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In this paper, the existence and uniqueness of response solutions, which has the same frequency w with the nonlinear terms, are
investigated for a quasiperiodic singularly perturbed system involving reflection of the argument. Firstly, we prove that all
quasiperiodic functions with the frequency w form a Banach space. Then, we obtain the existence and uniqueness of

quasiperiodic solutions by means of the fixed-point methods and the B-property of quasiperiodic functions.

1. Introduction

The following singularly perturbed system

{ x'(t) = F(t x(1), y(t), 2),

(1)
&' () = G(t, x(t), y(t), ¢),

occurs in many areas, including biochemical kinetics, genet-
ics, plasma physics, and mechanical and electrical systems
involving large damping or resistance [1-4], where x and
y are vectors with multiple components and € >0 is a small
parameter. The existence of periodic solutions and almost
periodic solutions of (1) had been one of the most attracting
topics in the qualitative theory of ordinary differential equa-
tions. The early contributions on these topics are due to
Anosov [5] and Flatto and Levinson [6]. They investigated
system (1) in the case that the degenerate system

{x’(t) = F(t, x(1), (¢), 0), (2)

0=G(t,x(t), y(t),0),

has a periodic solution 6(t), x(t). The authors showed suf-
ficient conditions on F, G which assure that the existence
of periodic solutions of (1) and these solutions converge to
0(t), x(t) as € —> 0 uniformly. In 1961, Hale and Seifert

[7] generalized the results of Flatto and Levinson to the
almost periodic case and gave sufficient conditions for the
existence of the almost periodic solutions of (1) using the
similar method with [6]. Chang [8] obtained the same result
of [7] under generalized hypothesis. But, the above papers
[5-8] do not consider the stability properties of the solutions.

Smith [9] considered the existence of almost periodic or
periodic solutions for system (1). By the construction of
manifolds of initial data, the author investigated the stability
properties of these solutions, which approach the given solu-
tions as t — 00 at an exponential rate, «, independent of e.
He also gave the application in a reaction diffusion system
with a traveling wave input.

It is natural to ask whether there is a bounded solution of
system (1) for sufficiently small € and how the stability prop-
erties of the solutions for the quasiperiodic case are.

For the Silberstein equation

X (1) :xG), 3)

we define y(t) =x(e'), then Equation (3) is equivalent to
y'(t) = e'y(~t), which is known as the equation involving
reflection of argument. This kind of equations has applica-
tions in the study of stability of differential-difference equa-
tions, see Sharkovskii [10]. One of the earliest contributions
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to this kind of equations are due to Wiener and Aftabizadeh
[11]. They investigated the boundary value problems for the
second-order nonlinear differential equation

{y”u) =f(6y(0y(=1), )

y(=a) =y y(a) =y

by Schauder fixed-point theorem, where f € C[[-a, a] x R x
R, R]. They also considered the boundary value problems
for the following equation

{J’"(f) =f(ty(),y(=1)), (5)

y'(-a)—hy(-a)=0, y'(a)+ky(a)=0,

by changing the equation to a higher order one without
reflection of the argument, where h, k>0, + k> 0. Gupta
[12, 13] studied more general boundary value problems than
Equations (4) and (5) using degree theory arguments. He
proved the existence of solutions for the boundary value
problems in a simple and straightforward manner. The exis-
tence and uniqueness of periodic, almost periodic, pseudo
almost periodic, Besicovitch almost periodic, and pseudo
almost automorphic solutions of this kind of equations were
investigated in [14-19]. Cabada et al. [20-22] studied the
first-order equation with two-point boundary conditions and
the nth-order differential equations involving reflection, con-

{ x'(£) = ay (b €)x(t) + ay (6, €)x(=t) + by (£ &)y (1) + by (1 €)y(=t) + f (£, x(8), x(=t), y(£), y(-1), €),
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stant coefficients, and initial conditions, adding a new element
to the previous studies: the existence of Green’s function.

