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In this article, we mainly apply the nonlocal residual symmetry analysis to a (2 + 1)-dimensional strongly coupled Burgers system,
which is defined by us through taking values in a commutative subalgebra. On the basis of the general theory of Painlevé analysis,
we get a residual symmetry of the strongly coupled Burgers system. Then, we introduce a suitable enlarged system to localize the
nonlocal residual symmetry. In addition, a Backlund transformation is derived by Lie’s first theorem. Further, the linear superposition
of the multiple residual symmetries is localized to a Lie point symmetry, and an N-th Bicklund transformation is also obtained.

1. Introduction

Nonlinear partial differential equations have wide applica-
tions in the field of physical science, engineering, and other
applied disciplines, e.g., nonlinear optics [1-4], fluid flows
[5-7], plasma physics [8, 9], excitable media, and so on
[10-14]. Burgers equation p, = 2pp, + p,, is a very impor-
tant nonlinear partial differential equation occurring in
various areas of applied sciences, such as fluid mechanics
[15], nonlinear acoustics [15], gas dynamics, and traffic
flow [16]. The equation was first introduced by Harry
Bateman in 1915 and later studied by Johannes Martinus
Burgers in 1948 [17, 18]. The study of symmetries plays an
important role in branches of some natural sciences espe-
cially in integrable systems [19, 20]. In [21, 22], the authors
proposed a residual symmetry in the process of the residue
of the truncated Painlevé expansion for the bosonized super
symmetric KdV equation which is a nonlocal symmetry
[23-33]. In [34, 35], the authors concerned with the appli-
cation of the nonlocal residual symmetry analysis to
(2+1)-dimensional Burgers system, which has the form as
follows:

pt:ppy+arpx+bpyy+abpxx’ (la)

Px = ry’ (lb)

where a and b are arbitrary constants.

In [36, 37], a hierarchy called the Frobenius-valued
Kakomtsev-Petviashvili hierarchy which takes values in a
maximal commutative subalgebra of gl(rm, C) was constructed.
Then, in [38], the authors considered the Hirota quadratic
equation of the commutative version of extended multicom-
ponent Toda hierarchy, which should be useful in Frobenius
manifold theory [39, 40]. Recently, we studied Z -Painlevé
IV equation, Frobenius Painlevé I equation, and Frobenius
Painlevé III equation [41]. In this paper, we consider a new
(2+1)-dimensional strongly coupled Burgers system which is
defined by us through taking values in a commutative subal-
gebra Z, = C[F]/(l"z). We replace the p and r of (1) with the
commutative matrix

(3 () @
Then, we can get

pt = Ppy + qqy + anx + asq, + bpyy + abpxx’

qt = pqy + qpy + arqx + apr + bqyy + aqux’ (33)
px =T,
g =5, (3b)

which is called (2 + 1)-dimensional strongly coupled Burgers
system.
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The aim of this paper is to promote the (2 +1)-dimen-
sional Burgers system to a Frobenius integrable systems
which is called (2 + 1)-dimensional strongly coupled Burgers
system. A suitable enlarged system is given to localize the
nonlocal residual symmetry. It follows that a Backlund trans-
formation is derived by solving an initial value problem. It
means that one can find various solutions of the (2 + 1)-dimen-
sional strongly coupled Burgers system from a seed
solution.

2. Residual Symmetries of (2 + 1)-Dimensional
Strongly Coupled Burgers System

We first introduce the truncated Painlevé expansion:

=3 (Pl +®) 4 ply -9 —alv-9) " raly+9)™),
q= ZO( Gy +8) " +ay-¢) " - plw-9) "+ ply+ ) ),
r= S () =9 sy -9 sy ) ),
s= 3 (sl + ) 45y -9) " —nly-9) " ey +9) ),
@)

where p,, q, are a set of arbitrary solutions of the equation, and
Dot Pa > P D D - - - » 9o t0 be expressed by derivatives
of ¥ and ¢. By balancing the dispersion and nonlinear terms
according to the leader order analysis to the system (3a and 3b),
the truncated Painlevé expansion has the following form:

