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This paper proposes the pressureless magnetohydrodynamics (MHD) system by neglecting the effect of pressure difference in the
MHD system. Firstly, the Riemann problem for the pressureless MHD system is solved with five kinds of structures of solutions
consisting of combinations of shock, rarefaction wave, contact discontinuity, and vacuum state. Secondly, the limit behavior of
the obtained Riemann solutions as the magnetic field drops to zero is studied. It is shown that, as the magnetic field vanishes,
the Riemann solutions of the pressureless MHD system just tend to the corresponding Riemann solutions of the Euler equations
for pressureless fluids. The formation processes of delta shocks and vacuum states are clarified. For the delta shock, both the
intermediate density and internal energy simultaneously develop delta measures.

1. Introduction

Magnetohydrodynamics has been the subject of great inter-
est from both mathematical and physical points of view
due to its applications in the variety of fields such as astro-
physics, nuclear science, engineering physics, and plasma
physics. Ideal magnetohydrodynamics neglects the viscous
and thermal dissipation effects and assumes a perfectly con-
ducting fluid. The ideal unsteady compressible MHD system
reads [1]

ρt + div ρUð Þ = 0,
ρUð Þt + div ρU ⊗U + pIð Þ − rot Bð Þ × B = 0,

ρE + 1
2B

2
� �

t

+ div ρUE +Upð Þ − div U × Bð Þ × Bð Þ = 0,

Bt − rot U × Bð Þ = 0,
div B = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ

where ρ is the fluid density, U the velocity vector of the fluid,
p the pressure, E = jU j2/2 + e the total energy per unit mass
with e being the internal energy per unit mass, B the mag-
netic field vector, and I the unit matrix.

The system (1) is highly nonlinear and complicated;
therefore, it is difficult to do a direct investigation on it. To
make a simplification, the condition U⊥B has been applied
extensively [2, 3]. As indicated by the momentum equations,
the particle motion is dictated by momentum transport
(inertia) and pressure gradients. When the effect of pressure
difference is very small, for example, at low temperature and
low pressure in the adhesion particle dynamics, the effect of
pressure difference may be neglected. The well-known pres-
sureless Euler equations have been obtained just by neglect-
ing the effect of pressure difference in the Euler equations.
Let us consider the one-dimensional motion with plane sym-
metry permeated by a magnetic field orthogonal to the trajec-
tories of the fluid, that is, U = ðuðx, tÞ, 0, 0Þ, ρ = ρðx, tÞ,
p = pðx, tÞ, and B = ð0, bðx, tÞ, 0Þ, and neglect the effect of
pressure difference, then we reach the following pressureless
MHD system:
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ρt + ρuð Þx = 0,

ρuð Þt + ρu2 + b2

2

 !
x

= 0,

ρE + b2

2

 !
t

+ ρuE + ub2
� �

x
= 0,

bt + buð Þx = 0:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

In consideration of the frozen-in law in physics, we are
concerned with the pressureless MHD system (2) under the
assumption b = kρ (k > 0 is a constant). In addition, for con-
venience, we take the total internal energy H = ρe as an inde-
pendent variable. Then, the pressureless MHD system (2)
can be rewritten as

ρt + ρuð Þx = 0,

ρuð Þt + ρu2 + b2

2

 !
x

= 0,

ρu2

2 +H + b2

2

 !
t

+ ρu2

2 +H
� �

u + ub2
� �

x

= 0:

8>>>>>>>><
>>>>>>>>:

ð3Þ

The first aim of this paper is to solve the Riemann prob-
lem for the system (3) with initial data

ρ, u,Hð Þ x, t = 0ð Þ =
ρ−, u−,H−ð Þ, x < 0,
ρ+, u+,H+ð Þ, x > 0:

(
ð4Þ

For the three characteristics of (3), two are genuinely
nonlinear and one is linearly degenerate; thus, the classical
basic waves contain shocks, rarefaction waves, and contact
discontinuities. For the Riemann problem, by the analysis
method in phase space, with the help of the pseudointersec-
tion points of wave curves, we establish the existence and
uniqueness of solutions with five different structures consist-
ing of combinations of shock, rarefaction wave, contact dis-
continuity, and vacuum state.

