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In this paper, the existence and uniqueness of response solutions, which has the same frequency ω with the nonlinear terms, are
investigated for a quasiperiodic singularly perturbed system involving reflection of the argument. Firstly, we prove that all
quasiperiodic functions with the frequency ω form a Banach space. Then, we obtain the existence and uniqueness of
quasiperiodic solutions by means of the fixed-point methods and the B-property of quasiperiodic functions.

1. Introduction

The following singularly perturbed system

x′ tð Þ = F t, x tð Þ, y tð Þ, εð Þ,
εy′ tð Þ =G t, x tð Þ, y tð Þ, εð Þ,

(
ð1Þ

occurs in many areas, including biochemical kinetics, genet-
ics, plasma physics, and mechanical and electrical systems
involving large damping or resistance [1–4], where x and
y are vectors with multiple components and ε ≥ 0 is a small
parameter. The existence of periodic solutions and almost
periodic solutions of (1) had been one of the most attracting
topics in the qualitative theory of ordinary differential equa-
tions. The early contributions on these topics are due to
Anosov [5] and Flatto and Levinson [6]. They investigated
system (1) in the case that the degenerate system

x′ tð Þ = F t, x tð Þ, y tð Þ, 0ð Þ,
0 =G t, x tð Þ, y tð Þ, 0ð Þ,

(
ð2Þ

has a periodic solution θðtÞ, χðtÞ. The authors showed suf-
ficient conditions on F,G which assure that the existence
of periodic solutions of (1) and these solutions converge to
θðtÞ, χðtÞ as ε⟶ 0 uniformly. In 1961, Hale and Seifert

[7] generalized the results of Flatto and Levinson to the
almost periodic case and gave sufficient conditions for the
existence of the almost periodic solutions of (1) using the
similar method with [6]. Chang [8] obtained the same result
of [7] under generalized hypothesis. But, the above papers
[5–8] do not consider the stability properties of the solutions.

Smith [9] considered the existence of almost periodic or
periodic solutions for system (1). By the construction of
manifolds of initial data, the author investigated the stability
properties of these solutions, which approach the given solu-
tions as t⟶∞ at an exponential rate, α, independent of ε.
He also gave the application in a reaction diffusion system
with a traveling wave input.

It is natural to ask whether there is a bounded solution of
system (1) for sufficiently small ε and how the stability prop-
erties of the solutions for the quasiperiodic case are.

For the Silberstein equation

x′ tð Þ = x
1
t

� �
, ð3Þ

we define yðtÞ = xðetÞ, then Equation (3) is equivalent to
y′ðtÞ = e−tyð−tÞ, which is known as the equation involving
reflection of argument. This kind of equations has applica-
tions in the study of stability of differential-difference equa-
tions, see Sharkovskii [10]. One of the earliest contributions
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to this kind of equations are due to Wiener and Aftabizadeh
[11]. They investigated the boundary value problems for the
second-order nonlinear differential equation

y″ tð Þ = f t, y tð Þ, y −tð Þð Þ,
y −að Þ = y0, y að Þ = y1

(
ð4Þ

by Schauder fixed-point theorem, where f ∈ C½½−a, a� ×ℝ ×
ℝ,ℝ�. They also considered the boundary value problems
for the following equation

y″ tð Þ = f t, y tð Þ, y −tð Þð Þ,
y′ −að Þ − hy −að Þ = 0, y′ að Þ + ky að Þ = 0,

(
ð5Þ

by changing the equation to a higher order one without
reflection of the argument, where h, k ≥ 0, h + k > 0. Gupta
[12, 13] studied more general boundary value problems than
Equations (4) and (5) using degree theory arguments. He
proved the existence of solutions for the boundary value
problems in a simple and straightforward manner. The exis-
tence and uniqueness of periodic, almost periodic, pseudo
almost periodic, Besicovitch almost periodic, and pseudo
almost automorphic solutions of this kind of equations were
investigated in [14–19]. Cabada et al. [20–22] studied the
first-order equation with two-point boundary conditions and
the nth-order differential equations involving reflection, con-

stant coefficients, and initial conditions, adding a new element
to the previous studies: the existence of Green’s function.

However, as far as we know, the quasiperiodic solutions
for the equations involving reflection of the argument have
not been considered yet. Our present paper is devoted to dis-
cuss the existence and uniqueness of response solutions for
the following singularly perturbed system

x′ tð Þ = F t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ,
εy′ tð Þ =G t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ,

(
ð6Þ

where ε ≥ 0 is a small real parameter, and the functions F,G
are quasiperiodic in t uniformly on ℝ2 ×ℝ2 with frequency
ω = ðω1, ω2,⋯, ωdÞ. A quasiperiodic solution of (6) with
the frequency ω is called response solution.