Po¥ — 4o QY — P

p=" 0t p, q= 10— 4q, (5
T y-¢t
oV — So¢ 50‘// — 1o

r=—=— T4y, s=2 32" 415, 5b
yv-¢ yog v GD

Then, plugging (5a and 5b) into (3a and 3b) and vanishing
all the coefficients of each power of (v + ¢) " + (v — ¢) "and

(v —¢)" = (v +¢)", we obtain
p = Zbl// > q = 2b¢ >
rg = 2b1//il, 500 = 2b¢:’, (6)

ay,r +ad.s, +aby, + py, +q,¢, +by,, -y, =0, )
a¢xrl + al//xsl + ab¢xx + qlWy + p1¢y + b¢yy - ¢t = 0’

Pt = P1Pry — D1y — O Prx ~ 5191 ~ bplyy —abp,,, =0,

91 — P91y — 91P1y ~ 8S1P1x — AN G T bquy —abq,,, =0,
(8)
plx_rly :0’ qlx_sly =0. (9)

It is easy to find that (8) and (9) are just the (2 + 1)-dimen-
sional strongly coupled Burgers system (3) with p,, q,, 7, and
s, as solutions. We then substitute p,, q,, 7, and s, of (6) into
the linearized form of (8) and (9) with (7) that one can find

Advances in Mathematical Physics

the p,, g, 7> and s, in (6) are the symmetries of the strongly
coupled Burgers system.

According to the theorem of the residual symmetry [22],
the strongly coupled Burgers system has a residual
symmetry:

o =2by,, o =2bp, o"=2by, o =2b, (10)
which is nonlocal for y and ¢ related to p,, q,, 7, and s, by (7).
Then, we introduce auxiliary variables f, g, h, and k with the
relations f =y, ¢ = ¢, h =y, and k = ¢, to obtain a local
symmetry in the following enlarged system:

- pp, — 99, — arp, —asq, —bp, —abp,, =
qt pa, - ap, - asp, - arq, - bq,, - abq,, = 0 (1)

px = ry’ qx = Sy’ (llb)
ay,r+a¢.s+aby,, +py,+qp, +by, -y, =
ap,r +ay.s+abd, +qy, + p(p +bo,, — ¢, = 0 (11¢)

fzle’ g=¢x’ (11d)

h= vly’ k= ¢y' (lle)

Further, the residual symmetry can be localized into the Lie
point symmetry

o’ =h, o=k (12a)
o'=f o=g (12b)
1 1
= (fy+g¢) o =— v+ fe) (12
n_ 1 k_ 1
o' =~ (hy +k¢), o' =—(ky+hg). (12d)
o = —i(qﬂ +¢’), of = - (12¢)
2b ’ b
which satisfy
of - aba, - aoyr —ao)s —ar,0" - as 0* —bol — pol

- 403 = p,0’ = q,07 =0,

q _ S _ S _ r _ S _ r _ q _ q
o, —abo, —ao,r—ao,s—ar 0 —as,o —boj, — poy
p q P _
- g0 - p,0?-q,0" =0, (13a)
P S
0, =0, 0.,=0, (13b)

v v ¢ r s v _ P
- bo), —ao,r —aoys —ay, 0" —a¢.0° —abo,, - o'y,

6% — po¥ — ao® =
o'¢, - po, —qoy =0,
- bo¥, —ao’s - aolr - ay,0° — ap,0" - abo?, (13¢)
-o*¢, - oy, - po? - qo¥ =0,
o/ =0/, of=0%, (13d)
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V_gh gt =
Iy =0, 0y = (13e)

Therefore, the enlarged system (14) has the Lie point symme-
try vector:

‘—/ = hap +far - %(fw+g¢)af - %(hlﬁ‘*k(/))ah - %(WZ + (/)Z)BW

1 1 1
W = ko, + g0, — (g + [9)3, — - (ky + h$)d, — -y,
b b b (14)

Next we will give the Backlund symmetry theorem, which
is obtained by using a finite transformation of the Lie point
symmetry (14).

Theorem 1. If {p,q,7,s, f,g, h.k, v, ¢} is a solution of the

coupled system (11a-11e), then so is {p,q,r 5, .5 h k¥, (/5}
with

. 2eb(eky — eh¢ + 2bk)
(ey +2b)" — ¢
(15a)
2eb(egy — ef + 2bg)
(ey +2b)° — E¢?