It is well known that the MHD system formally tends to
the Euler equations in fluid dynamics as the magnetic field
vanishes. In particular, letting the magnetic field vanish, the
pressureless MHD system (3) becomes the Euler equations
for pressureless fluids:

ρt + ρuð Þx = 0,
ρuð Þt + ρu2

� �
x
= 0,

ρu2

2 +H
� �

t

+ ρu2

2 +H
� �

u
� �

x

= 0,

8>>>><
>>>>:

ð5Þ

which consist of the mass, momentum, and energy conserva-
tion laws. It is generally known that for the media which can
be regarded as having no pressure, one must take into
account energy transport [4]. In [5, 6], to study delta shock
solutions of (5), special integral identities were introduced

and the Rankine-Hugoniot conditions were obtained. In
[7], the Riemann problem (5) and (4) was solved construc-
tively and the solution exactly includes two kinds: delta shock
solution and vacuum solution. For the delta shock, both the
density and internal energy simultaneously develop delta
measures. As to the Euler equations for pressureless fluids
only consisting of the mass and momentum conservation
laws, please refer to [8–11].

Let us recall some knowledge with respect to delta shocks
and vacuum states. Delta shock is a kind of nonclassical wave
on which at least one state variable may develop a Dirac delta
measure. Mathematically, they are characterized by the delta
functions appearing in the state variables. Physically, they
can be used to express the concentration phenomenon. As
for delta shocks, besides the papers cited above, also see
[12–19]. The other situation is the vacuum state which is a
state with ρ = 0. It describes the cavitation phenomenon.
The phenomena of concentration and cavitation and the for-
mation of the delta shock and the vacuum state have
attracted wide attention from researchers. For instance, Li
and Chen and Liu discussed this topic by considering the
vanishing pressure limits of solutions to the isentropic [20,
21] and nonisentropic Euler equations [22]; Mitrović and
Nedeljkov [23] discussed this topic by perturbing the gener-
alized pressureless gas dynamics model; Shen and Sun [24]
discussed this topic by studying the vanishing pressure limit
of Riemann solutions to the perturbed Aw-Rascle model;
Cheng and Yang [25] discussed this topic by investigating
the partly vanishing pressure limits of solutions to a nonsym-
metric Keyfitz-Kranzer system of conservation laws with
generalized and modified Chaplygin gas; Yin and Sheng
[26, 27] discussed this topic by considering the vanishing
pressure limits of solutions to the relativistic Euler equations;
Yang and Liu [28, 29] discussed this topic by introducing
some flux approximations in the isentropic and nonisentro-
pic classical Euler equations; and Sahoo and Sen [30] dis-
cussed this topic by considering the limiting behavior of
two strictly hyperbolic systems of conservation laws. Com-
pared with the delta shocks, we also refer the readers to
[31–33] for δn-shocks and [34] for noncompressible δ-waves.

The second aim of this paper is to discuss the limit behav-
ior of the solutions to the Riemann problem in the pressure-
less MHD system (3) as the magnetic field vanishes, that is,
k→ 0. It is shown that when u− > u+, any Riemann solution
containing two shocks and possibly a contact discontinuity
to (3) tends to the delta shock Riemann solution to (5), where
the intermediate density and internal energy between the two
shocks tend to the weighted δ-measure which forms the delta
shock. Here, we firstly take a sloping test function to obtain
the limits (56) and (58), then approximate an arbitrary test
function by this sloping test function to get the desired limits
(64) and (65). At this point, it is a little different from Chen
and Liu [21, 22], etc. By contrast, when u− < u+, we show that
any Riemann solution containing two rarefaction waves and
possibly a contact discontinuity to (3) tends to the vacuum
Riemann solution to (5) even when the initial data stay away
from the vacuum.