However, as far as we know, the quasiperiodic solutions
for the equations involving reflection of the argument have
not been considered yet. Our present paper is devoted to dis-
cuss the existence and uniqueness of response solutions for
the following singularly perturbed system

{ €' (1) = F(t,x(0), x(-0), 9 (1), y (1) ),
' (1) = Glt, x(1), x(~1), (1), Y(~1) ),
where € > 0 is a small real parameter, and the functions F, G
are quasiperiodic in ¢ uniformly on R? x R? with frequency
w=(w,w,, -, wy). A quasiperiodic solution of (6) with

the frequency w is called response solution.
It is assumed that the degenerate system

{ x' () = F(t, x(), x(=t), y(£), y(=t), 0),
0=G(t, x(t), x(~1), y(t), y(=1), 0),

has a quasiperiodic “outer” solution which we take to be the
trivial solution, that is, we suppose

(6)

(7)

F(t,0,0,0,0,0) = G(£,0,0,0,0,0) =0 (8)

so that (x,y)=(0,0) satisfies (7). Expanding (6) about the
trivial solution gives

&y’ (1) = 1 (1 )x(t) + &y (, )x(=t) + dy (1, )y(t) + da (b €)y(=t) + g, X(t), x(=1), (1), y(~t) ).

One can think of, e.g., a,(t, ¢) = dF/0x(t,0,0, 0,0, ¢). In
the following discussion, we mainly consider (9).

This paper is organized as follows: in Section 2, we pres-
ent the Bohr’s notion of B-property for quasiperiodic func-
tions and then prove that all w-frequency continuous
quasiperiodic functions form a Banach space under the
supremum norm. We prove an existence and uniqueness
result for a linear scalar equation with reflection of the argu-
ment. In Section 3, the main results on the local existence and
uniqueness of response solutions will be stated and proved by
means of fixed-point methods in the spirit of Sacker and Sell
[23]. We give conclusions of this paper in Section 4.

2. Preliminary

Firstly, we will give some lemmas which are important in
proving our main results.

Definition 1. Assume that w,,w,, -, w; € R are rationally
independent. A continuous function u(¢) on R is said to be
quasiperiodic with frequencies (w;, @,, *--, w,), if there exists
a periodic function U = U(0,,0,, ---,0,) (called the lift of u)

in 0,,0,, -+, 0,; with the same period 27, such that

u(t) = Uw,t, b, -, wyt), VE € R (10)

Remark 2. This definition for quasiperiodic function can be
found in many references, for example [24]. It is not difficult
to prove that this definition is equivalent to the definition of
quasiperiodic function in [25].

Let @9, be the set of all quasiperiodic functions with fre-
quency w = (@, wy, -+, Wy).

Definition 3. (see [4]). A function H(¢): R — R is said to
have a B-property on a set of real numbers w;, w,, ---, wy, if

(i) H is continuous on R

(ii) for every €> 0, there is § = 8(¢) > 0 such that if a real
number 7 satisfies the d Diophantine inequalities

|w,T| <8(mod 2m) k=1,---,d, (11)
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then, 7 is an e-translation number of H, i.e.,

sup|H(t+71) - H(t)|<e. (12)

teR
Lemma 4. (see [3]). Suppose that H(t) is a quasiperiodic
function with frequencies (w;, w,, -+, w,). Then, H(t) has
the B-property on {w;, w,, -, w,}, Conversely, if H(t) has
the B-property on a finite rationally independent set {w,,
w,, -+, w,}, then H(t) is a quasiperiodic function with fre-
quencies contained in {w;, w,, -+, w,}.

Proof. The proof of the lemma can be found in [26].

Lemma 5. (QP,, ||.||) is a Banach space with the norm |/f||

=sup |f(#)].

teR

Proof. Suppose that f,(t) e @2, (n=1,2,---) is a Cauchy
sequence. By the fact that @2, is a subspace of €5(R), which
is a Banach space of bounded continuous function on R with
norm ||f|| =sup,.g|f(f)|, there is a f(t) € €5(R) such that
Ilf, —foll — 0 (as n — c0). So for any e >0 and all t € IR,
there exists a K € N, such that |f(t) - f,(t)| < /3.

