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In the process of research on the �ow velocity distribution in a partially �lled pipe, the under-sampling of measurement data 
o�en occurs. For the �rst time, this problem is solved by the improved non-uniform B-spline curve �tting approximation (NBSC) 
method.  e main innovation of this method is to reconstruct the �ow velocity distribution �tting curve with a small amount of 
non-uniform feature points containing �ow velocity information. First, the curvature of a whole discrete sampled data is analyzed, 
then the weighted threshold is set, and the sampled points that satisfy the threshold are extracted as the initial velocity distribution 
feature points. Next the node vectors were constructed according to the initial feature points, and the initial interpolation �tting 
curves are generated. Secondly, by using the relative deviation between the initial approximation curve and each sampled point, 
new feature points were added where the curve allowable deviation exceeded the speci�ed tolerance, and then a new interpolation 
�tting curve was obtained.  e above procedure was repeated until the �tting curve reached expected accuracy, thus the appropriate 
feature points were determined. Experimental results showed that, in the case of the same approximation deviation, the proposed 
NBSC method can solve the problem of under-sampling of measurement data better.

1. Introduction

In many engineering occasions, the velocity distribution of 
the �uid is required to be obtained, for the velocity of full �lled 
pipes, through the e�orts of scienti�c researchers, a relatively 
complete theory has been established. But in many cases, the 
�uid in the pipeline is in a state of partially �lled, for example, 
the transport of wastewater in sewer �ows, the petro chemical 
industries etc. [1].  e velocity distribution in a partially �lled 
pipe is di�erent from that of full �lled pipes, the factors a�ect-
ing velocity, such as wall friction and shear force, all vary with 
the change of the pipeline depth ratio. When the �uid �ow is 
a partially-�lled pipe laminar, the velocity distribution is rel-
atively simple. Ng and Lawrence [2] studied the velocity of the 
laminar �ow in partially-�lled pipes with numerical simula-
tions.  e analytical expressions of laminar �ow velocity in 
partially �lled pipes are given by Guo and Meroney [3], and 
Fullard and Wake [4] respectively, which are veri�ed by digital 
simulation. It is di�erent from the laminar �ow velocity in 
partially �lled pipes, where the �uid is in a turbulent state, due 

to the in�uence of free surface and secondary �ow in the upper 
part of the �uid, the velocity of the �uid is much more complex 
than that of the laminar �ow, so the research on turbulent �ow 
velocity distribution in partially �lled pipes is a focus and it is 
a di�culty in the �eld of hydraulics.

A lot of research on the velocity of partially �lled pipes 
have been carried out. Knight and Sterling [5], and Sterling 
and Knight [6] have studied the velocity in the smooth section 
of partially �lled pipes using a Pitot-static tube. Clark and 
Kehler [7] researched about the mean velocity distribution of 
corrugated culvert using acoustic Doppler velocimetry. Using 
a stereoscopic particle distribution velocimetry (PIV) system, 
Yoon et al. [8] studied the two-dimensional velocity distribu-
tion in partially-�lled circular pipes. Henry et al. [1] investi-
gated the stream wise velocity distribution using stereoscopic 
particle imaging velocimetry (S-PIV) in the partially �lled 
pipes cross-stream plane. Chiu et al. [9–13], and Marini et al. 
[14] analyzed the two-dimensional velocity distribution for-
mula with Shannon entropy, which represented the observed 
data reasonably well in a rectangular open channel. Luo and 
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Singh [15], and Cui and Singh [16] derived the partially �lled 
pipes velocity using the Tsallis entropy, which can reasonably 
describe the velocity near the boundary.

 ese studies greatly improved the research of partial-
ly-�lled pipe turbulent velocity. But all of these methods need 
su�cient sampled data. However, in many engineering appli-
cations, only a few measuring points can be obtained due to the 
measuring equipment, construction environment etc., and the 
known sampled data is non-uniformly distributed.  erefore, 
it is necessary to reasonably reconstruct the �uid velocity dis-
tribution in the case of non-uniform undersampled.