This paper is organized as follows. In Section 2, we solve
the Riemann problem for (3). In Section 3, we review the
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Riemann problem for (5). In Sections 4 and 5, we discuss the
limit behavior of solutions to the Riemann problem for the
pressureless MHD system (3) as the magnetic field vanishes.
Finally, we give the conclusions and further discussions in
Section 6.

2. Riemann Problem of the Pressureless
MHD System

In this section, we consider the Riemann problem for (3) with
initial data (4). The eigenvalues of (3) are

λ0 = u, λ± = u ± k
ffiffiffi
ρ
p , ð6Þ

and the corresponding right eigenvectors are

r!0 = 0, 0, 1ð ÞT ,

r!± = 1,± kffiffiffi
ρ
p , H

ρ

� �T

,
ð7Þ

satisfying

∇λ0 · r
!

0 ≡ 0,

∇λ± · r
!

± = ± 3
2 · kffiffiffi

ρ
p ≠ 0:

ð8Þ

Therefore, (3) is strictly hyperbolic and the λ0-field is lin-
early degenerate, while the λ±-fields are genuinely nonlinear.
By seeking the self-similar solution ðρ, u,HÞðx, tÞ = ðρ, u,
HÞðξÞ, ξ = x/t, the Riemann problem becomes the boundary
value problem:

−ξρξ + ρuð Þξ = 0,

−ξ ρuð Þξ + ρu2 + b2

2

 !
ξ

= 0,

−ξ
ρu2

2 +H + b2

2

 !
ξ

+ ρu2

2 +H
� �

u + ub2
� �

ξ

= 0,

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

ρ, u,Hð Þ ±∞ð Þ = ρ±, u±,H±ð Þ: ð10Þ
Let us first solve the elementary waves.
Any smooth solution of (9) satisfies

u − ξ ρ 0
k2ρ ρ u − ξð Þ 0
0 H u − ξ

0
BB@

1
CCA

ρ

u

H

0
BB@

1
CCA

ξ

= 0, ð11Þ

which provides the general solution (the constant state):

ρ, u,Hð Þ ξð Þ = constant, ð12Þ

the vacuum state:

ξ = u,
ρ = 0,
H = 0,

ð13Þ

the singular solutions:

ξ = λ− = u − k
ffiffiffi
ρ
p ,

du
dρ

= −
kffiffiffi
ρ
p ,

du
dH

= −
k
ffiffiffi
ρ
p
H

,

dH
dρ

= H
ρ
,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð14Þ

ξ = λ+ = u + k
ffiffiffi
ρ
p ,

du
dρ

= kffiffiffi
ρ
p ,

du
dH

= k
ffiffiffi
ρ
p
H

,

dH
dρ

= H
ρ
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

For the singular solutions, it holds that

dλ±
dρ

= ∂λ±
∂u

du
dρ

+ ∂λ±
∂ρ

+ ∂λ±
∂H

dH
dρ

= ± 3k
2 ffiffiffi

ρ
p : ð16Þ

Let ðρl, ul,HlÞ and ðρr , ur ,HrÞ denote the left and right
states of the singular solutions, then from (16), one has that
λ±ðρr , ur ,HrÞ > λ±ðρl, ul,HlÞ⇔ ρr ≷ ρl.

The singular solution (14) with ρl > ρr is called as the

backward rarefaction wave, symbolized by R
 
, and the singu-

lar solution (15) with ρl < ρr is called as the forward rarefac-

tion wave, symbolized by R
!
. They can be rewritten as

R
 
:

ξ = λ− = u − k
ffiffiffi
ρ
p ,

ur = ul − 2k ffiffiffiffiffi
ρr
p − ffiffiffiffi

ρl
pð Þ,

Hr

Hl
= ρr
ρl
,

ρr < ρl,

8>>>>>><
>>>>>>:

ð17Þ

R
!
:

ξ = λ− = u + k
ffiffiffi
ρ
p ,

ur = ul + 2k ffiffiffiffiffi
ρr
p − ffiffiffiffi

ρl
pð Þ,

Hr

Hl
= ρr
ρl
,

ρr > ρl:

8>>>>>><
>>>>>>:

ð18Þ
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For a bounded discontinuity at ξ = σ with ðρl, ul,HlÞ and
ðρr , ur ,HrÞ on the left and right sides, the Rankine-Hugoniot
relation reads

−σ ρ½ � + ρu½ � = 0,

−σ ρu½ � + ρu2 + b2

2

" #
= 0,

−σ
ρu2

2 +H + b2

2

" #
+ ρu2

2 +H + b2
� �

u
� �

= 0,

8>>>>>>>><
>>>>>>>>:

ð19Þ

where ½g� = gl − gr is the jump of g across the discontinuity.
By solving (19), we obtain three kinds of discontinuities. The
first is

σ0 = ur = ul, ρr = ρl,Hl ≠Hr , ð20Þ

which is a contact discontinuity associating with λ0, symbol-
ized by J . The remaining two are

σ− = ur −
kffiffiffi
2
p ρl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
= ul −

kffiffiffi
2
p ρr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
,

ur − ul = −
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
ρr − ρlð Þ,

Hr

Hl
= ρr
ρl

+ k2

4ρlHl
ρr − ρlð Þ3,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ

σ+ = ur +
kffiffiffi
2
p ρl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
= ul +

kffiffiffi
2
p ρr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
,

ur − ul =
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρl

s
ρr − ρlð Þ,

Hr

Hl
= ρr
ρl

+ k2

4ρlHl
ρr − ρlð Þ3:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð22Þ
By the Lax entropy inequalities, the discontinuity (21)

with λ− should satisfy

σ− < λ− ρl, ul,Hlð Þ < λ+ ρl, ul,Hlð Þ,
 λ− ρr , ur ,Hrð Þ < σ− < λ+ ρr , ur ,Hrð Þ, ð23Þ

while the discontinuity (22) associating with λ+ should satisfy

λ− ρl, ul,Hlð Þ < σ+ < λ+ ρl, ul,Hlð Þ,
 λ− ρr , ur ,Hrð Þ < λ+ ρr , ur ,Hrð Þ < σ+:

ð24Þ

It is easy to check that the inequalities (23) and (24) are
equivalent to ρr > ρl and ρr < ρl, respectively.

The discontinuity (21) with ρl < ρr is called as the back-

ward shock, symbolized by S
 
, and the discontinuity (22) with

ρl > ρr is called as the forward shock, symbolized by S
!
.

For a given left state Vl = ðρl, ul,HlÞ, all possible states
which can connect to Vl on the right by a backward rarefac-
tion wave must be located on the curve

R
 

Vlð Þ:

u = ul − 2k ffiffiffi
ρ
p

− ffiffiffiffi
ρl
pð Þ,

H
Hl

= ρ

ρl
,

ρ < ρl,

8>>><
>>>:

ð25Þ

and all possible states which can connect toVl on the right by
a backward shock must be located on the curve

S
 

Vlð Þ:

u − ul = −
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ
+ 1
ρl

s
ρ − ρlð Þ,

H
Hl

= ρ

ρl
+ k2

4ρlHl
ρ − ρlð Þ3,

ρ > ρl:

8>>>>>>><
>>>>>>>:

ð26Þ

For a given right state Vr = ðρr , ur ,HrÞ, all possible states
which can connect to Vr on the left by a forward rarefaction
wave must be located on the curve

R
!

Vrð Þ:

u = ur + 2k ffiffiffi
ρ
p

− ffiffiffiffiffi
ρr
pð Þ,

H
Hr

= ρ

ρr
,

ρ < ρr ,

8>>><
>>>:

ð27Þ

and all possible states which can connect toVr on the left by a
forward shock must be located on the curve

S
!

