð Þð Þ⋯ φ tð Þ − γi tð Þð Þ⋯ x − γn tð Þð Þ
= f tð Þ x − γn tð Þð Þ = f tð Þx − f tð Þγn tð Þ:

ð13Þ

Here

f tð Þ = a tð Þ φ tð Þ − γ1 tð Þð Þ⋯ φ tð Þð
− γi tð ÞÞ⋯ φ tð Þ − γn−1 tð Þð Þ: ð14Þ

By ðH1Þ, ðH2Þ, and equation (12), we get that

0 < aL γnð ÞL − γ1ð ÞM
� 	

⋯ γnð ÞL
�

− γið ÞM
	
⋯ γnð ÞL − γn−1ð ÞM

� 	
≤ f tð Þ ≤ aM γnð ÞM − γ1ð ÞL

� 	
⋯ γnð ÞM

�
− γið ÞL

	
⋯ γnð ÞM − γn−1ð ÞL

� 	
,

ð15Þ

hence, we have

ðω
0
f tð Þdt > 0, ð16Þ

and because aðtÞ, γiðtÞ ði = 1,⋯,nÞ are ω-periodic
continuous functions on R, it follows that f ðtÞ, f ðtÞ
γnðtÞ are ω-periodic continuous functions on R, by
equation (16). According to Proposition 1, equation
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(13) has a unique ω-periodic continuous solution as
follows:

η tð Þ =
ð+∞
t

e
Ð t

s
f τð Þdτ f sð Þγn sð Þds, ð17Þ

and

mod ηð Þ ⊆mod f tð Þ, f tð Þγn tð Þð Þ: ð18Þ

By equations (12) and (14), it follows that

mod f tð Þð Þ ⊆mod a, γ1,⋯, γnð Þ,
mod f tð Þγn tð Þð Þ ⊆mod a, γ1,⋯, γnð Þ,

ð19Þ

hence we have

mod ηð Þ ⊆mod a, γ1,⋯, γnð Þ: ð20Þ

By equations (12), (15), and (17), we get

η tð Þ ≥ γnð ÞL
ð+∞
t

e
Ð t

s
f τð Þdτ f sð Þds

= − γnð ÞL
ð+∞
t

e
Ð t

s
f τð Þdτd

ðt
s
f τð Þdτ

� �

= − γnð ÞL e
Ð t

s
f τð Þdτ


 �+∞
t

= − γnð ÞL e
Ð t

+∞
f τð Þdτ − 1


 �
= γnð ÞL,

ð21Þ

and

η tð Þ ≤ γnð ÞM
ð+∞
t

e
Ð t

s
f τð Þdτ f sð Þds

= − γnð ÞM
ð+∞
t

e
Ð t

s
f τð Þdτd

ðt
s
f τð Þdτ

� �

= − γnð ÞM e
Ð t

s
f τð Þdτ


 �+∞
t

= − γnð ÞM e
Ð t

+∞
f τð Þ dτ − 1


 �
= γnð ÞM ,

ð22Þ

hence, ηðtÞ ∈ Bn.

Define a mapping as follows:

Tφð Þ tð Þ =
ð+∞
t

e
Ð t

s
f τð Þdτ f sð Þγn sð Þds: ð23Þ

Thus, if given any φðtÞ ∈ Bn, then ðTφÞðtÞ ∈ Bn, hence
T : Bn ⟶ Bn.

Now, we prove that the mapping T is a compact
mapping.

Consider any sequence fφkðtÞg ⊆ Bnðk = 1, 2,⋯Þ,
then it follows that

γnð ÞL ≤ φk tð Þ ≤ γnð ÞM ,
mod φkð Þ ⊆mod a, γ1,⋯,γnð Þ,

k = 1, 2,⋯ð Þ,
ð24Þ

on the other hand, ðTφkÞðtÞ = xφk
ðtÞ satisfies

dxφk
tð Þ

dt
= a tð Þ φk tð Þ − γ1 tð Þð Þ⋯ φk tð Þð

− γi tð ÞÞ⋯ xφk
tð Þ − γn tð Þ

� 

:

ð25Þ

Thus, we have

dxφk
tð Þ

dt

����
���� ≤ 2aM γnð ÞM − γ1ð ÞL

� 	
⋯ γnð ÞM

�
− γið ÞLÞ⋯ γnð ÞM − γn−1ð ÞL

� 	
γnj jM ,

mod xφk
tð Þ

� 

⊆mod a, γ1,⋯, γnð Þ,

ð26Þ
hence fðdxφk

ðtÞÞ/dtg is uniformly bounded; there-
fore, fxφk

ðtÞg is uniformly bounded and equicontin-
uous on R, by the theorem of Ascoli-Arzela, for any
sequence fxφk

ðtÞg ⊆ Bn, there exists a subsequence
(also denoted by fxφk

ðtÞg) such that fxφkðtÞg is con-
vergent uniformly on any compact set of R, by equa-
tion (26), combined with Lemma 3, fxφk

ðtÞg is
convergent uniformly on R, that is to say, T is rela-
tively compact on Bn.

Next, we prove that T is a continuous mapping.

Suppose fφkðtÞg ⊆ Bn, φðtÞ ∈ Bn, and

φk tð Þ⟶ φ tð Þ · k⟶∞ð Þ: ð27Þ

Denote

f k tð Þ = a tð Þ φk tð Þ − γ1 tð Þð Þ⋯ φk tð Þð
− γi tð ÞÞ⋯ φk tð Þ − γn−1 tð Þð Þ, ð28Þ

then we have

f k tð Þ⟶ f tð Þ,  k⟶∞ð Þ, ð29Þ
and

0 < aL γnð ÞL − γ1ð ÞM
� 	

⋯ γnð ÞL − γið ÞM
� 	

⋯ γnð ÞL − γn−1ð ÞM
� 	

≤ f k tð Þ
≤ aM γnð ÞM − γ1ð ÞL

� 	
⋯ γnð ÞM − γið ÞL

� 	
⋯ γnð ÞM − γn−1ð ÞL

� 	
:

ð30Þ
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By equation (23), we have

Tφkð Þ tð Þ − Tφð Þ tð Þj j
=

ð+∞
t

e
Ð t

s
f k τð Þdτ f k sð Þγn sð Þds −

ð+∞
t

e
Ð t

s
f τð Þdτ f sð Þγn sð Þds

����
����

=
ð+∞
t

e
Ð t

s
f k τð Þdτ f k sð Þ − f sð Þð Þγn sð Þds

����
+
ð+∞
t

e
Ð t

s
f k τð Þdτ − e

Ð t

s
f τð Þdτ

� �
f sð Þγn sð Þds

����
=

ð+∞
t

e
Ð t

s
f k τð Þdτ f k sð Þ − f sð Þð Þγn sð Þds

����
+
ð+∞
t

eξ
ðt
s
f k τð Þ − f τð Þð Þdτ

� �
f sð Þγn sð Þds

����
≤

ð+∞
t

e
Ð t

s
f k τð Þdτγn sð Þ

����
����ds

�

+
ð+∞
t

eξ
ðt
s
dτ

� �
f sð Þγn sð Þ

����
����ds

�
ρ f k, fð Þ,

ð31Þ

where ξ is between
Ð t
s f kðτÞdτ and

Ð t
s f ðτÞdτ; thus, ξ is

between

aL γnð ÞL − γ1ð ÞM
� 	

⋯ γnð ÞL − γið ÞM
� 	

⋯ γnð ÞL
�

− γn−1ð ÞM
	
t − sð Þ,

ð32Þ

and

aM γnð ÞM − γ1ð ÞL
� 	

⋯ γnð ÞM − γið ÞL
� 	

⋯ γnð ÞM
�

− γn−1ð ÞL
	
t − sð Þ,

ð33Þ

hence we have

By equation (29) and the above inequality, it follows
that

Tφkð Þ tð Þ⟶ Tφð Þ tð Þ k⟶∞ð Þ, ð35Þ

hence, T is continuous; therefore, T : Bn ⟶ Bn is a
continuous compact mapping, and by equation
(23), it is easy to see, Tð∂BnÞ ⊆ Bn; according to
Lemma 4, T has a fixed point on Bn, and the fixed
point is the ω-periodic continuous solution ΦnðtÞ of
equation (6), and