In the aspect of reconstructing the original �eld in the case 
of undersampled, a series of studies have been carried out and 
many theoretical methods have been also put forward, such 
as ordered-subsets expectation-maximization method [17], 
Least squares �tting algorithm [18, 19], NURBS curve �tting 
method [20, 21], B-spline curve �tting method [22, 23], etc. 
Because the B-spline curve method has excellent properties 
such as geometric invariance, convex hull, and local support, 
this method is o�en used in scienti�c research and engineering 
applications, such as data analysis and distribution reconstruc-
tion [24–27]. However, the traditional B-spline �tting curve 
do not directly pass through the sampled points, which leads 
to lower �tting accuracy and cannot truly re�ect the �ow 
velocity. Especially, when the measurement data is small, the 
�tting accuracy of this method is lower. How to get better �ow 
velocity distribution reconstruction under the condition of 
under-sampling of measurement data, this would be the main 
problem to be solved in this paper.

In order to solve the previous problems, an improved 
non-uniform B-spline curve interpolation method called 
NBSC was proposed in this paper. According to the charac-
teristics of velocity distribution, a small amount of sampling 
points containing velocity information are selected as featured 
points, and the velocity distribution curve was reconstructed 
according to the velocity information contained in the featured 
points, so as to solve the problem of under-sampling of meas-
ured data in velocity data acquisition.  e main content of this 
method includes �ve aspects: (a) introduction of traditional 
B-spline curve method, (b) the curvature of discrete sampled 
points and the extraction of distribution featured points, (c) 
reconstruction of the node vectors, (d) adjustment of feature 
points, and (e) reconstruction of the �ow velocity 
distribution.

2. Traditional B-Spline Curve Method

2.1. B-Spline Curve Mathematical De�nition. Let �(�) be the 
position vector along the curve as a function of the parameter 
�, a B-spline curve can be de�ned as 

where �� is the control points, � + 1 is the number of control 
points, � is the order of B-spline curve, � = {�0, �1, �2, . . . , ��} 
is the knot vector, and ��,�(�) is the �th-order B-spline basis 
function, which is de�ned as follows: 

(1)�(�) =
�
∑
�=0
��,�(�)�� � ∈ [��−1, ��+1],

 e calculation process of the B-spline curve method can 
be summarized as follows: First, the sampled data was param-
eterized, then the node vector was de�ned according to the 
parameterized data. Second, the basis function can be obtained 
according to Equations (2) and (3).  ird, the control points 
of the �tting curve can be calculated by using the sampling 
data and the basis function. Finally, with the obtaining of basis 
function and control points, the B-spline curve can be drawn 
according to Equation (1).

2.2. Uniform Node Vector with Parameter. Node vector is an 
important parameter in the B-spline curve �tting method. 
An appropriate node vector can not only ensure the curve 
re�ecting the distribution of measurement points correctly, 
but also avoids matrix singularity when reverse calculating 
control vertexes. In any case, one needs to allocate a location 
parameter to each of the sampling data, then de�ne a node 
vector, and �nally compute the basis function and control 
points [20]. In this paper, the Cumulative Chord Length 
method [20] was used to parameterize the sampled data, 
then the node vectors was constructed with the parameterized 
sampled data.

Assuming the sampled data sequence � = {�0, �1,
�2, . . . , ��}, and chord length �� = {������ − ��−1�����, � = 1, 2, . . . , �}, 
in which � = 1, then the total chord length � = ∑��=1��, and the 
normalized expression of location parameter ����� based on 
the Cumulative Chord Length method can be assigned as 

Let the repeatability of the node vector at both ends be 
� + 1, then the relationship between control points and the 
sampled data is �0 = �0, �� = ��. Assuming the domain of 
node vector � ∈ [��, ��+1] = [0, 1], then the normalized node 
vector � can be written as

2.3. Construction of Control Points.  e node vector � of the 
sampling data can be calculated by Equation (5), and then the 
value of the basis function can be obtained by Equations (2) 
and (3). According to the basis function � and the sampled 
data sequence �, the linear equation of the control points �� 
is given as follows

(2)��,0(�) = { 1, �� ≤ � ≤ ��+1,0, otherwise,

(3)��, �(�) = � − ����+� − ����, �−1(�) +
��+�+1 − �
��+�+1 − ��+1��+1,�−1(�).

(4)
�����0 = 0, ������ = 1,
������ = 1�

�∑
�=1
��, � = 1, 2, . . . , � − 1.

(5)

�0 = ⋅ ⋅ ⋅ �� = 0,��+1 = ⋅ ⋅ ⋅ ��+�+1 = 1,
��+� = 1�

�+�+1
∑
�=�
������, � = 1, 2, . . . , � − �.

(6)(���)� = �.
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 e equation can be rewritten as

where � and −1 represent the matrix transpose.  e equation 
can be solved with Gauss Elimination method [28], then the 
control points �� (� = 1, 2, . . . , � − 1) are obtained.