Vrð Þ:

u − ur =
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρr

+ 1
ρ

s
ρ − ρrð Þ,

H
Hr

= ρ

ρr
+ k2

4ρrHr
ρ − ρrð Þ3,

ρ > ρr:

8>>>>>>><
>>>>>>>:

ð28Þ

Denote W
 ðVlÞ = R

 ðVlÞ ∪ S
 ðVlÞ and W

!ðVrÞ = R
!ðVrÞ ∪

S
!ðVrÞ. For W

 ðVlÞ, it is easy to check that when ρ increases,

u decreases and H increases; forW
!ðVrÞ, it holds that when ρ

increases, u increases and H increases. Besides, it can also be

calculated that lim
ρ→+∞

u = −∞, lim
ρ→+∞

H = +∞ for W
 ðVlÞ while

lim
ρ→+∞

u = +∞, lim
ρ→+∞

H = +∞ for W
!ðVrÞ. In addition, the

curve W
 ðVlÞ interacts with the u-axis at u = ul + 2k ffiffiffiffi

ρl
p

and

W
!ðVrÞ interacts with the u-axis at u = ur − 2k ffiffiffiffiffi

ρr
p

.
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We next construct the solutions of the Riemann problem
(3)–(4) by using the above elementary waves.

Draw the backward wave curve W
 ðV−Þ passing the left

state V− = ðρ−, u−,H−Þ and the forward wave curve W
!ðV+Þ

passing the right state V+ = ðρ+, u+,H+Þ. We call the points

A1 ∈W
 ðV−Þ and A2 ∈W

!ðV+Þ the pseudointersection points
if the ρ and u coordinates are the same and the H coordinate
may be different (see Figure 1). The projections on the ðρ, uÞ-
plane of the pseudointersection points are just the interaction

point of the projections on the ðρ, uÞ-plane of W
 ðV−Þ and

W
!ðV+Þ. The states at the pseudointersection points can be
connected by a contact discontinuity because the density
and velocity across the contact discontinuity do not change
(see (20)), and then the solution is allowed to transition from
points A1 to A2 in the phase space.

When u− + 2k ffiffiffiffiffi
ρ−
p ≤ u+ − 2k ffiffiffiffiffi

ρ+
p

, it is easy to see that

W
 ðV−Þ and W

!ðV+Þ do not have pseudointersection points.

Notice that W
 ðV−Þ and W

!ðV+Þ interact with the u-axis.
Then, the Riemann solution consists of a backward rarefac-
tion wave, a vacuum intermediate state, and a forward rare-
faction wave.

When u− + 2k ffiffiffiffiffi
ρ−
p > u+ − 2k ffiffiffiffiffi

ρ+
p

, it is known that W
 

ðV−Þ and W
!ðV+Þ must have pseudointersection points.

Then, the Riemann solutions can be constructed according

to the different locations onW
 ðV−Þ andW

!ðV+Þ of the pseu-
dointersection points. To be precise, the Riemann solution
contains a backward rarefaction wave, a contact discontinu-
ity, and a forward rarefaction wave when the pseudointersec-

tion points lie on R
 ðV−Þ and R

!ðV+Þ; it contains a backward
rarefaction wave, a contact discontinuity, and a forward shock

wave when the pseudointersection points lie on R
 ðV−Þ and

S
!ðV+Þ; it includes a backward shock wave, a contact dis-

continuity, and a forward rarefaction wave when the pseu-
dointersection points lie on S

 ðV−Þ and R
!ðV+Þ; and it consists

of a backward shock wave, a contact discontinuity, and a for-
ward shock wave when the pseudointersection points lie on
S
 ðV−Þ and S

!ðV+Þ.
The conclusion can be stated in the following theorem.

Theorem 1. There exists a unique piecewise smooth solution,
which includes shock, rarefaction wave, contact discontinuity,
and vacuum state, of the Riemann problem for (3) with initial
data (4).

3. Riemann Problem of the Euler Equations for
Pressureless Fluids

In order to well understand the limit behavior of solutions to
(3) and (4) as the magnetic field vanishes, we give a sketch of
the results for the Riemann problem (5) and (4). For more
details, see [7].