Since f(t) € @P,, f(t) has the B-property on {w,
w,, -+, w,} by Lemma 4. So for the ¢, there is a § > 0, such
that if a real number 7 satisfies the inequalities |w;7| <&
(mod 2m)(k=1,---,d), then we have [fy(t+7)—fc(t)]
<e&/3 for all t € R. Furthermore, we have

[fo(t+7) = fo(O)| < f(t+T) = fo(t+7)|

+|fx(t+7) = fk(D)]
k)~ fyOl<5+5+5 ==

(13)

W[ m

thus, f,(f) has the B-property on {w;, w,, -+, w,}. There-
fore, f,(t) is quasiperiodic, ie., f,(t) € QZ,.

Corollary 6. 092 = OP, x QP is a Banach space with the
norm || (£, g)l| = If [ + llgll-

Lemma 7. If H(t) € QP,, then H(-t) € QP

Proof. Since H(t) € @9, H(t) has the B-property on the set
{w;,w,, -+, w;} by Lemma 4. Then for every &> 0, there
exists a 7, which satisfies (11), is an e-translation number of
H. For these 7, we have

tsgng(—(HT)) - H(-t)| SSSSHI;IH(S) —H(s+71)|
:SSSHF{)|H(S+T) - H(s)| <e.

(14)

So H(-t) has the B-property on the set {w;, w,, -+, w,}.
Therefore, H(—t) € @9, by Lemma 4.

Lemma 8. There exist €,> 0 and L, > 0 such that for each h
(t) e @QP,, \* = (oa? — 7)€%, A > 0, the equation

ez’ (t) = az(t) + Bz(~t) + h(t), (15)

where 3+ 0, has a unique solution z(h, ¢)(t) € QP for 0<
€ < &,. Moreover, the operator L! : h — z(h, €) is linear and
satisfies |L!|I<L,. Furthermore, the map e — L! is continu-
ous for 0 < e<e,.

Proof. Existence. Similar to the proof of Lemma 2 in [14], we
can verify that

2(he)(t) =

(16)

is a particular solution of Equation (15) for any h(t) € Q2,,.
Now, we show z(h, ¢)(t) € P,

Since h(t) € @P,, h(t), h(~t) has the B-property on the
set {w;, w,, --,w;} by Lemma 4 and Lemma 7. Then for
every & > 0, if 7 satisfies inequality (11), it will be an e-trans-
lation number of h(t) and h(—t). For this 7, we have

|z(h€)(t +7) - ih’ &)l
AT
B(h(~s - Tz) —h

g) (h(s +7) ~h(s))

&

)|
- (A +
] )]

+% {emr_w&s((/\_ %) (h(HTzj —h(s))

(17)

pe

)4

Vet (], ¢e
=y [e J_ooe ’A E‘E +
(|eA — o] + |eA + | + 2| B|)e

2(0c2—,82) ’

<

So z(h, €)(t) has the B-property on the set {w,, w,, -,
w,} for 0 < e <ég,. Hence, z(h, €)(t) € P,

Uniqueness. If there was another quasiperiodic solu-
tion z(h,€)(t) for Equation (15), then the difference u(t) =
z(h,€)(t) —z(h, €)(t) should be a solution of the homoge-
neous equation

eu' (t) = au(t) + Pu(-t). (18)



According to the Lemma 2 of [14], we see that u(t) is of
the form

u(t) = C(SA[; Ty e)”) teR, (19)

for some constant C. If C # 0, then u(t) will be unbounded.
This is a contradiction to the boundedness of quasiperiodic
function.

So, the operator L} : h — z(h, ¢) is well defined. From
(16), we see the operator L; is linear. On the other hand,

M, (JegA — af + |egA + of +2|B])
2(oc2 - ﬁz)

[2(h, &) (1)] < , (20)

where M, = ||h||. So L} satisfies |L!I<L, with L, = (|eyA —
+ e+ al + 2| B)/2(a? - 7).