With the obtaining of control points �� and basis function 
�, the B-spline curve can be drawn according to Equation (1). 
Obviously, in the calculation process, the control points and 
basis function are the two main features of B-spline method. 
From the above analysis, the two parameters are mainly deter-
mined by node vector.  erefore, the merits of the node vector 
directly determine the �tting accuracy of the B-spline curve.

2.4. Initial B-Spline Fitting Curve. A schematic diagram of 
partially �lled circular pipe section is shown in Figure 1, where 
� is the diameter of the measuring pipe, and ℎ (0 ≤ ℎ ≤ �)
is the �uid depth from the bottom of the pipe to the water 
surface, and � (0 < � ≤ ℎ) is the vertical height from the 
bottom of the pipe to the position of the measuring point. A 
Cartesian coordinate system is set in this way such that the 
bottom of the pipe has the coordinate origin, and � presents 
the transverse distance from the centerline, and � presents 
the vertical depth from � axis upward positive. According to 
the de�nition of traditional B-spline curve �tting method, the 
�ow velocity distribution curve of the partially �lled pipe �ow 
�eld is shown in Figure 2.

In Figure 2, �max is the maximum value of the �ow velocity, 
where the curve obtained by the traditional B-spline curve 
�tting method is generally close to the velocity sampled data, 
but there is obvious deviation between the �tting curve and 
the sampled data. Moreover, all the sampled data were pro-
cessed equally when the control points are inversely calculated, 
which makes the number of iterations increase, and greatly 
reduces the computational e�ciency. But reducing iteration 
time it will cause further increase in the local deviation.

In many engineering applications, only insu�cient sam-
pled data can be obtained due to the in�uence of construction 
environment, equipment, and other factors.  e B-spline 
curve is �tted with undersampled data, and the results are 
shown in Figure 3.

(7)� = (���)−1�,

From Figure 3, it is clear that the conventional B-spline 
curve �tting method based on a few sampled data reduces the 
computational complexity, however, there is a large deviation 
between the �tted data and the sampled data.  erefore, how 
to reconstruct the velocity image in the case of under-sampling 
is the main problem to be solved.

3. Improved Non-uniform B-Spline Curve 
Method

In many cases, only insu�cient sample points can be meas-
ured. If the �ow velocity information contained in these sam-
ple points can fully express the trend of the �ow velocity 
distribution, then the B-spline curve method can be used to 
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Figure 1: Diagram of section of measuring pipe.
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Figure 2: Initial �tting curve.
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3.3. Restructuring of the Non-uniform Node Vector. According 
to the mentioned principle of selecting unbalanced feature 
points, the sampled points ����{����0, ����1, . . . , �����} are 
selected as feature points, in which the �rst point ����0 = �0,  
and the end point ����� = ��.  e chord length is rede�ned 
as �� = {

����������� − ����(�−1)
������
�, � = 1, 2, . . . , �}, � = 1, then the 

location parameter 
⌢����� and the non-uniform node vector 

⌢� can be rewritten as

and

where 
⌢������ is the quadratic normalized parameter value of the 

featured points.  en the basis function and the control points 
were updated according to Equations (3) and (7). With the 
obtaining of new control points the new �tting curve were drawn.

3.4. Quadratic Optimization of the Fitting Curve. For the initial 
�tting curve, if the local approximation deviation exceeds the 
maximum allowable deviation �, some new feature points should 
be added appropriately to improve the local �tting accuracy. 
According to the proposed method, the �tting curve �(�) based 
on discrete sampled points can be obtained, and the relationship 
between the �tting curve and sampled data are as follows

(9)

⌢�����0 = 0, ⌢������ = 1,
⌢������ = 1�

�
∑
� = 1
��, � = 1, 2, . . . , � − 1,

(10)

⌢�0 = ⋅ ⋅ ⋅ ⌢�� = 0,
⌢��+1 = ⋅ ⋅ ⋅ ⌢��+�+1 = 1,
⌢��+� = 1�

�+�+1
∑
� = �

⌢������, � = 1, 2, . . . , � − �,

(11)
max
�=1, 2, ..., �

�(�(��), ��)
�� = g� ≤ �,

reconstruct the entire �ow velocity distribution curve. Based 
on this idea, an improved non-uniform B-spline curve (NBSC) 
method was proposed. Compared with the traditional B-spline 
method, there are two obvious changes in this method. First, 
some sampled data were extracted as feature points, which 
have important in�uence on the shape of approximation 
curve. Second, the non-uniform node vectors were recon-
structed with these extracted feature points.  e basis function 
and control points were updated with the new node vector. 
With the obtaining of new control points the new �tting curve 
were drawn. Obviously, the key to this method is to reasonably 
select feature points containing �ow velocity information. In 
this paper, the curvature distribution method is used to deter-
mine the feature points of the �tting curve.