It is assumed that the degenerate system

x′ tð Þ = F t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, 0ð Þ,
0 =G t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, 0ð Þ,

(
ð7Þ

has a quasiperiodic “outer” solution which we take to be the
trivial solution, that is, we suppose

F t, 0, 0, 0, 0, 0ð Þ ≡ G t, 0, 0, 0, 0, 0ð Þ ≡ 0 ð8Þ

so that ðx, yÞ = ð0, 0Þ satisfies (7). Expanding (6) about the
trivial solution gives

One can think of, e.g., a1ðt, εÞ = ∂F/∂xðt, 0, 0, 0, 0, εÞ. In
the following discussion, we mainly consider (9).

This paper is organized as follows: in Section 2, we pres-
ent the Bohr’s notion of B-property for quasiperiodic func-
tions and then prove that all ω-frequency continuous
quasiperiodic functions form a Banach space under the
supremum norm. We prove an existence and uniqueness
result for a linear scalar equation with reflection of the argu-
ment. In Section 3, the main results on the local existence and
uniqueness of response solutions will be stated and proved by
means of fixed-point methods in the spirit of Sacker and Sell
[23]. We give conclusions of this paper in Section 4.

2. Preliminary

Firstly, we will give some lemmas which are important in
proving our main results.

Definition 1. Assume that ω1, ω2,⋯, ωd ∈ℝ are rationally
independent. A continuous function uðtÞ on ℝ is said to be
quasiperiodic with frequencies ðω1, ω2,⋯, ωdÞ, if there exists
a periodic function U =Uðθ1, θ2,⋯, θdÞ (called the lift of u)

in θ1, θ2,⋯, θd with the same period 2π, such that

u tð Þ =U ω1t, ω2t,⋯, ωdtð Þ, ∀t ∈ℝ: ð10Þ

Remark 2. This definition for quasiperiodic function can be
found in many references, for example [24]. It is not difficult
to prove that this definition is equivalent to the definition of
quasiperiodic function in [25].

LetQP ω be the set of all quasiperiodic functions with fre-
quency ω = ðω1, ω2,⋯, ωdÞ.

Definition 3. (see [4]). A function HðtÞ: ℝ⟶ℝ is said to
have a B-property on a set of real numbers ω1, ω2,⋯, ωd , if

(i) H is continuous on ℝ

(ii) for every ε > 0, there is δ = δðεÞ > 0 such that if a real
number τ satisfies the d Diophantine inequalities

ωkτj j ≤ δ mod 2πð Þ k = 1,⋯, d, ð11Þ

x′ tð Þ = a1 t, εð Þx tð Þ + a2 t, εð Þx −tð Þ + b1 t, εð Þy tð Þ + b2 t, εð Þy −tð Þ + f t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ,
εy′ tð Þ = c1 t, εð Þx tð Þ + c2 t, εð Þx −tð Þ + d1 t, εð Þy tð Þ + d2 t, εð Þy −tð Þ + g t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ:

(
ð9Þ
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then, τ is an ε-translation number of H, i.e.,

sup
t∈ℝ

H t + τð Þ −H tð Þj j ≤ ε: ð12Þ

Lemma 4. (see [3]). Suppose that HðtÞ is a quasiperiodic
function with frequencies ðω1, ω2,⋯, ωdÞ. Then, HðtÞ has
the B-property on fω1, ω2,⋯, ωdg, Conversely, if HðtÞ has
the B-property on a finite rationally independent set fω1,
ω2,⋯, ωdg, then HðtÞ is a quasiperiodic function with fre-
quencies contained in fω1, ω2,⋯, ωdg.

Proof. The proof of the lemma can be found in [26].

Lemma 5. ðQPω, k:kÞ is a Banach space with the norm k f k
= sup j f ðtÞj

t∈ℝ
.

Proof. Suppose that f nðtÞ ∈QP ω, ðn = 1, 2,⋯Þ is a Cauchy
sequence. By the fact thatQP ω is a subspace ofCBðℝÞ, which
is a Banach space of bounded continuous function on ℝ with
norm k f k = supt∈ℝj f ðtÞj, there is a f0ðtÞ ∈CBðℝÞ such that
k f n − f0k⟶ 0 (as n⟶∞). So for any ε > 0 and all t ∈ℝ,
there exists a K ∈ℕ, such that j f KðtÞ − f0ðtÞj ≤ ε/3.

Since f KðtÞ ∈QP ω, f KðtÞ has the B-property on fω1,
ω2,⋯, ωdg by Lemma 4. So for the ε, there is a δ > 0, such
that if a real number τ satisfies the inequalities jωkτj ≤ δ
ðmod 2πÞðk = 1,⋯, dÞ, then we have j f Kðt + τÞ − f KðtÞj
≤ ε/3 for all t ∈ℝ. Furthermore, we have

f0 t + τð Þ − f0 tð Þj j ≤ f K t + τð Þ − f0 t + τð Þj j
+ f K t + τð Þ − f K tð Þj j
+ f K tð Þ − f0 tð Þj j ≤ ε

3 + ε

3 + ε

3 = ε,

ð13Þ

thus, f0ðtÞ has the B-property on fω1, ω2,⋯, ωdg. There-
fore, f0ðtÞ is quasiperiodic, i.e., f0ðtÞ ∈QP ω.