To prove the continuity of L} in &, we write v(¢) =z(h,
&) (t) —z(h, &)(t) for any 0 < &, &, < &y, then v(t) satisfies

v (t) = av(t) + Bv(-t) + T (1)

az(hy &3)(1) + Be(hs &) (=t) + h(t)].

It follows that

()|l = [|2(h, &1) () = 2(h, &) ()]
< &, — &1 (JeoA — af + [&A + af +2|B])
T 2(a? - [32)
[l [J2(hs &) (8)[| + [Bll|2(h &) ()] + [[R(D)]]] - (22)
- le; — €] (|egA — o] + [ggA + af + 2| B])
T 2(a2 = B)
“(l|Ly + |BILy + 1)M,
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This implies that the map ¢ — L! is continuous for
0<e<g,.

Similar to the proof of Lemma 8, one can prove the
following Lemma.

Lemma 9. There exists L, > 0 such that for each r(t) € QP,,

Y2 =a?— 2 y > 0, the equation

w' (1) = aw(t) + Pw(-t) +r(t), (23)

has a unique solution w(r)(t) € QP for f+0. The map
r—> w(r) defines a bounded linear operator satisfying |lw
I<L [l

For the sake of convenience, we state the following
conditions.

(Hy) a;(te), bt e),c(t,€),d(t,e) e @QP,,i=1,2 are
continuous in ¢, uniformly in t € R. Let M, denote a com-
mon bound for these functions on (t,¢) € R x [0, &y).

(H,) a;(t,0)=a% b;(t,0)=0b),¢;(t,0)=0,d;(t,0) =d,
i=1,2 are constants and dJ # 0, a3 0. Moreover, (a?)” -
(a3)" >0, (&))" = ()" >0.

(H;) The functions f, g are quasiperiodic in ¢ uniformly
on (x,%,,y,,,) such that t e R, |x;], [y, < oy(i=1,2),0<¢
<&y, 0<0<0, Moreover, there are two nondecreasing
functions @(¢), ¥ (e, o), which satisfy

If(£,0,0,0,0,¢)| < D(e), |g(£,0,0,0,0,€)| <D(e), t € R,

0<e<e f(Lx1, %0 ¥, 00 €) = [ (63X, %5, 91575, €) [ < F (&, 0)

MN

—9(6:%1, %5, V1,75, €) | < ¥ (g, 0) ‘

1

Il
—

hold for all teRR, i f |x;|,|X], [y, [7:| <0, 0<e<eg, 0<0o
<0,

{ x' (1) = ay (1, €)x(1) + ay (6, €)x(=1) + by (1, )y (1) + by(,€)y(=1) + £ (1),

[lc; = X1 +ly; = ¥; 1]

lirrécb(s) =0,
. (24)
lim Y¥(e,0)=0
(e0)—(0,0)
such that
2
DR ASANUCL R SIAL 25)
3. Main Results
First, we consider the following linear system:
(26)

&y’ (1) =y (L e)x(t) + &y (1, )x(=t) + dy (L &)y (1) + da (1 €)y(~1) + §(1),

where f, g€ 0P,
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Theorem 10. If (H,)-(H,) hold. Then there existe;, 0 < &; < &,
positive functions A, ;(e),1<1i,j<2 defined for 0<e<e,

satisfying

lim A, ,;(e) =L,

e—0t 7

lim A, ,(e) =2L,L,M,,

-0t 7

1i1101 A, (e) =0, (27)
e—0" 7

limA,,(e) =L,

e—0t 7

)
A;j(e) 2L L,My+ L+ Ly, 1<i,j<2,

{ X' (1) = agx(t) + ax(=1) + [y (t,€) = al]xo (1) + [a(t, ) = @3] x5 (~1) + by (1 €)y(1) + by(, )y (1) + (1),

such that for each (f, g) € QF., 0<e<e,, system (26) has
a unique solution (x(f, g,€)(t), y(f, g, €)(t)) € QP2 which
satisfies

I < Ay (e) || + Asa()ll
911 < Az (6) 7] + A2ae)l151)-

The map (f,§)— (x(f,3.€).7(f. g:¢)) defines a
bounded linear operator K(e) satisfying ||K(e)|| <2L,L,M,
+L; +L, and ¢ —> K(e) is continuous for 0< e<e,.