— Zeb(ehqf ek + 2bh)
P (ey +2b) — ¢

2eb(efy —egd +2bf)  _

r=r+ , S=s+

(ey +2b)° - €¢°

(15b)
_ 2b(ey” — e¢” + 2by) e 4’ (150
v (ey +2b) —*¢> (ey +2b) — ¢
7. 4’(Cf-Dg) _  4b*(Cg-Df)
ST o-p ¢ T op 0 1d)
— 4V'(Ch-Dk) ~— 4b(Ck-D
e e 0

where

C=&(y* +¢°) +4bey +4V°, D =2¢"y¢ + 4be, (16)

and € is an arbitrary group parameter.

Proof. According to Lie’s first theorem on vector (14), it is
not difficult to find that the key to prove this theorem is to
solve the following initial value problem:

dp 5+ dq _<

i —_1_ 17

de h, de o (172)

dr - ds _

EZf’ %% (17b)
df _— dg  1,__ ——
d—f=—l;(1//f+¢g)’ d_‘j:‘g(‘//g+¢f)’ (17¢)
dh  1,_— —— dk 1,_— ——
E——E(whﬂpk), E=—I;(1,/k+¢h), (17d)

dv ) oy A
e TR AR S L LT

3
?(0) =D, _21(0) =q _?(0) =7, E(O) =S, 7_(0) = f’
g0 =g RO =h KO)=k TFO) =y, $0)=¢.
(171)

And (15a-15e) is the solution to the above system. Therefore,
we have completed the proof of Theorem 1. O

3. Bicklund Transformations of Strongly
Coupled Burgers System Related to Multiple
Residual Symmetries

For the (2 + 1)-dimensional strongly coupled Burgers system
(3a and 3b), the original residual symmetry

of =2by,, of=2bp, o =2by,, o =2bd, (18)
is related to the solution of Equation (11c). Then, according to
the linear property of symmetry equations, the multiple resid-
ual symmetries are expressed in terms of any linear superpo-

sition of symmetry

n
0 Z Cl//zy’ GZ = ‘z:lci(pi,y’
i=

i=1

n (19)
= Ziciy/i,x’ on = ;Ci¢i,x’

n=1,2,3,..),

where y; and ¢, are different solutions of (11c). And the sym-
metry (19) should be localized to a Lie point symmetry by
introducing more variables. In this way, one can find the finite
transformation group of the symmetry (19).

Theorem 2. If {p,q.1,s, f.g- hp kv, (i=1,2,...,n) is
a solution of the enlarged system
Pt ppy qqy arpx asqx bpyy abpxx
4, - pq, - qp, - asp, - arq, - bq,, - abq,, =0, (20
px = ry’ qx = Sy’ (ZOb)

alljlxr+a¢tx5+abl//1xx+PWzy+q¢zy+bI)(/lyy Il/ztz >
a¢1xr+awzx5+ab¢zxx+qW1y+p¢ty+b¢ ¢1t_0’

(20¢)
fi=Vio &=¢0 (204d)
hi =y, k; = O (20e)

(i=1,2,...,n),
then the symmetry (19) is localized to the Lie point
symmetry

(21a)

(21b)



A AT I R A )

n

o* = —%WA - —;(wﬂﬁ R

j#z

(21¢)

l\.)

C C.
_i(fil//i +8¢) - z _z)(fllfj +g1¢ + f‘//z +g1¢)
J#
C L
_2_;9(ﬁ¢1 +giI1Ui) z _Jb(fql> +ng] +f¢ +g]le)
’*’ (21d)
C " C.
ot = _i(hi‘//i + ki) - z i(hil//j + ki¢j + hj‘/’i + kj(pi)’