γnð ÞL ≤Φn tð Þ ≤ γnð ÞM: ð36Þ

Similarly, we can prove the existence of the periodic
solutions ΦiðtÞ ði = 1, 2,⋯, n − 1Þ of equation (6),
and we have

γið ÞL ≤Φi tð Þ ≤ γið ÞM i = 1, 2,⋯⋯, n − 1ð Þ: ð37Þ

(2) We prove that equation (6) has exactly n periodic
solutions.

Let us discuss the possible range of xðtÞ of equation
(6); we divide the initial value xðt0Þ = x0 into the fol-
lowing parts:

x0 ∈ −∞, γ1ð ÞL
� 	

,
γ1ð ÞL, γ1ð ÞM

� �
,

γ1ð ÞM , γ2ð ÞL
� 	

,
γ2ð ÞL, γ2ð ÞM

� �
,

γ2ð ÞM , γ3ð ÞL
� 	

,⋯, γn−1ð ÞM , γnð ÞL
� 	

,
γnð ÞL, γnð ÞM

� �
,

γnð ÞM , +∞
� 	

:

ð38Þ

We will only prove the following cases. For the sake
of convenience, suppose n is an even number.

Tφkð Þ tð Þ − Tφð Þ tð Þj j ≤
ð+∞
t

eaL γnð ÞL− γ1ð ÞMð Þ⋯ γnð ÞL− γið ÞMð Þ⋯ γnð ÞL− γn−1ð ÞMð Þ t−sð Þ γn sð Þj jds
�

+
ð+∞
t

eaL γnð ÞL− γ1ð ÞMð Þ⋯ γnð ÞL− γið ÞMð Þ⋯ γnð ÞL− γn−1ð ÞMð Þ t−sð Þ s − tð Þ f sð Þγn sð Þj jds
�
ρ f k, fð Þ

≤
γnj jM

aL γnð ÞL − γ1ð ÞM
� 	

⋯ γnð ÞL − γið ÞM
� 	

⋯ γnð ÞL − γn−1ð ÞM
� 	

(

+ γnj jM γnð ÞM − γ1ð ÞL
� 	

⋯ γnð ÞM − γið ÞL
� 	

⋯ γnð ÞM − γn−1ð ÞL
� 	

aL γnð ÞL − γ1ð ÞM
� 	

⋯ γnð ÞL − γið ÞM
� 	

⋯ γnð ÞL − γn−1ð ÞM
� 	� �2

)
ρ f k, fð Þ:

ð34Þ
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Remark 1. If n is an odd number, the proof is similar, and we
omit it here.

Let

f t, xð Þ = a tð Þ x − γ1 tð Þð Þ⋯ x − γi tð Þð Þ⋯ x − γn tð Þð Þ: ð39Þ

(i) If x0∈ð−∞,ðγ1ÞLÞ
Consider equation (6). We have dx/dtjðt0,x0Þ = f
ðt0, x0Þ > 0. Thus, xðtÞ may stay at ð−∞, ðγ1ÞLÞ or
enter into ½ðγ1ÞL, ðγ1ÞM� at some time t. If xðtÞ stays
at ð−∞, ðγ1ÞLÞ, then dx/dt = f ðt, xÞ > 0. Thus, xðtÞ
cannot be a periodic solution of equation (6). If xðtÞ
enters into ½ðγ1ÞL, ðγ1ÞM� at some time t, then
there is not a t1ðt1 > t0Þ such that xðt1Þ = xðt0Þ =
x0; thus xðtÞ can also not be a periodic solution
of equation (6).