The system (5) has a triple eigenvalue λ = u with two
right eigenvectors r!1 = ð1, 0, 0ÞT , r!2 = ð0, 0, 1ÞT satisfying
∇λj · r

!
j ≡ 0 ðj = 1, 2Þ: Hence, the system (5) is extremely

nonstrictly hyperbolic and λ is linearly degenerate.
As usual, we look for the self-similar solution ðρ, u,HÞ

ðx, tÞ = ðρ, u,HÞðξÞ, ξ = x/t, then the Riemann problem is
reduced to the boundary value problem

−ξρξ + ρuð Þξ = 0,

−ξ ρuð Þξ + ρu2
� �

ξ
= 0,

−ξ
ρu2

2 +H
� �

ξ

+ ρu2

2 +H
� �

u
� �

ξ

= 0,

8>>>>><
>>>>>:

ð29Þ

ρ, u,Hð Þ ±∞ð Þ = ρ±, u±,H±ð Þ: ð30Þ

W (V−)

W (V+)

S (V−)

S (V+)

R (V−)

R (V+)

H

A1

u

𝜌

A2

V− = (𝜌−, u−, H−)

V+ = (𝜌+, u+, H+)

Figure 1: Pseudointersection points of curves of elementary waves.
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It can be checked that besides the constant state ðρ, u,
HÞðξÞ = constant, the system (29) admits the vacuum state

ξ = u, ρ = 0,H = 0, ð31Þ

and the contact discontinuity

ξ = ul = ur , ð32Þ

where ur and ul denote the right and left states, respectively.
With the constant, vacuum state, and contact discontinuity,
it can be obtained that for the case u− < u+, the Riemann solu-
tion consists of two contact discontinuities and a vacuum state
besides two constant states, which can be expressed as

ρ, u,Hð Þ ξð Þ =
ρ−, u−,H−ð Þ, −∞ < ξ < u−,
0, ξ, 0ð Þ, u− ≤ ξ ≤ u+,
ρ+, u+,H+ð Þ, u+ < ξ < +∞:

8>><
>>: ð33Þ

However, for the case u− > u+, the characteristics lines
from the x-axis will overlap in the domain Ω = fðx, tÞ ∣ u+
≤ x/t ≤ u−g in the ðx, tÞ-plane. So the singularity of solution
must develop in Ω. One can furthermore prove that ρ, H,
and ∂u/∂x blow up simultaneously in a finite time even start-
ing from smooth initial data. Therefore, no solution exists in
the bounded variation space. Indeed, a solution containing
weighted δ-measures (i.e., delta shock) supported on a line
should be introduced in order to establish the existence in a
space of measure from the mathematical point of view.

In order to define the measure solutions, the weighted
δ-measure wðsÞδL supported on a smooth curve L param-
eterized as x = xðsÞ, t = tðsÞðc ≤ s ≤ dÞ is defined by

w sð ÞδL, ψ x, tð Þh i =
ðd
c
w sð Þψ x sð Þ, t sð Þð Þds, ð34Þ

for all test functions ψðx, tÞ ∈ C∞
0 ðð−∞, +∞Þ × ð0,∞ÞÞ.

Then, for the case u− > u+, the Riemann solution is the
following delta shock solution:

ρ, u,Hð Þ x, tð Þ =
ρ−, u−,H−ð Þ, x < σt,
w tð Þδ x − σtð Þ, σ, h tð Þδ x − σtð Þð Þ, x = σt,
ρ+, u+,H+ð Þ, x > σt,

8>><
>>:

ð35Þ

where the weights wðtÞ and hðtÞ and velocity σ satisfy the
generalized Rankine-Hugoniot relation

dw tð Þ
dt

= −σ ρ½ � + ρu½ �,
dw tð Þσ

dt
= −σ ρu½ � + ρu2

	 

,

d w tð Þσ2/2 + h tð Þ� �
dt

= −σ ρu2/2 +H
	 


+ ρu2/2 +H
� �

u
	 


,

8>>>>>>><
>>>>>>>:

ð36Þ

and the entropy condition

u+ < σ < u−, ð37Þ

with ½a� = a− − a+ being the jump of a across the discontinu-
ity. In [7], it was shown that the solution (35) satisfies the sys-
tem (5) in the sense of measures. Under (37), solving (36)
with initial data wð0Þ = 0 and hð0Þ = 0 yields

We state the results in the following theorem.