J#i

C.
i(hi(pj + kilf’j + hj¢i + kjll’i)-
(21e)

Ci B n
_i(hi(pi + k) Z

JHi

Q
=

Proof. The extended system (20a)-(20e) has the following
linearized form:

of - abo), —ao,r —aoys —ar,0’ —as,o
- bo?, p q P_ 5=
bo}, - po, —qo} - p,0’ —q,0" =0,
ol - abayx - acryr - aays - aryo‘ - asyo (22a)
—bol — ol —aof — b ol —g of =
bo), - poy, — qoy — p,o’ —q,0" =0,
P_ 5 a_ 4
Ux - Uy’ ax - Gy’ (22b)
v v s
—boy, —ao}'r - acts - ay, 0 —ad, .o
Vi _ 5P a Vi _ a5 =
- aboxx -0 Wi,y -0 ¢i,y - pay qay =0,
b ¢ Vi & S r (22C)
—bo)), —ao,'s —ac)'r —ay; 0" —a, .0
P a Vi _
~ aba?, Mk pa q0, =0,
oV =ol, o¥ =0, (22d)
Y _ i — ki
o) =0" 0y =0" (22¢)

Let us first consider the special case: for any fixedm, ¢, # 0,
while ¢ = 0, j # m in (19), from (12a)-(12e), the localized
symmetry for {p, g, S, f,» &> o> K Wo» P,n} €21 be obtained
as follows:

of=¢ch,, ol=chk,, (23a)
O-r = Cmfm’ 0-5 = Cmgm’ (23b)
Y Cm 2 2 b Cm
o' =Wt dn) ot = b (230
f Cn g o
o= _E(mem +gm¢m)’ o = _?(fm(/)m +gml//m)’
(234d)
h Cn k, m
om" = _E(thm + km¢m)’ o= _z(fmﬁbm + kam)‘
(23e)
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In (20c), we leti = mandi = j, and then we obtain

all/j,xr + a(pj,xs + abl//j,xx + pv/j,y + q¢j,y + bl//j,yy 1/’] t
ap,.r+ay; s+abd; . +qy; +pp., +bp;, -, 0
(24)

QWm,xr + a(/)m,xs + ame,xx + Pwm,y + q¢m,y + bIIJm,yy - I7Um,t = 0’
a¢m,xr + an,xS + ab(pm,xx + qu,y + P¢m,y + b(pm,yy - ¢m,t =0.
(25)

Then, we substitute (23a) and (23b) into (22c) withi = jyield

Vi

- bo;/; —ao,’'r aafj s—ac,y; . fn— ac,P; &m
—aba Y - mvljy_cmkm(pjy_po-;’yj _qaij :0’
(26)
¢’ bo‘f; - aafjr - aaf §=aC,Y; . &m — A6, P, S
¢; v;
- aboxjc - cmhquj,y - kam%,y - poy’ —qo,’ = 0.
Further, one can obtain a solution of Equation (26):
. . Cm
0" = =22y, + 9,8)) 0% = =2(u,8,+ 6,v,).
(27)

which can be verified by using (20b), (24), and (25). From (22d)
and (22¢) with i = j, the symmetry for f, g, h;, and k; can be
given by:

o’ - —C—m(fwm F 8 T SV 4 81

% = (f B + 8 W + L + &) 29

Cm
o = S Kyt ),

L c, (29)

" = —%(hqum + K, + B+ k).
Further, (21a)-(21e) can be obtained by taking a linear com-
bination of the above results form = 1, 2,..., n. Therefore, we
have completed the proof of Theorem 2. d

According to Li€s first theorem, the initial value problem
of the Lie point symmetry (21a)-(21e) has the following form:

PO o, 0, 22 ZCJQ’M(G) (0

=
dR(e Z,‘I’Jx() dS(e Z jx(€)> (30b)
d¥,(e) G
LA GRLAC)

-3 S were o 000)

2 (30c)
do,e) _i\}/i(e)(D,-(E)
de

_ZZb(

JHi

e)D,(e) + D,(e)¥(e)),
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P(e) = p+ b(In(A + B) + In(A - B)),,
Q(e) =g+ b(In(A + B) - In(A - B))y,

R(e) =r +b(In(A + B) +In(A - B)),,
S(e) =s+b(In(A + B) —In(A - B)),,

(A,A - BB),

F(e) = ¥,,(e),

Hye) = ¥,,(e),

ceM,,

C
¥~ 1

ceM, ;

cneszn

cleNL2
_S —

2b€¢2 1

cjeNZ) j

¢ eN.