Corollary 6. QP 2
ω ≔QP ω ×QP ω is a Banach space with the

norm kð f , gÞk≔ k f k + kgk.

Lemma 7. If HðtÞ ∈QP ω, then Hð−tÞ ∈QP ω.

Proof. Since HðtÞ ∈QP ω, HðtÞ has the B-property on the set
fω1, ω2,⋯, ωdg by Lemma 4. Then for every ε > 0, there
exists a τ, which satisfies (11), is an ε-translation number of
H. For these τ, we have

sup
t∈ℝ

H − t + τð Þð Þ −H −tð Þj j ≤ sup
s∈ℝ

H sð Þ −H s + τð Þj j

= sup
s∈ℝ

H s + τð Þ −H sð Þj j ≤ ε:

ð14Þ

So Hð−tÞ has the B-property on the set fω1, ω2,⋯, ωdg.
Therefore, Hð−tÞ ∈QP ω by Lemma 4.

Lemma 8. There exist ε0 > 0 and L1 > 0 such that for each h
ðtÞ ∈QP ω, λ

2 = ðα2 − β2Þ/ε2, λ > 0, the equation

εz′ tð Þ = αz tð Þ + βz −tð Þ + h tð Þ, ð15Þ

where β ≠ 0, has a unique solution zðh, εÞðtÞ ∈QP ω for 0 <
ε < ε0. Moreover, the operator L1ε : h⟶ zðh, εÞ is linear and
satisfies ∥L1ε∥≤L1. Furthermore, the map ε⟶ L1ε is continu-
ous for 0 < ε ≤ ε0.

Proof. Existence. Similar to the proof of Lemma 2 in [14], we
can verify that

z h, εð Þ tð Þ = −
1
2λ eλt

ð∞
t
e−λs λ + α

ε

� � h sð Þ
ε

−
βh −sð Þ
ε2

� �
ds

� �

+ 1
2λ e−λt

ðt
−∞

eλs λ −
α

ε

� � h sð Þ
ε

+ βh −sð Þ
ε2

� �
ds

� �
,

ð16Þ

is a particular solution of Equation (15) for any hðtÞ ∈QP ω.
Now, we show zðh, εÞðtÞ ∈QP ω.

Since hðtÞ ∈QP ω, hðtÞ, hð−tÞ has the B-property on the
set fω1, ω2,⋯, ωdg by Lemma 4 and Lemma 7. Then for
every ε > 0, if τ satisfies inequality (11), it will be an ε-trans-
lation number of hðtÞ and hð−tÞ. For this τ, we have

z h, εð Þ t + τð Þ − z h, εð Þ tð Þj j
= −

1
2λ

�
eλt

ð∞
t
e−λs

�
λ + α

ε

� � h s + τð Þ − h sð Þð Þ
ε

����
−
β h −s − τð Þ − h −sð Þð Þ

ε2

�
ds
�

+ 1
2λ

�
e−λt

ðt
−∞

eλs
�

λ −
α

ε

� � h s + τð Þ − h sð Þð Þ
ε

+ β h −s − τð Þ − h −sð Þð Þ
ε2

�
ds
�����

≤
1
2λ eλt

ð∞
t
e−λs λ + α

ε

��� ��� ε
ε
+ βε

ε2

����
����

� �
ds

� �

+ 1
2λ e−λt

ðt
−∞

eλs λ −
α

ε

��� ��� ε
ε
+ βε

ε2

����
����

� �
ds

� �

≤
ελ − αj j + ελ + αj j + 2 βj jð Þε

2 α2 − β2	 
 :

ð17Þ

So zðh, εÞðtÞ has the B-property on the set fω1, ω2,⋯,
ωdg for 0 < ε < ε0. Hence, zðh, εÞðtÞ ∈QP ω.

Uniqueness. If there was another quasiperiodic solu-
tion ~zðh, εÞðtÞ for Equation (15), then the difference uðtÞ =
zðh, εÞðtÞ − ~zðh, εÞðtÞ should be a solution of the homoge-
neous equation

εu′ tð Þ = αu tð Þ + βu −tð Þ: ð18Þ
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According to the Lemma 2 of [14], we see that uðtÞ is of
the form

u tð Þ = C
ελ − α

β
e−λt + eλt

� �
, t ∈ℝ, ð19Þ

for some constant C. If C ≠ 0, then uðtÞ will be unbounded.
This is a contradiction to the boundedness of quasiperiodic
function.

So, the operator L1ε : h⟶ zðh, εÞ is well defined. From
(16), we see the operator L1ε is linear. On the other hand,

z h, εð Þ tð Þj j ≤ M1 ε0λ − αj j + ε0λ + αj j + 2 βj jð Þ
2 α2 − β2	 
 , ð20Þ

where M1 = ∥h∥. So L1ε satisfies ∥L1ε∥≤L1 with L1 = ðjε0λ − αj
+ jε0λ + αj + 2jβjÞ/2ðα2 − β2Þ.