Proof. Given (f, §) € QF2, (x,(t), y,(t)) € @F*. Define (x
(1), y(t)) as the solution of the system

(29)

ey’ (1) =dy(t) + dyy(=t) + [dy (t &) = dy] (1) + [da(t, €) = da]yo(=1) + ¢y (£ €)% (1) + o (1 €)% (—1) + 5 (1)

The second equation in (29) has a unique solution y
€ Q%, by (H,), (H,) and Lemma 8. Then, put this y into
the first equation which is solved for a unique x € @9, using

Lemma 9. Writing (x,y) =T, (%, yo» f> > €), then solving
(26) is equivalent to finding a fixed point of T, (-, -, f, g, €)

If (x;,y,)="T,(xi, i, f, g €),i=1,2, then we find that
U=Xx,—X,,V=y, —y, satisfy

u' (t) = aSu(t) + adu(~t) + (a)(t. &) - a?) (xé(t) - xé(t)) + (ay(t,€) - ag) (x(l)(—t) - xé(—t)) +by (L €)v(t) + by(t, €)v(~1),
ev' (t) = dYv(t) + dyv(=t) + (dy (1 €) = dY) (v (1) = 75 (1)) + (dy(t.€) = ) (vo (1) = Y5 (=) + ey () (xp () = x5 (t))

+6,(1€) (xé(—t) - xé(—t)).

From Lemma 8, Lemma 9 and (H,), it follows that
ull <Ly [(J|as (&) = @y + [|ax(t:€) = a3))
- lxo = xg|| + 2Ma||vl[], IV
<Ly [(les (B &) + llea(t )] || x0 = x|
+ (1 (6,2) = v + [|dy (8 2) = o) |13 -y []

(31)

And this leads to the estimate
[|ul SLz[(Hal(t’ €) _“(1)H + H“z(t’ €) _“gH)
‘+2M2||VH],SL2(Ha1(t,e)—a(l’H
+ Haz(t’ €) - agH) ||x(1] _xéH +2L L, M, ([lcy (8 &) ||
+ [lea(ts )]0 = x5 || + 2L, LMy (|| dy (1) = )|
+ || da(t €)= o)) [lvo = x|

1.2
) on )

(32)

(30)

From the hypothesis (H,) and (H,), it follows that there
exists &, < g, such that

Ll (t:6) =] + st 0) = a2
+ 2L, LyMy([ley (8, €) || + (e (5 €)[])

1
< E,2L1L2M2(||d1(t, €) —d(l)H + Hdz(t,s) _dgH) (33)

< g,mucl(t,e)n +ley(t o))

1 1
<3 Li([[di(te) = | + |lda(t ) = d3])) < 5

for 0 < & < g,. The contraction mapping principle implies that
T, has a unique fixed point (x*, y*) € @92, It follows from
(29), Lemma 8, and Lemma 9 that



6
{ I < Lo | ([lan (€)= @b + [[as(tre)
Iyl <Ly [(len (B &)l + llea (B DI + ([l (- €)
which imply
[|x*]| < [1 —LZ(Hal(t,s) - a?” + ||a2(t,s) —a
< 1= L (|ldi(t &) = v + | o (8 2)
Putting the second inequality of (35) into the first gives
I Il < Ay ()| 7] + Ara@l1g1 (36)
where
Ap(e) =

[1=2p(e)q(e) L1 Ly My ([|er (1 €)
+lea(t ) [D] " p(e)Lo Ay (e)
=2[1-2p(e)q(e)Li LM, ([l (1 )|

+lles(t,€) )] P()a(e)Li LM p(e)
= [1=La((fay(t2) = b + [|aa(t.2) = a3 ])] . q(e)
= [1- L ([ () - i + dat.e) - )]
(37)