n 2n

qeM,
GEM,

G1€M

Mi,i+1

Gl _
_EGWiH 1

CneMi+1,n
GENy

GEN,

N

L,i+1

Ser —
o €¢i+l 1

c,eN,

dF(e) G
12— S(E @) + Ge0,©)
noc.
= Z—L(Fi(e)‘l’j(e) +G,(e)D,(€) + F,(e)¥(€) + G,(),(e)),
i
9GL€) _ S (e)0,(6) + G(e)¥,(0)) (30d)
de b
noc.
=Y (0,0 + GO, + F@OE) + GO¥E), 1y (e) = 2
j#i 1 AZ _ BZ
dH,(e) _ G
de b (Hi(e)\l’i(e) + Ki(e)(b,'(e))
noc.
-y i(Hi(e)‘Yj(e) + K, (e)®,(e) + Hy()¥(e) + K,()D,(e)),
J#i
K;(€) G (30e)
aKL©) _ “S(H(e)D,(e) + K.()¥,(€)) where
de b
noc. .
= i(Hi(e)tb 1(€) + K (e)¥,(€) + H(€)®,(€) + K, (€)¥,(e)), —5€¥ — 1
i GEM,,
PO)=p, QO)=q RO)=r SO)=s %O =y, A= 5
©,(0) = ¢, F(0) = f;, G,(0) =g, :
H,(0)=h, K(0)=k, i=12,...,n (30f) c.eM,,
_%6(/51 -1
Then, one can get the following N-th Bicklund theorem GeN,
for the extended system (20a)-(20e) by solving (30a)-(30f). 5 :
- cjeNl,j
Theorem 3. If {p,q,7,s, f,, g h., k;, v, §,;} is a solution of the
coupled system (20a)-(20e), then so is {P(€), Q(€), R(€), S(€), :
F.(€),G,(e)H;(€), K;(€), ¥;(€), D;(e)}, (i = 1,2,...,n), where GENy,
_2”_;761//1 -1 ceM,, ceM,; ceM,;
GEM,, _%61/’2 -1 GEM,; | ceM,;
A= G €M, ¢ €M, _Z;z;ell’iﬂ -1 Ci—lefwi—l,i
' M, M,; My, ~w Vi
Gn€M, ;1 GaEeM, Gr€M 0 — 1 G €M,
CneMl,n CneMZ,n CneMi—l,n CneMi,n
—zc—‘be(pl -1 €N}, 51€N1,i—1 cleNl,i
GEN,, _2%6(/52 -1 GEN,; GEN,;
B = G€Ny ;G EN,; _2;;,16‘751‘—1 -1 ¢ eNy; 6 €Ny
i~ 1
l Nl,i Nz,i Ni—l,i Tt
Gr€N GENy G€Niin =1 6N,
CnENl,n CneNZ,rL CneNi—l,n CneNi,n

i+1,n

Gi(e) = O, . (e),

Ki(e) = @, (e),

ceM, ;
czeMZ,j

L
J —
ey -1

c.eM;,
GeNy

6eN, j

L
—mep;i—1

c eM.

n jn

M,

in

c..eM

i+1 i+1,n

Cn
—2—b€I//n -1

ceN,,
cleNZ,n

G_1€N;
N,

in

-Ln

G1€NG 1,

_;_Ze‘Pn -1

(31a)

(31b)

2b
,(e) = m(BiA - A;B),

(31¢)
(31d)

(31e)

ceM,
%eM 2n

cjeM i

Cn
—%61//,‘ -1
ceN,,
CZeNZ,n

cjeN

jn

—z%e(pn -1

(32)

(33)



with

Mi,j = *4%((%% + ¢i¢j + Wi‘»bj + ¢in)1/2 + (V/il//j + ¢i¢j - Wi(bj - ¢i1/’j)1/2)’

1/2

N;; = _ﬁ((ll/in + ¢i¢j +yh + ¢in)1/2 - (‘Vi‘/’j + ¢i¢j -y - ¢iV’j) )
(34)
From any seed solution of the (2 + 1)-dimensional strongly
coupled Burgers system, one can get an infinite number of new
solutions because # is an arbitrary positive integer. We con-
sider a special case about the solution of the (2+1)-dimen-
sional strongly coupled Burgers system. The (2 + 1)-dimensional
strongly coupled Burgers system has a soliton solution:

2b,b(e™ - 1) 2b,b(eHH — )
p=ayt (@@ ) (@ 1 1) (@ 1) 1)

2 b(e™ ~ 1) Db — ) (35)
q=a+ (ezk0+2kl N 1)(ezkﬂ—2k, N 1) + (ezszk1 N 1)(ezkﬂ—2kl N 1)’

r=s=0,

where
k, = (bya, + ba))t + by y,

36)
k, = (byag + ba, )t + by, (
and a,, a,, b, and b, are arbitrary constants.
Then, the solution of (20c) can be obtained
d((e4ko B 1) el(eZkOJerl _ ezko—zk,)
- i + i ,
L2 (ezk"+2k, + 1)(eZk"_2k‘ + 1) (ezk(,+2k, + 1)(ezk‘,—2k, + 1) 37)

2k, +2i 2k, —2i 4
di(e kyt2k, _ 2k k\) ei(e ku_l)

¢ = (ezkn+2kl + 1)(e2k°’2"1 N 1) + (ezko+zkl + 1)(ezlcrzkL N 1)>

where d; and e, are arbitrary constants.
Further, one can obtain the M, ;and N; ; of Theorem 3

M- _% ek B & 2otk _ k2K,
T 4p (ezku+2k, + 1)(ezk072k, ¥ 1) 4b (e2k0+2k, N 1)(e2ku—2k, 4 1)’
D o1 c, 2ok, _ g2ky-2k, (38)

0
Ni,j T (ezk0+2k, 4 1)(ezk0—zk, 4 1) T4 (ezk“zkl + 1)(621(‘,721(, . 1)’
where

C, = (didj +ee; +de; + e,.dj)ll2 + (dl.dj +tee;—de; - eid].)l/z,
D, = (didj +ee; +de; + e,.dj)l/2 - (didj +ee; —de; - eidj)l/z.

(39)
We write C, and D, as

ootk _ ,2k-2k,

- (ezko+2k1 4 1)(32k°_2k‘ + 1)‘

(40)
Finally, consider the case of n = 2 in Theorem 3, one can get
a new soliton solution

R
— ,
(ezk(,+2kl + 1)(62k0 % 1)

C, =

_ Cy((q(d, +d,)C, + (e, +¢,)D; +2b) - Dy((qle; +6,)C, +6(d, +d,)D,)
(%(dl + dz te + ez)(cl + Dl) + Zb)(%(dl + dz —e - ez)(cl - Dl) + Zb) '

_ D,((q(d, +d,)C, + (e, +e,)D; +2b) = Cy(((ey +¢,)C, +(d, +d,)D,)
(%(dl +d,+e +¢)(C +D,)+ Zb)(%(dl +d, e ~¢)(C,~D,)+2b) '

r=s=0, (41)
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where

C,= Cl(co(aoal1 +ae, +ayd, +ae,)+ 4b2b0)
+ Dl(c0 (ape, +a,d, +ase, +a,d,) + 4b2b1)
+2bc,)(byd, + bie, + byd, + bje,) + 2ba,,

D, = Dl(co(a(,d1 +ae, +a,d, +ae,)+ 4b2b0)
+Cy(co(ape, + ayd, + age, + a,d,) +4b°b, )

+2bc,(bd, + bye, + bd, + bye,) + 2ba,. (42)

4. Conclusion and Discussion

In this paper, we first defined a new (2+ 1)-dimensional
strongly coupled Burgers system which takes values in a two
component commutative subalgebra Z,. Then, the residual
symmetry of the strongly coupled Burgers system was
obtained by using the truncated Painlevé expansion, and the
corresponding residual system was just the nonlocal symme-
try. To localize the residual symmetry, we introduced a suit-
able enlarged system. According to Lie’s first theorem, the
finite Backlund transformation was derived. Further, the N
-th Backlund transformation of the strongly coupled Burgers
system was obtained by localizing the linear superposition
of multiple residual symmetries, and the N-th Backlund
transformation was expressed by determinants in a compact
form.
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