(ii) If x0 ∈ ½ðγ1ÞL, ðγ1ÞM�, then equation (6) has an
ω-periodic continuous solution xðtÞ =Φ1ðtÞ with
initial value xðt0Þ =Φ1ðt0Þ
As f ðt, γ1Þ = f ðt, γ2Þ = 0, by differential mean value
theorem, it follows that

f x ′ t, ξ1 tð Þð Þ = 0, γ1 tð Þ < ξ1 tð Þ < γ2 tð Þð Þ: ð40Þ

By equation (39), we have

f x ′ t, γ1 tð Þð Þ < 0, ð41Þ

f x ′ t, γ2 tð Þð Þ > 0: ð42Þ

Note that

γ1ð ÞL ≤Φ1 tð Þ ≤ γ1ð ÞM: ð43Þ

By equations (41) and (43), it follows that

f x ′ t,Φ1 tð Þð Þ < 0: ð44Þ

Now, suppose that there is another ω-periodic con-
tinuous solutionΨ1ðtÞ of equation (6) which satisfies

γ1ð ÞL ≤Ψ1 tð Þ ≤ γ1ð ÞM: ð45Þ

Because f ðt, xÞ is a polynomial function with contin-
uous partial derivatives to x, equation (6) satisfies
the existence and uniqueness of solutions to initial
value problems of differential equations, thus

Φ1 tð Þ −Ψ1 tð Þj j > 0 ∀t ∈ Rð Þ: ð46Þ

By equations (41) and (45), it follows that

f x ′ t,Ψ1 tð Þð Þ < 0: ð47Þ

Consider the following equation:

d Φ1 tð Þ −Ψ1 tð Þ½ �
dt

= f t,Φ1 tð Þð Þ − f t,Ψ1 tð Þð Þ
= f x′ t,Ψ1 tð Þ + θ Φ1 tð Þ −Ψ1 tð Þð Þ½ � Φ1 tð Þð

−Ψ1 tð ÞÞ, 0 < θ < 1ð Þ:
ð48Þ

Thus, we have

Φ1 tð Þ −Ψ1 tð Þj j = Φ1 0ð Þ −Ψ1 0ð Þj je
Ð t

0
f x′ s,Ψ1 sð Þ+θ Φ1 sð Þ−Ψ1 sð Þð Þ½ �ds

:

ð49Þ

By equations (43) and (45), it follows that

γ1ð ÞL ≤Ψ1 tð Þ + θ Φ1 tð Þ −Ψ1 tð Þð Þ ≤ γ1ð ÞM: ð50Þ

By equations (41) and (50), it follows that

f x′ t,Ψ1 tð Þ + θ Φ1 tð Þ −Ψ1 tð Þð Þ½ � < 0: ð51Þ

By equations (49) and (51), it follows that

Φ1 tð Þ −Ψ1 tð Þj j⟶ 0 t⟶ +∞ð Þ, ð52Þ

By equations (46) and (52), this is a contradiction,
thus Ψ1ðtÞ cannot be a periodic solution of equation
(6), that is to say, equation (6) has exactly a unique
ω-periodic continuous solutionΦ1ðtÞ which satisfies
ðγ1ÞL ≤Φ1ðtÞ ≤ ðγ1ÞM:

(iii) If x0 ∈ ððγ1ÞM , ðγ2ÞLÞ
Consider equation (6). We have dx/dtjðt0,x0Þ = f
ðt0, x0Þ < 0. Thus, xðtÞ may stay at ððγ1ÞM , ðγ2ÞLÞ
or enter into ½ðγ1ÞL, ðγ1ÞM� at some time t. If xðtÞ
stays at ððγ1ÞM , ðγ2ÞLÞ , we have dx/dt = f ðt, xÞ < 0,
then xðtÞ cannot be a periodic solution of equation
(6). If xðtÞ enters into ½ðγ1ÞL, ðγ1ÞM� at some time t,
then there is not a t1ðt1 > t0Þ such that xðt1Þ =
xðt0Þ = x0; thus, xðtÞ can also not be a periodic
solution of equation (6).