Theorem 2. There exists a unique piecewise smooth solution,
which includes two contact discontinuities and a vacuum state
whenu− < u+and a delta shock whenu− > u+, of the Riemann
problem for (5) with initial data (4).

4. Limit of Solution to (3)–(4) for u− > u+

In this section, we study the limit behavior of the Riemann
solution to the pressureless MHD system for the case u− >
u+ and ρ±,H± > 0 as the magnetic field vanishes.

Let k0 > 0 be the constant satisfying

u+ − u− = ± k0ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ+

+ 1
ρ−

s
ρ+ − ρ−ð Þ, ð39Þ

then, for any fixed k ∈ ð0, k0Þ, the solution of (3) and (4)
includes two shocks and one contact discontinuity, which
can be expressed as

σ =
ffiffiffiffiffi
ρ−
p

u− +
ffiffiffiffiffi
ρ+
p

u+ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p ,

w tð Þ = ffiffiffiffiffiffiffiffiffiffi
ρ−ρ+
p

u− − u+ð Þt,

h tð Þ = ρ−ρ+ u− − u+ð Þ2 + 2 ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �

H−
ffiffiffiffiffi
ρ+
p +H+

ffiffiffiffiffi
ρ−
p� �

2 ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �2 u− − u+ð Þt:

8>>>>>>><
>>>>>>>:

ð38Þ
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ρk, uk,Hk
� �

ξð Þ =

ρ−, u−,H−ð Þ, −∞ < ξ < σk
−,

ρk∗, uk∗,Hk
∗1

� �
, σk

− < ξ < σk0,

ρk∗, uk∗,Hk
∗2

� �
, σk

0 < ξ < σk+,

ρ+, u+,H+ð Þ, σk
+ < ξ < +∞,

8>>>>>>><
>>>>>>>:

ð40Þ

where ðρ−, u−,H−Þ and ðρk∗, uk∗,Hk
∗1Þ are connected by a

backward shock S
 
with speed σk−

S
 
:

σk
− = uk∗ −

kffiffiffi
2
p ρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ−

s
= u− −

kffiffiffi
2
p ρk∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ−

s
,

uk∗ − u− = −
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ−

s
ρk∗ − ρ−

� �
,

Hk
∗1

H−
= ρk∗
ρ−

+ k2

4ρ−H−
ρk∗ − ρ−

� �3
,

ρk∗ > ρ−:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð41Þ

ðρk∗, uk∗,Hk
∗1Þ and ðρk∗, uk∗,Hk

∗2Þ are connected by a
contact discontinuity J with speed σk0 = uk∗; ðρk∗, uk∗,Hk

∗2Þ
and ðρ+, u+,H+Þ are connected by a forward shock S

!
with

speed σk+

S
!
:

σk
+ = u+ +

kffiffiffi
2
p ρk∗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ+

s
= uk∗ +

kffiffiffi
2
p ρ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ+

s
,

u+ − uk∗ =
kffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ+

s
ρ+ − ρk∗

� �
,

Hk
∗2

H+
= ρk∗
ρ+

+ k2

4ρ+H+
ρk∗ − ρ+

� �3
,

ρk∗ > ρ+:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð42Þ

It follows from (41) and (42) that

u− − u+ =
kffiffiffi
2
p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ρ−

+ 1
ρk∗

s
ρk∗ − ρ−

� �

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ+

+ 1
ρk∗

s
ρk∗ − ρ+

� �!

= kffiffiffi
2
p
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ρ−

−
1
ρk∗

� �
ρk∗
� �2 − ρ2−

� �s

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρ+

−
1
ρk∗

� �
ρk∗
� �2 − ρ2+

� �s !
≔ J k, ρk∗
� �

:

ð43Þ

With (43), we have the following conclusions for the
intermediate density ρk∗.

Lemma 3. ρk∗is monotonic decreasing with respect tok,
andlim

k→0
ρk∗ = +∞.

Proof. Let k1 > k2. Assume ρk1∗ ≥ ρk2∗ , then from (43), we
obtain Jðk1, ρk1∗ Þ > Jðk2, ρk2∗ Þ, which contradicts with Jðk1,
ρk1∗ Þ = Jðk2, ρk2∗ Þ = u− − u+. Thus we have ρ

k1
∗ < ρk2∗ .