To prove the continuity of L1ε in ε, we write vðtÞ = zðh,
ε1ÞðtÞ − zðh, ε2ÞðtÞ for any 0 < ε1, ε2 < ε0, then vðtÞ satisfies

ε1v′ tð Þ = αv tð Þ + βv −tð Þ + ε2 − ε1
ε2

� αz h, ε2ð Þ tð Þ + βz h, ε2ð Þ −tð Þ + h tð Þ½ �:
ð21Þ

It follows that

v tð Þk k = z h, ε1ð Þ tð Þ − z h, ε2ð Þ tð Þk k
≤

ε2 − ε1j j
ε2

ε0λ − αj j + ε0λ + αj j + 2 βj jð Þ
2 α2 − β2	 


� αj j z h, ε2ð Þ tð Þk k + βj j z h, ε2ð Þ tð Þk k + h tð Þk k½ �
≤

ε2 − ε1j j
ε2

ε0λ − αj j + ε0λ + αj j + 2 βj jð Þ
2 α2 − β2	 


� αj jL1 + βj jL1 + 1ð ÞM1

ð22Þ

This implies that the map ε⟶ L1ε is continuous for
0 < ε ≤ ε0.

Similar to the proof of Lemma 8, one can prove the
following Lemma.

Lemma 9. There exists L2 > 0 such that for each rðtÞ ∈QP ω,
γ2 = α2 − β2, γ > 0, the equation

w′ tð Þ = αw tð Þ + βw −tð Þ + r tð Þ, ð23Þ

has a unique solution wðrÞðtÞ ∈QP ω for β ≠ 0. The map
r⟶wðrÞ defines a bounded linear operator satisfying ∥w
∥≤L2∥r∥.

For the sake of convenience, we state the following
conditions.

(H1) aiðt, εÞ, biðt, εÞ, ciðt, εÞ, diðt, εÞ ∈QP ω, i = 1, 2 are
continuous in ε, uniformly in t ∈ℝ. Let M2 denote a com-
mon bound for these functions on ðt, εÞ ∈ℝ × ½0, ε0�.

(H2) aiðt, 0Þ = a0i , biðt, 0Þ = b0i , ciðt, 0Þ = 0, diðt, 0Þ = d0i ,
i = 1, 2 are constants and d02 ≠ 0, a02 ≠ 0. Moreover, ða01Þ2 −
ða02Þ2 > 0, ðd01Þ

2 − ðd02Þ
2 > 0.

(H3) The functions f , g are quasiperiodic in t uniformly
on ðx1, x2, y1, y2Þ such that t ∈ℝ, jxij, ∣yi∣ ≤ σ0ði = 1, 2Þ, 0 ≤ ε
≤ ε0, 0 ≤ σ ≤ σ0. Moreover, there are two nondecreasing
functions ΦðεÞ,Ψðε, σÞ, which satisfy

lim
ε→0

Φ εð Þ = 0,

lim
ε,σð Þ→ 0,0ð Þ

Ψ ε, σð Þ = 0 ð24Þ

such that

hold for all t ∈ℝ, i f jxij, jx̂ij, jyij, jŷij ≤ σ, 0 ≤ ε ≤ ε0, 0 ≤ σ
≤ σ0.

3. Main Results

First, we consider the following linear system:

where ~f , ~g ∈QP ω.

f t, 0, 0, 0, 0, εð Þj j ≤Φ εð Þ, g t, 0, 0, 0, 0, εð Þj j ≤Φ εð Þ, t ∈ℝ,

0 ≤ ε ≤ ε0, ∣f t, x1, x2, y1, y2, εð Þ − f t, x̂1, x̂2, ŷ1, ŷ2, εð Þ∣ ≤Ψ ε, σð Þ〠
2

i=1
∣xi − x̂i∣+∣yi − ŷi ∣½ �, ∣g t, x1, x2, y1, y2, εð Þ

  − g t, x̂1, x̂2, ŷ1, ŷ2, εð Þ∣ ≤Ψ ε, σð Þ〠
2

i=1
∣xi − x̂i∣+∣yi − ŷi ∣½ �

ð25Þ

x′ tð Þ = a1 t, εð Þx tð Þ + a2 t, εð Þx −tð Þ + b1 t, εð Þy tð Þ + b2 t, εð Þy −tð Þ + ~f tð Þ,
εy′ tð Þ = c1 t, εð Þx tð Þ + c2 t, εð Þx −tð Þ + d1 t, εð Þy tð Þ + d2 t, εð Þy −tð Þ + ~g tð Þ,