Putting (36) into the second inequality of (35) gives

"Il < A0 ()| 7| + A2a(@)11511 (38)

u'(t)=ay(t ey )u(t) + ay(t, e )u(-

+[ay(t &) — ay (1 &) |x(—t, &) +

+

&

= ay|) || + 2, [y | +

30) " (2Ll ) + Ly

~d)] e

t)+ by (te)v(1) +
[by(t &) =

v (8) = ¢y (1 &) u(t) + ¢y (1, &) Ju(—t) +dy (£ &) v(t) +
+e(t &) — ot &)|x(-t, &) + [d, (L €)) -

E ey (b ey)x(t ) + ¢y (b &)x(~1,83) +
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| (34)

—di|| + [|da(t &) =) Iy + g1]-

| (35)
(et o)l + et DI + Ly 13l

where

Ay1(e) =Ap(&)q(e)Ly([ley (s
Ajy(e) =A1,(€)q(e)Ly ([l (8,

&)l +llea(te)),

&)l +llex(t: €)l]) +a(e)Ly-
(39)

The linear operator K(e): (f, ) — (x
with

*,y*) is bounded

o [+ 1 < (A1 (8) + A5, (0))| 7]
+ (A (e) + Ayy(e)] 9l (40)
<2(2L,L,M, + L, + L) (Hf” + ||§||>

provided that ¢, is so small that A;;(e) <2L,L,M, + L, +
L, for 0<e<e,. Thus, ||[K(e)|| <2(2L,L,M, + L, + L,).
Now, we consider the continuity of the map ¢ — K(¢).

If we write x(t, £) = x(f, §, )(t) for 0 < e <¢,, then

u(t) =x(t, &) —x(t, &),

v(t)=y(t &) = y(t &) “
satisfy
by(t & )v(=1) + [a, (L &) = a, (1 &) ]x(t &)
bi(t&)ly(t &) +[by(t &) = by(t &)y (-t &)
dy(t&)v(=t) +[c1 (L&) = ¢ (L &) ]x(t &) (42)
di(t,&)]y(t &) + [dy (L, €1) = dy (1, &) ]y (=1, €))

dy(t, &)y(t &) + dy (1, &)y(—1, &) + g(1)].
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In view of (36), (38), and (40), it follows that the map
e — K(e) is continuous for 0 <e<e,.

{ x'(t) = ay (t €)x(t) + ay(t,€)x(=t) + by (1 &)y (1) + by (1 €)y(=t) + F (£, x(8), x(~t), y(£), y(-1), 2),

&' (1) = ¢\ (L &)x(t) + &5 (1 &)x(—t) + dy (1, €)y(¢) + dy (1, €)y (=) + g (8 X(1), x(=t), y(£), (1), ©).

Theorem 11. Suppose that (H,), (H,) and (H;) hold. Then
there exist 0< e, <¢,,0< 0, <0, such that for each ¢ satisfy-
ing0<e<e,and (f,g) € OF2, system (9) has a unique solu-
tion (x(t,€), y(t, €)) € @FP2, which satisfies

X[l < 015 [y]]<0,

(44)
X[l + [ly[} = O(P(€)).e—0,

and is continuous in € uniformly for t € R.

{ x'(£) = ay ( &)x(t) + ay (6, £)x(t) + by (L €)y (1) + by (£ €)y(=t) + F (£ %0 (1), %o (=), ¥ (£): yo (1), ©),

7
We now consider the nonlinear system (9)
(43)
Proof. From (H,), we can choose 0, and ¢, such that
2(2L LyM, + Ly + Ly) (40, ¥ (&, 0) + D(¢,))
(45)

<0, 4(2L,L,M, + L, + L,)¥(e,,0) <

For any (x,y,) € @, with [|x[| <oy, [yl <01,0<
e<¢,, consider the system

&y’ (1) = ci (6, )x(t) + & (1 €)x(=t) + dy (1 €)y (1) + dy (1, €)y(=t) + g (£ %0 (1), %o (=), ¥ (), yo (=), €).

By Theorem 10, system (46) has a unique solution (x, )
€ 0% and the estimate

£ (6 %0(£), %9 (=1)> yo (1), Yo (=), )]
< ¥ (& 0)2[[|xo]| + [lyol] + P(e) (47)
<40,¥ (&5, 0)) + D(e,).