Similarly, if x0 ∈ ½ðγiÞL, ðγiÞM�, i = 2, 3,⋯, n, we
can prove that equation (6) has exactly a unique
ω-periodic continuous solution ΦiðtÞ which sat-
isfies ðγiÞL ≤ΦiðtÞ ≤ ðγiÞM ði = 2, 3,⋯, nÞ.
Similarly, if x0 ∈ ððγiÞM , ðγi+1ÞLÞ, i = 2, 3,⋯, n, then
the solution xðtÞ of equation (6) with an initial
value xðt0Þ = x0 cannot be a periodic solution of
equation (6).
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(iv) If x0 ∈ ððγnÞM ,+∞Þ
Consider equation (6). We have dx/dtjðt0,x0Þ = f ðt0,
x0Þ > 0. Thus, xðtÞ may stay at ∈ððγnÞ, +∞Þ or xðtÞ
⟶ +∞,ðt⟶ +∞Þ. If xðtÞ stays at ððγnÞM , +∞Þ,
we have dx/dt = f ðt, xÞ > 0, then xðtÞ cannot be a
periodic solution of equation (6). If xðtÞ⟶ +∞,
ðt⟶ +∞Þ, then xðtÞ can also not be a periodic
solution of equation (6).

To sum up, equation (6) has exactly n ω-periodic
continuous solutions ΦiðtÞði = 1, 2,⋯, nÞ which
satify

γið ÞL ≤Φi tð Þ ≤ γið ÞM  i = 1, 2,⋯, nð Þ: ð53Þ

This is the end of the proof of Theorem 5.

Remark 2. If n = 1, Theorem 5 is exactly Proposition 1.

Remark 3. If n = 2, Theorem 5 is exactly Proposition 2.

4. Conclusion

Consider the following Riccati’s differential equation:

dx
dt

= a tð Þx2 + b tð Þx + c tð Þ, ð54Þ

about the periodic solutions on equation (54), there is a con-
clusion as follows:

Theorem 6 (see [13]). Consider equation (54); aðtÞ, bðtÞ, and
cðtÞ are all ω-periodic continuous functions on R. Suppose that
the following conditions hold:

H1ð Þa tð Þ > 0, ð55Þ

then equation (54) has at most two ω-periodic continuous
solutions.

What conditions are the coefficient functions of the
equation satisfied? The equation has exactly two periodic
solutions. Proposition 2 gives the answer.

Consider the following Abel’s differential equation:

dx
dt

= a tð Þx3 + b tð Þx2 + c tð Þx + d tð Þ, ð56Þ

about the periodic solutions on equation (56), we have the
following result.

Theorem 7 (see [13]). Consider equation (56), aðtÞ, bðtÞ, cðtÞ,
and dðtÞ are all ω-periodic continuous functions on R. Sup-
pose that the following conditions hold:

H1ð Þa tð Þ > 0, ð57Þ

then equation (56) has at most three ω-periodic continuous
solutions.

We cannot help but ask: What conditions are the coeffi-
cient functions of the equation satisfied? The equation has
exactly three periodic solutions. We show the following
answer.

Corollary 8. Consider the following Abel’s differential equa-
tion:

dx
dt

= a tð Þ x − γ1 tð Þ½ � x − γ2 tð Þ½ � x − γ3 tð Þ½ �: ð58Þ

Here, aðtÞ, γiðtÞ ði = 1, 2, 3Þ are all ω-periodic continuous
functions on R. Suppose that the following conditions hold:

H1ð Þ a tð Þ ≠ 0,
H2ð Þ γ1ð ÞM < γ2ð ÞL ≤ γ2ð ÞM < γ3ð ÞL,

ð59Þ

then equation (58) has exactly three ω-periodic continuous
solutions Φ1ðtÞ, Φ2ðtÞ, and Φ3ðtÞ, and

γ1ð ÞL ≤Φ1 tð Þ ≤ γ1ð ÞM ,
γ2ð ÞL ≤Φ2 tð Þ ≤ γ2ð ÞM ,
γ3ð ÞL ≤Φ3 tð Þ ≤ γ3ð ÞM:

ð60Þ

For n ≥ 3, n ∈N+, equation (1) has not always the most
n periodic solutions (see [13]). But in this paper, we
obtain a new criterion for the existence of n periodic solu-
tions of periodic equation (6); the size range of n periodic
solutions is also given. It can be said that this paper is a gen-
eralization of the conclusions of the related articles on peri-
odic solutions.
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