(
ð26Þ
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Theorem 10. If (H1)–(H2) hold. Then there exist ε1, 0 < ε1 ≤ ε0,
positive functions Ai,jðεÞ, 1 ≤ i, j ≤ 2 defined for 0 < ε ≤ ε1,
satisfying

lim
ε→0+

A1,1 εð Þ = L2,

lim
ε→0+

A1,2 εð Þ = 2L1L2M2,

lim
ε→0+

A2,1 εð Þ = 0,

lim
ε→0+

A2,2 εð Þ = L1,

Ai,j εð Þ ≤ 2L1L2M2 + L1 + L2, 1 ≤ i, j ≤ 2,

ð27Þ

such that for each ð~f , ~gÞ ∈QP 2
ω, 0 < ε ≤ ε1, system (26) has

a unique solution ðxð~f , ~g, εÞðtÞ, yð~f , ~g, εÞðtÞÞ ∈QP 2
ω which

satisfies

xk k ≤ A1,1 εð Þ ~f
��� ��� + A1,2 εð Þ ~gk k,

yk k ≤ A2,1 εð Þ ~f
��� ��� + A2,2 εð Þ ~gk k:

ð28Þ

The map ð~f , ~gÞ⟶ ðxð~f , ~g, εÞ, yð~f , ~g, εÞÞ defines a
bounded linear operator KðεÞ satisfying kKðεÞk ≤ 2L1L2M2
+ L1 + L2 and ε⟶KðεÞ is continuous for 0 < ε ≤ ε1.

Proof. Given ð~f , ~gÞ ∈QP 2
ω, ðx0ðtÞ, y0ðtÞÞ ∈QP 2

ω. Define ðx
ðtÞ, yðtÞÞ as the solution of the system

The second equation in (29) has a unique solution y
∈QP ω by (H1), (H2) and Lemma 8. Then, put this y into
the first equation which is solved for a unique x ∈QP ω using

Lemma 9. Writing ðx, yÞ = T1ðx0, y0, ~f , ~g, εÞ, then solving
(26) is equivalent to finding a fixed point of T1ð·, · , ~f , ~g, εÞ

If ðxi, yiÞ = T1ðxi0, yi0, ~f , ~g, εÞ, i = 1, 2, then we find that
u = x1 − x2, v = y1 − y2 satisfy

From Lemma 8, Lemma 9 and (H1), it follows that

uk k ≤ L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 
�
� x10 − x20
�� �� + 2M2 vk k
, vk k

≤ L1 c1 t, εð Þk k + c2 t, εð Þk kð Þ x10 − x20
�� ���

+ d1 t, εð Þ − d01
�� �� + d2 t, εð Þ − d02

�� ��	 

y10 − y20

�� ��
:
ð31Þ

And this leads to the estimate

uk k ≤ L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 
�
� x10 − x20
�� �� + 2M2 vk k
, ≤L2 a1 t, εð Þ − a01

�� ��	
+ a2 t, εð Þ − a02
�� ��
 x10 − x20

�� �� + 2L1L2M2 c1 t, εð Þk kð
+ c2 t, εð Þk kÞ x10 − x20

�� �� + 2L1L2M2 d1 t, εð Þ − d01
�� ��	

+ d2 t, εð Þ − d02
�� ��
 y10 − y20

�� ��:
ð32Þ

From the hypothesis (H1) and (H2), it follows that there
exists ε1 ≤ ε0 such that

L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 

+ 2L1L2M2 c1 t, εð Þk k + c2 t, εð Þk kð Þ

< 1
2 , 2L1L2M2 d1 t, εð Þ − d01

�� �� + d2 t, εð Þ − d02
�� ��	 


< 1
2 , L1 c1 t, εð Þk k + c2 t, εð Þk kð Þ

< 1
2 , L1 d1 t, εð Þ − d01

�� �� + d2 t, εð Þ − d02
�� ��	 


< 1
2

ð33Þ

for 0 < ε ≤ ε0. The contraction mapping principle implies that
T1 has a unique fixed point ðx∗, y∗Þ ∈QP 2

ω. It follows from
(29), Lemma 8, and Lemma 9 that

x′ tð Þ = a01x tð Þ + a02x −tð Þ + a1 t, εð Þ − a01
� 


x0 tð Þ + a2 t, εð Þ − a02
� 


x0 −tð Þ + b1 t, εð Þy tð Þ + b2 t, εð Þy −tð Þ + ~f tð Þ,
εy′ tð Þ = d01y tð Þ + d02y −tð Þ + d1 t, εð Þ − d01

� 

y0 tð Þ + d2 t, εð Þ − d02

� 

y0 −tð Þ + c1 t, εð Þx0 tð Þ + c2 t, εð Þx0 −tð Þ + ~g tð Þ:

8<
: ð29Þ

u′ tð Þ = a01u tð Þ + a02u −tð Þ + a1 t, εð Þ − a01
	 


x10 tð Þ − x20 tð Þ	 

+ a2 t, εð Þ − a02
	 


x10 −tð Þ − x20 −tð Þ	 

+ b1 t, εð Þv tð Þ + b2 t, εð Þv −tð Þ,

εv′ tð Þ = d01v tð Þ + d02v −tð Þ + d1 t, εð Þ − d01
	 


y10 tð Þ − y20 tð Þ	 

+ d2 t, εð Þ − d02
	 


y10 −tð Þ − y20 −tð Þ	 

+ c1 t, εð Þ x10 tð Þ − x20 tð Þ	 


    + c2 t, εð Þ x10 −tð Þ − x20 −tð Þ	 

:

8>>><
>>>:

ð30Þ
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which imply

Putting the second inequality of (35) into the first gives

x∗k k ≤ A1,1 εð Þ ~f
��� ��� + A1,2 εð Þ ~gk k, ð36Þ

where

A1,1 εð Þ = 1 − 2p εð Þq εð ÞL1L2M2 c1 t, εð Þk kð½
+ c2 t, εð Þk kÞ�−1p εð ÞL2, A1,2 εð Þ

= 2 1 − 2p εð Þq εð ÞL1L2M2 c1 t, εð Þk kð½
+ c2 t, εð Þk kÞ�−1p εð Þq εð ÞL1L2M2, p εð Þ

= 1 − L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 
� 
−1, q εð Þ
= 1 − L1 d1 t, εð Þ − d01

�� �� + d2 t, εð Þ − d02
�� ��	 
� 
−1

:

ð37Þ

Putting (36) into the second inequality of (35) gives

y∗k k ≤ A2,1 εð Þ ~f
��� ��� + A2,2 εð Þ ~gk k, ð38Þ

where

A2,1 εð Þ = A1,1 εð Þq εð ÞL1 c1 t, εð Þk k + c2 t, εð Þk kð Þ,
A2,2 εð Þ = A1,2 εð Þq εð ÞL1 c1 t, εð Þk k + c2 t, εð Þk kð Þ + q εð ÞL1:

ð39Þ

The linear operator KðεÞ: ð~f , ~gÞ⟶ ðx∗, y∗Þ is bounded
with

x∗k k + y∗k k ≤ A1,1 εð Þ + A2,1 εð Þð Þ ~f
��� ���

+ A1,2 εð Þ + A2,2 εð Þð Þ ~gk k,
≤ 2 2L1L2M2 + L1 + L2ð Þ ~f

��� ��� + ~gk k
� � ð40Þ

provided that ε1 is so small that Ai,jðεÞ ≤ 2L1L2M2 + L1 +
L2 for 0 < ε ≤ ε1. Thus, kKðεÞk ≤ 2ð2L1L2M2 + L1 + L2Þ.

Now, we consider the continuity of the map ε⟶KðεÞ.
If we write xðt, εÞ = xð~f , ~g, εÞðtÞ for 0 < ε ≤ ε1, then

u tð Þ = x t, ε1ð Þ − x t, ε2ð Þ,
v tð Þ = y t, ε1ð Þ − y t, ε2ð Þ

ð41Þ

satisfy

x∗k k ≤ L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 

x∗k k + 2M2 y∗k k + ~f

��� ���h i
,

y∗k k ≤ L1 c1 t, εð Þk k + c2 t, εð Þk kð Þ x∗k k + d1 t, εð Þ − d01
�� �� + d2 t, εð Þ − d02

�� ��	 

y∗k k + ~gk k� 


,

8<
: ð34Þ

x∗k k ≤ 1 − L2 a1 t, εð Þ − a01
�� �� + a2 t, εð Þ − a02

�� ��	 
� 
−1 2L2M2 y∗k k + L2 ~f
��� ���h i

,

y∗k k ≤ 1 − L1 d1 t, εð Þ − d01
�� �� + d2 t, εð Þ − d02

�� ��	 
� 
−1
L1 c1 t, εð Þk k + c2 t, εð Þk kð Þ x∗k k + L1 ~gk k½ �:

8><
>: ð35Þ

u′ tð Þ = a1 t, ε1ð Þu tð Þ + a2 t, ε1ð Þu −tð Þ + b1 t, ε1ð Þv tð Þ + b2 t, ε1ð Þv −tð Þ + a1 t, ε1ð Þ − a1 t, ε2ð Þ½ �x t, ε2ð Þ
    + a2 t, ε1ð Þ − a2 t, ε2ð Þ½ �x −t, ε2ð Þ + b1 t, ε1ð Þ − b1 t, ε2ð Þ½ �y t, ε2ð Þ + b2 t, ε1ð Þ − b2 t, ε2ð Þ½ �y −t, ε2ð Þ,
ε1v′ tð Þ = c1 t, ε1ð Þu tð Þ + c2 t, ε1ð Þu −tð Þ + d1 t, ε1ð Þv tð Þ + d2 t, ε1ð Þv −tð Þ + c1 t, ε1ð Þ − c1 t, ε2ð Þ½ �x t, ε2ð Þ
     + c2 t, ε1ð Þ − c2 t, ε2ð Þ½ �x −t, ε2ð Þ + d1 t, ε1ð Þ − d1 t, ε2ð Þ½ �y t, ε2ð Þ + d2 t, ε1ð Þ − d2 t, ε2ð Þ½ �y −t, ε2ð Þ
     + ε2 − ε1

ε2
c1 t, ε2ð Þx t, ε2ð Þ + c2 t, ε2ð Þx −t, ε2ð Þ + d1 t, ε2ð Þy t, ε2ð Þ + d2 t, ε2ð Þy −t, ε2ð Þ + ~g tð Þ½ �:

8>>>>>>>>>><
>>>>>>>>>>:

ð42Þ
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In view of (36), (38), and (40), it follows that the map
ε⟶KðεÞ is continuous for 0 < ε ≤ ε1.