Writing (x,y) = L (f (> X2 Y2 €)> 9 (- %05 ¥ €)) = T (%,
¥o» €), then the existence of a solution of (9) is equivalent to
the existence of a fixed point of the mapping T,. We may esti-
mate (x, y) by Theorem 10

%]l < [A11 () + AL, (€))] (40, ¥ (g 0) + D(e5))s
<2(2LLyMy+ Ly + Ly)(40,¥ (&, 0,) + D(&,)),

(48)

and similarly for [ly|l. If (x;, y,) = T, (x}, yi, €),i=1, 2, then we
find that
[[%1 = %5 < 2(2L, LMy + Ly + L) ¥ (e, 0)

(49)
[l =25al[ + {10 =511}

and similarly for ||y||. We conclude

%1 =%l + [[yy = y2ll £4(2L LM, + Ly + L) ¥ (&5, 0)
Il = x5 + [[yo = 3l[]-
(50)

Hence, the mapping T,(, -, &) maps the closed set Q=
{(x0,¥0) € QP2 : ||x,|| <01, |[3]l €01} into itself for each
e with 0<e<e, and is a uniform contraction in view of
(45), (48), and (50).

It follows that L? is continuous since f, g are continuous
in (x, y, €) uniformly for t. For fixed (x, y,) € @92, the map
e — T, (xy, ¥y» €) is continuous on (0, &,]. It follows from the
uniform contraction principle that T, has a unique fixed
point (x*,y*) € @92 which is a continuous function of &
with 0 <e<e,.

Finally, we obtain the estimation of (x*,y*) from the
defining system as

||| + Iy | £2(2Ly LM, + Ly + Ly)
(11 + 7N (20 1) + D(e)]
1, i (51)
< 5 U+ [ly™ 1)
+2(2L,LyM, + Ly + L,)D(e).

So
¥ |+ |ly* || < 4(2L, LyM, + Ly + Ly )P(e).  (52)

In order to explain the practical application of the system
proposed in this paper, we consider the following singularly
perturbed equations, which is closely related to a class of
equations widely applied in the field of engineering technol-
ogy and wave theory of physics.



Example 1. (Practical example). Consider a class of singularly
perturbed equations, which can be described as follows:

eU"(s)-U'(s)-U' C) 512 - h(s, U(s), UC):;) =0.

Introducing the variables
U(s) = Uy(s) + u(s), (54)

where U, (s) is the bounded solution of the system,

U'(s)- U C) (Slz) —h<s, U(s), UC)O) —0, (55)

and Uj(s) exists. Then u(s) satisfies

N

= R(s, u(s), u (é) , s),
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where

A(s ) =1 (5 Vo), U (£) ). s )

+ uG)s) —eU"(s).

Subsequently, setting X (s) = eu’ (s) — u(s) + ku(1/s), Y(s)
=eu' (s), then Equation (56) is equivalent to the system

X'(9= A )X - Y+ 860) (X(3) - (1) ) + R(sx0 - v, x(5) ¥ ()¢,
eY'(s) = Y(s) + YC) slz +eA(s€) (X(s) ~Y(s)) +¢B(s, €) (X C) - YC)) +eR (s,X(s) - Y(s),XC) - YC>5>

Finally, the substitutions s=e', X(s) = X(e') 2 x(t), Y(s)
=y(e') £ y(t), transform (58) into

which is a form of (9).

4. Conclusions

In this paper, we consider the existence of a response solution
for a singularly perturbed system involving reflection of the
argument. Firstly, we prove that all w-frequency continuous
quasiperiodic functions form a Banach space under the
supremum norm using the key lemma, that is, Lemma 4.
Then, we obtain an existence and uniqueness result for a

linear scalar equation with reflection of the argument.
Expanding (6) about the trivial solution gives system (9),
we firstly prove the existence and uniqueness of response
solutions for a linear system (26). Then, we obtain the exis-
tence of response solutions for system (9) by means of
fixed-point methods.
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