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In this paper, a super Wadati-Konno-Ichikawa (WKI) hierarchy associated with a 3 x 3 matrix spectral problem is derived with the
help of the zero-curvature equation. We obtain the super bi-Hamiltonian structures by using of the super trace identity. Infinitely,

many conserved laws of the super WKI equation are constructed by using spectral parameter expansions.

1. Introduction

The super extensions of the standard integrable systems in
two-dimensional spacetime have been investigated for the
recent several decades. Many classical integrable equations
have been extended to be the super completely integrable
equations, such as the super Korteweg-de Vries (KdV) equa-
tion [1-3], super AKNS [4-7], super Kadomtsev-Petviashvili
(KP) [8], super Kaup-Newell (KN) [9], super Camassa-Holm
(CH) [10], super vector nonlinear Schrodinger equations
[11], super Heisenberg [12], and so on [13-20].

The Wadati-Konno-Ichikawa (WKI) equation, proposed
in [21], can be written in the form

which can be used to describe the nonlinear oscillation of
elastic beam under tension. In this paper, we propose a

super WKI hierarchy associated with a 3 x 3 matrix spec-
tral problem, in which the first nontrivial member takes the
following form:
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which is the well-known WKI equation (1) as« =0 and = 0.
The outline of this paper is as follows. In Section 2, we
introduce a 3 x 3 matrix spectral problem with two commut-
ing potentials u and v, and two anticommuting potentials «
and f. This spectral problem is an extension of the spectral
problems associated with the WKI equation. From this spec-
tral problem, a hierarchy of the super WKI equations are pro-
posed with the aid of the zero-curvature equation. In Section
3, the super bi-Hamiltonian structures of the super WKI
hierarchy are constructed by using the super trace identity
[22-26]. In Section 4, we derive infinite conservation laws
of the super WKI equation by resorting to the spectral
parameter expansions. For the applied and analytic aspects
on conservation laws, one can refer to [27-30]. We can refer
to the two most recent results on the mixed method for the
calculation of conservation laws studied in [29, 30].

2. Super WKI Equations

In this section, a hierarchy of super WKI equations will be
obtained. We first introduce a 3 x 3 matrix spectral problem:
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where u, v, A, ¢, and ¢, are the commuting variables, which
can be indicated by the degree (mod 2) p as p(u) =p(v) =
p(A) =p(¢,) =p(¢,) =0; &, B, and ¢, are the anticommuting
variables which can be indicated by p as p(a) = p(f) = p(¢,)
= 1. In order to derive the hierarchy of super nonlinear evo-
lution equations associated with the spectral problem (3), we
need to solve the stationary zero-curvature equation:

. (4)
4

(Vij 3x3’

where p(Vy,)=p(Vy,)=p(Vy) =p(Vy) =p(Vs3) =05 p(

Vi5) =p(Vy) =p(V5,) =p(V;,) = 1. We note that equation

(4) is equivalent to

V.=[U,
V:

Vi =MWV, + AuV, + AaVy, —ABV 5,
Vige =2AV 5 + Au(Vyy = Vi) + Aa(V 5+ Vi),
Visg =AVi3 + AV + Aa(Vys = Vi) = ABV s
Vo = 2AV, + W(V ) = Vo ) + AB(V3 = Viy3),
Ve =AWV, —AuV, + AaV oy + ABV5,,
Viyse = AV + AvVi5 = AaVy + AB(Vis = Vi),
Vi = AV = AV, + AaVy + AB(Vis — Vi),
Ve = AV = AuVyy + Aa(Vy, = Viz) = ABV ),
Vs =Aa(Vos + Vi) + AB(V3, = Vi3)s
()

where each entry V;; = V,;(4, B, C, p, §) is a function of A, B,
C, p, and &:

Vi=-4,

V=B

Vi3=9,

Va=6

V=4, (6)
Vi=p

Vi =-p,

Vi, =6,

Vi3 =0,

with p(A) = p(B) =p(C) =0, p(p) = p(8) = 1. Substituting (6)
into (5), we have

A, =AvB—-AuC+ dap + Af36,
B, =2AB+ 2 AuA + 2144,

C, = —2AC — 2AvA - 2ABp,
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0, =A8 + Aup + AaA — ASB,
p,=-Ap+Avd — AaC - ABA.
(7)

The functions A, B, C, p, and § are expanded as the fol-
lowing Laurent series in A:
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Substituting (8) into (7), we can get the Lenard recursion
equation as follows:
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and 0=0,.
To find a general representation of the solution for (9),
we present a Lenard recursion equation as follows:

Kg;.,=Jgp j=0, (13)

with condition to identify constants of integration as zero
when acting with operator ™! upon Kg ;- This means that

g; is uniquely determined by the recursion equation (13).
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Operating with (]‘1K)j upon G_; =¢yg_,, we get the
general solution of (9).
j=-1, (15)
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where ¢, ¢;, -+, ¢;;; are constants of integration and g; =
) (2 () (4 ()
9,979 9" 9,7 -
Let ¢ satisfy the spectral problem (3) and the following
auxiliary problem

¢, =V¢, (16)

where each entry ngn) = V,-j(A<"),B(”), c, p, 8™y in the

matrix V(" is a polynomial of eigenparameter A with
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where A, B;, Cj, p;, and §; are determined by (15). Then, the
compatibility condition of (3) and (16) yields the zero-
curvature equation U, — VW 4 [U, V"] = 0, which is equiv-

alent to the hierarchy of the super WKI equations.
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with X = PKg i1 = Pjg i The first nontrivial member in the
hierarchy (19) is as follows:
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which is reduced to the famous WKI equation (1) (see [21,
31])ast, =t,a=0, $=0, ¢, = 2i or the super WKI equation
(2) ast, =t, ¢, =2i.
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3. Super Bi-Hamiltonian Structures

In this section, the super bi-Hamiltonian structures of equa-
tion (19) will be established by using the super trace identity
as follows [23-27]:
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From (24), we obtain the desired Hamiltonian form of
(19) as follows:

0 0
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where K and ] are two super-Hamiltonian operators
defined by

1

2 (Kij )4><4’
1

J= E(]ij)4><4’

with K;; and J;; given by (11). Especially, the super WKI
equation (20) can be written as follows:
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4. Conservation Laws

In this section, infinitely, many conservation laws of the
super WKI equation (20) will be constructed. First, let us
introduce the variables
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where gbl, ¢,, and ¢, satisfy (3) and (16) with n = 1. Noticing
that ¢3 0, we get from (3) that
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We expand M, I in powers of ™! as follows:
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we can derive the conservation law of (20) as follows:
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Assuming that I=1+uM+al, F=(V{{)+VviM+

Vg?l" )/A, (35) can be rewritten as I, = F,, which is the right
form of conservation laws. We expand I and F as series in
powers of A with the coeflicients which are called conserved
densities and currents, respectively
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where ¢, is a integration constant of (15). The first members
of conserved densities and currents are as follows:
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