We now consider the nonlinear system (9)

Theorem 11. Suppose that (H1), (H2) and (H3) hold. Then
there exist 0 < ε2 ≤ ε1, 0 < σ1 ≤ σ0 such that for each ε satisfy-
ing 0 < ε ≤ ε2 and ð f , gÞ ∈QP 2

ω, system (9) has a unique solu-
tion ðxðt, εÞ, yðt, εÞÞ ∈QP 2

ω, which satisfies

xk k ≤ σ1, yj j ≤σ1j ,
xk k + yk k =O Φ ∈ð Þð Þ,∈⟶0,

ð44Þ

and is continuous in ε uniformly for t ∈ℝ.

Proof. From (H3), we can choose σ1 and ε2 such that

2 2L1L2M2 + L1 + L2ð Þ 4σ1Ψ ε2, σð Þ +Φ ε2ð Þð Þ
< σ1, 4 2L1L2M2 + L1 + L2ð ÞΨ ε2, σð Þ ≤ 1

2 :
ð45Þ

For any ðx0, y0Þ ∈QP 2
ω with kx0k ≤ σ1, ky0k ≤ σ1, 0 <

ε ≤ ε2, consider the system

By Theorem 10, system (46) has a unique solution ðx, yÞ
∈QP 2

ω and the estimate

f t, x0 tð Þ, x0 −tð Þ, y0 tð Þ, y0 −tð Þ, εð Þj j
≤Ψ ε, σð Þ2 x0k k + y0k k½ � +Φ εð Þ
≤ 4σ1Ψ ε2, σ1ð Þ +Φ ε2ð Þ:

ð47Þ

Writing ðx, yÞ = L2εð f ð·, x0, y0, εÞ, gð·, x0, y0, εÞÞ ≡ T2ðx0,
y0, εÞ, then the existence of a solution of (9) is equivalent to
the existence of a fixed point of the mapping T2. We may esti-
mate ðx, yÞ by Theorem 10

xk k ≤ A1,1 εð Þ + A1,2 εð ÞÞ½ � 4σ1Ψ ε2, σ1ð Þ +Φ ε2ð Þð Þ,
≤ 2 2L1L2M2 + L1 + L2ð Þ 4σ1Ψ ε2, σ1ð Þ +Φ ε2ð Þð Þ, ð48Þ

and similarly for ∥y∥. If ðxi, yiÞ = T2ðxi0, yi0, εÞ, i = 1, 2, then we
find that

x1 − x2k k ≤ 2 2L1L2M2 + L1 + L2ð ÞΨ ε, σð Þ
� x10 − x20
�� �� + y10 − y20

�� ��� 
 ð49Þ

and similarly for kyk. We conclude

x1 − x2k k + y1 − y2k k ≤ 4 2L1L2M2 + L1 + L2ð ÞΨ ε2, σð Þ
� x10 − x20
�� �� + y10 − y20

�� ��� 

:

ð50Þ

Hence, the mapping T2ð·, · , εÞ maps the closed set Ω =
fðx0, y0Þ ∈QP 2

ω : kx0k ≤ σ1, ky0k ≤ σ1g into itself for each
ε with 0 < ε ≤ ε2 and is a uniform contraction in view of
(45), (48), and (50).

It follows that L2ε is continuous since f , g are continuous
in ðx, y, εÞ uniformly for t. For fixed ðx0, y0Þ ∈QP 2

ω, the map
ε⟶ T2ðx0, y0, εÞ is continuous on ð0, ε2�. It follows from the
uniform contraction principle that T2 has a unique fixed
point ðx∗, y∗Þ ∈QP 2

ω which is a continuous function of ε
with 0 < ε ≤ ε2.

Finally, we obtain the estimation of ðx∗, y∗Þ from the
defining system as

x∗k k + y∗k k ≤ 2 2L1L2M2 + L1 + L2ð Þ
� 2 x∗k k + y∗k kð ÞΨ ε2, σ1ð Þ +Φ εð Þ½ �

≤
1
2 x∗k k + y∗k kð Þ
+ 2 2L1L2M2 + L1 + L2ð ÞΦ εð Þ:

ð51Þ

So

x∗k k + y∗k k ≤ 4 2L1L2M2 + L1 + L2ð ÞΦ εð Þ: ð52Þ

In order to explain the practical application of the system
proposed in this paper, we consider the following singularly
perturbed equations, which is closely related to a class of
equations widely applied in the field of engineering technol-
ogy and wave theory of physics.