3.1. �e Curvature of Discrete Points. In comparison with 
several methods of algorithm for curvature [29–31], the 
curvature distribution was solved with Local Estimation 
method in this paper. In the Local Estimation method, the 
parametric polynomials �(�) are established by using the 
front and back three points of the measured points, then the 
curvature of the sampled point �� in the data sequence can 
be expressed as

where ��(��) represent the �rst derivative of the curve at 
parameter ��, ���(��) represent the second derivative, and the 
magnitude of the curvature re�ects the variation degree of 
�ow velocity.

3.2. Selection of Unbalanced Feature Points. According to 
Formula (8), the curvature of �ow velocity at each sampled 
point on the central line of the pipeline can be obtained, the 
result is shown in Figure 4, where the abscissa is the height 
of the measuring point from the bottom of the tube, and the 
longitudinal coordinate is the curvature of the �ow velocity 
at each measuring position.

Obviously, the curvature value of the curve is small where 
the velocity varies smooth, while the curvature value of the 
curve is relatively large the velocity varies sharply.  erefore, 
in the sampled data sequence, the principle of selecting feature 
points are as follows:

(1)  e sampled point with maximum curvature �max is 
the featured point.

(2)   e �rst sampled point �0 and the end sampled point 
�� are the featured points.

(3)  e sampled points higher than the preset curva-
ture threshold �pre are the featured points. It should 
be noted that the curvature threshold is too high to 
re�ect the characteristics of the curve. On the con-
trary, reducing the threshold will result in a large 
amount of calculation and lower computational e�-
ciency.  erefore, the curvature weighted average 
w��v is used as the preset threshold in this paper, 
where ��v is the average of curvature and w is the 
weight.

(8)�� =
������(��) × ���(��)����������(��)����2 � = 0, 1, . . . , �,
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uncertainty of measurement, resulting in greater uncertainty 
closer to the bottom of the pipeline, and vice versa.

 e measurement results are shown in Figure 6. Where ℎ
is the �ow depth, � is the distance from the measuring position 
to the pipe bottom, and �max is the maximum velocity on the 
central section of the pipeline.

From Figure 6, the position of maximum velocity �max in 
the pipeline is below the free surface, and the position varies 
with di�erent water depth, which is consistent with the meas-
urement result of literature [1].

4.3. Comparisons and Discussions. According to the proposed 
NBSC method, the average velocity along the pipeline center 
line is processed, and the approximation curve of velocity 
pro�le at di�erent �ow depths are obtained. Under the 
condition of relative deviation less than 1%, the NBSC method 
was compared with the conventional B-spline curve method, 
and the results are shown in Figure 7.  ese data are presented 
using both � and �max as the normalized velocity scale, the 
height of measuring point � and the �ow depth ℎ are used as 
normalized length scales.

Figure 7 shows the comparison pro�les of partially �lled 
pipe �uid for �ow depths of 42%, 50%, 62%, 70%, and 79% 
respectively. As can be seen

(1)   e number of sampling points required for the 
improved B-spline curve �tting method is far less than 
that required by the traditional method. When the 
�ow depth of the pipeline are 50% and 79% respec-
tively, the appropriate �tting curve can be obtained 
only with four measuring points, and when the �ow 
depth are 42%, 62%, and 70% respectively, only one 
feature point needs to be added.  e workload of the 
measurement is greatly reduced.

(2)  Except for the two feature points at the head end and 
the end point, the other feature points are located at a 
place where the �ow velocity changes relatively, and 
the distribution of feature points are non-uniform. 

where ε is the maximum relative tolerance of deviation, 
�(�(�), ��) is the distance from measured data point to the near-
est point of the �tting curve, i.e., �(�(�), ��) = min

�����(�) − ������. 
If g� > �, the corresponding sampled data point �� is the new 
featured point, and the node vector was reconstructed again with 
the non-uniform node vector construction method, then the 
approximation curve of quadratic optimization is obtained.