x′ tð Þ = a1 t, εð Þx tð Þ + a2 t, εð Þx −tð Þ + b1 t, εð Þy tð Þ + b2 t, εð Þy −tð Þ + f t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ,
εy′ tð Þ = c1 t, εð Þx tð Þ + c2 t, εð Þx −tð Þ + d1 t, εð Þy tð Þ + d2 t, εð Þy −tð Þ + g t, x tð Þ, x −tð Þ, y tð Þ, y −tð Þ, εð Þ:

(
ð43Þ

x′ tð Þ = a1 t, εð Þx tð Þ + a2 t, εð Þx −tð Þ + b1 t, εð Þy tð Þ + b2 t, εð Þy −tð Þ + f t, x0 tð Þ, x0 −tð Þ, y0 tð Þ, y0 −tð Þ, εð Þ,
εy′ tð Þ = c1 t, εð Þx tð Þ + c2 t, εð Þx −tð Þ + d1 t, εð Þy tð Þ + d2 t, εð Þy −tð Þ + g t, x0 tð Þ, x0 −tð Þ, y0 tð Þ, y0 −tð Þ, εð Þ:

(
ð46Þ
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Example 1. (Practical example). Consider a class of singularly
perturbed equations, which can be described as follows:

εU″ sð Þ −U ′ sð Þ −U ′ 1
s

� � 1
s2

− h s,U sð Þ,U 1
s

� �
, ε

� �
= 0:

ð53Þ

Introducing the variables

U sð Þ =U0 sð Þ + u sð Þ, ð54Þ

where U0ðsÞ is the bounded solution of the system,

−U ′ sð Þ −U ′ 1
s

� � 1
s2

� �
− h s,U sð Þ,U 1

s

� �
, 0

� �
= 0, ð55Þ

and U0′′ðsÞ exists. Then uðsÞ satisfies

εu″ sð Þ − u′ sð Þ − u′ 1
s

� � 1
s2

− A s, εð Þu sð Þ − B s, εð Þu 1
s

� �

= R s, u sð Þ, u 1
s

� �
, ε

� �
,

ð56Þ

where

A s, εð Þ = h′2 s,U0 sð Þ,U0
1
s

� �
, ε

� �
, B s, εð Þ

= h′3 s,U0 sð Þ,U0
1
s

� �
, ε

� �
u

1
s

� �
,

R s, u sð Þ, u 1
s

� �
, ε

� �
= −A s, εð Þu sð Þ

− B s, εð Þu 1
s

� �
− h s,U0 sð Þ,U0

1
s

� �
, 0

� �

+ h s,U0 sð Þ + u sð Þ,U0
1
s

� � 1
s

� ��

+ u
1
s

� �
, ε
�
− εU′′0 sð Þ:

ð57Þ

Subsequently, setting XðsÞ = εu′ðsÞ − uðsÞ + kuð1/sÞ, YðsÞ
= εu′ðsÞ, then Equation (56) is equivalent to the system

Finally, the substitutions s = et , XðsÞ = XðetÞ ≜ xðtÞ, YðsÞ
= yðetÞ ≜ yðtÞ, transform (58) into

which is a form of (9).

4. Conclusions

In this paper, we consider the existence of a response solution
for a singularly perturbed system involving reflection of the
argument. Firstly, we prove that all ω-frequency continuous
quasiperiodic functions form a Banach space under the
supremum norm using the key lemma, that is, Lemma 4.
Then, we obtain an existence and uniqueness result for a

linear scalar equation with reflection of the argument.
Expanding (6) about the trivial solution gives system (9),
we firstly prove the existence and uniqueness of response
solutions for a linear system (26). Then, we obtain the exis-
tence of response solutions for system (9) by means of
fixed-point methods.

Data Availability

No data were used to support this study.

X ′ sð Þ = A s, εð Þ X sð Þ − Y sð Þð Þ + B s, εð Þ X
1
s

� �
− Y

1
s

� �� �
+ R s, X sð Þ − Y sð Þ, X 1

s

� �
− Y

1
s

� �
, ε

� �
,

εY ′ sð Þ = Y sð Þ + Y
1
s

� � 1
s2

+ εA s, εð Þ X sð Þ − Y sð ÞÞ + εB s, εð Þ X
1
s

� ��
− Y

1
s

� �� �
+ εR s, X sð Þ − Y sð Þ, X 1

s

� �
− Y

1
s

� �
, ε

� �
:

8>>><
>>>:

ð58Þ

x′ sð Þ = et A et , ε
	 


x tð Þ − y tð Þð Þ + B et , ε
	 


x −tð Þ − y −tð Þð Þ + R et , x tð Þ − y tð Þ, x −tð Þ − y −tð Þ, ε	 
� 

,

εy′ sð Þ = ety tð Þ + e−ty −tð Þ + εet A et , ε
	 


x tð Þ − y tð Þð Þ + B et , ε
	 


x −tð Þ − y −tð Þð Þ + R et , x tð Þ − y tð Þ, x −tð Þ − y −tð Þ, ε	 
� 

,

(

ð59Þ
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