4. Experiment and Discussion

4.1. Experimental Measurement.  e schematic test equipment 
is shown in Figure 5.  e Particle Image Velocimetry (PIV) 
system was adopted to measure the �uid velocity of a single 
point, and the measurement accuracy was less than 0.5% 
in theory.  e diameter of the transparent acrylic test pipe 
is � = 0.04m. In order to ensure the fully developed �ow 
pro�les in the measuring section, the distance between the 
pipe inlet and the observation point are 20�, and the distance 
between the pipe outlet and the measuring point are 15�.  
 e hydraulic slope of the test pipe is � = 0.0033, the pipe wall 
was hypothesized to be hydro-dynamically smooth, and the 
roughness coe�cient is ��� = 0.0085. A laser light emitted 
from a 30 mJ Nd:YAG laser to illuminate the test point, and the 
interval of laser pulse is 20ns. Some glass spheres with diameter 
of 40�m were injected in order to speed the �ow.  e �ow of 
the �uid depends on the drive of the pump power, and there 
is no device for stabilizing the �uid �ow in the measurement 
system.  e �ow depth � varies from 42% to 79% of �.

4.2. Experimental Results.  e streamwise mean velocity 
pro�les at pipe vertical bisector was measured by the PIV on 
the cross-sectional plane for 42%, 50%, 62%, 70%, and 79% 
�ow depth. In the measurement sequence, the uncertainty of 
the i-th measurement point can be expressed as.

where � is the number of repeated measurements of a single 
measurement point, and �� is the average value of repeated 
measurements. According to Equation (12), the uncertainty 
of measurement of all measurement points were calculated, 
the uncertainty ranges from 0.00012 to 0.00043. In the vicinity 
of the bottom of the pipeline, the tracer particles collide with 
the pipe wall under the action of gravity, resulting in disor-
dered motion.  is disordered motion will a�ect the 

(12)�� = √
∑��=1(��� −��)
�(� − 1) � = 0, 1, . . . , �,
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Figure 5: Schematic diagram of the test equipment.
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(1) When the number of measurement points are the 
same, when compared with the traditional B-spline 
curve method, the proposed method has higher �t-
ting precision.  e deviation of B-spline approxima-
tion curve determined by feature points is obviously 
smaller than that of the traditional method.

(2) When the �tting accuracy is the same, the workload 
of the proposed method is much lesser than that of 
the traditional B-spline curve method.  e number 
of feature points obtained by extraction algorithm 
is obviously less than that of original measurement 
points, which reduces the computational complexity 
and improves the e�ciency.

(3) When the �ow velocity changes drastically, more fea-
ture points are required, and when the �ow velocity 
changes slowly, fewer feature points are required.  is 
distribution law allows the measurements to be tar-
geted more.

(4)   e method presented in this paper is easy to under-
stand and apply to engineering applications.  e 
analysis shows that this method has important prac-
tical signi�cance for engineering applications. It can 
be used in steel smelting, aerospace, and other harsh 
environments, and can also be used in mold design, 
garment customization, big data analysis, etc., which 
can reduce the workload of design.

Data Availability

 e data used to support the �ndings of this study are available 
from the corresponding author upon request.

 e measured object can be measured more specif-
ically by using the proposed method in this paper.

(3)  In the case of few feature points, there are a large devi-
ation between the traditional B-spline �tting curve 
and the measured data.  e approximation curve 
obtained by the �rst-order optimized B-spline curve 
�tting method can be better described as the distribu-
tion of �ow velocity, but there is an obvious deviation 
in the local region.  is deviation can be e�ectively 
reduced by using the quadratic optimization B-spline 
curve �tting method.  is means that in a �ow �eld 
where the �ow velocity changes more drastically, the 
�tting accuracy can be improved by appropriately 
increasing the feature points.

(4)  Using the method proposed in this paper, the �ow 
velocity distribution can be reconstructed with only a 
small amount of feature points and water depth ratio. 
Under the condition of relative deviation less than 1%, 
using the improved B-spline curve �tting method, the 
one-dimensional velocity distribution pro�le can be 
reconstructed with at most �ve feature points.

5. Conclusion

 e velocity distribution in partially �lled pipe is researched 
with non-uniform B-spline curve �tting method. A B-spline 
curve approximation algorithm based on few feature points is 
proposed, which mainly includes feature point extraction algo-
rithm based on discrete curvature analysis, and feature point 
adjustment algorithm based on deviation analysis.  e con-
clusion are as follows:
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