If ρk∗ is bounded, then from (43), we can get u− = u+,
which contradicts with u− > u+. Thus, we get the unbounded-
ness of ρk∗, which gives lim

k→0
ρk∗ = +∞.

Lemma 4. kρk∗is monotonic increasing with respect tok, and

lim
k→0

kρk∗ =
ffiffiffiffiffiffiffiffiffiffiffiffi
2ρ−ρ+

p
ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p u− − u+ð Þ≔ L: ð44Þ

Proof. Let k1 > k2. If k1ρ
k1
∗ ≤ k2ρ

k2
∗ , one can deduce Jðk1, ρk1∗ Þ

< Jðk2, ρk2∗ Þ, which contradicts with Jðk1, ρk1∗ Þ = Jðk2, ρk2∗ Þ =
u− − u+. So k1ρ

k1
∗ > k2ρ

k2
∗ must hold. In addition, the limit

lim
k→0

kρk∗ can be directly obtained from (43).

With Lemmas 3 and 4 and

Hk
∗1 =

H−
ρ−

ρk∗ +
kρk∗ − kρ−
� �3

4kρ−
,

Hk
∗2 =

H+
ρ+

ρk∗ +
kρk∗ − kρ+
� �3

4kρ+
,

ð45Þ

one can easily get the limits of the intermediate internal ener-
gies Hk

∗1 and Hk
∗2.

Lemma 5. lim
k→0

Hk
∗1 = lim

k→0
Hk

∗2 = +∞.

Lemma 6. lim
k→0

kHk
∗1 = L · ðH−/ρ− + L2/4ρ−Þ

andlim
k→0

kHk
∗2 = L · ðH+/ρ+ + L2/4ρ+Þ.

From the second equation in (41) (or (42)) and Lemmas
3 and 4, we obtain the limit of the intermediate velocity uk∗.

Lemma 7.

lim
k→0

uk∗ =
ffiffiffiffiffi
ρ−
p

u− +
ffiffiffiffiffi
ρ+
p

u+ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p ≔ σ: ð46Þ

With Lemma 3 and (42) and (43), it follows lim
k→0

σk− =
lim
k→0

σk+ = lim
k→0

σk
0 = lim

k→0
uk∗, which shows the limits of the speeds

of shocks and contact discontinuity in the following lemma.
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Lemma 8.

lim
k→0

σk− = lim
k→0

σk
+ = lim

k→0
σk
0 = σ: ð47Þ

Furthermore, we have

Lemma 9.

lim
k→0

ðσk+
σk−

ρk∗dξ = lim
k→0

ρk∗ σk
+ − σk−

� �
=M,

lim
k→0

ðσk+
σk−

Hk
∗dξ = lim

k→0
Hk

∗1 σk
0 − σk−

� �
+Hk

∗2 σk
+ − σk0

� �� �
=N ,

ð48Þ

where

M = ffiffiffiffiffiffiffiffiffiffi
ρ−ρ+
p

u− − u+ð Þ,

N = ρ−ρ+ u− − u+ð Þ2 + 2
ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �

H−
ffiffiffiffiffi
ρ+
p +H+

ffiffiffiffiffi
ρ−
p� �

2
ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �2

� u− − u+ð Þ:
ð49Þ

Proof. With (41) and (42), we have

ρk∗ σk+ − σk
−

� �
= 1ffiffiffi

2
p kρk∗ ρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ−

s
+ ρ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ+

s !
,

Hk
∗1 σk0 − σk−

� �
= 1ffiffiffi

2
p kHk

∗1ρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ−

s
,

ð50Þ

Hk
∗2 σk+ − σk0

� �
= 1ffiffiffi

2
p kHk

∗2ρ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
ρk∗

+ 1
ρ+

s
: ð51Þ

Taking the limit k→ 0 in the above expressions gives
the results.

Lemmas 3–9 show that, as k drops to zero, the intermedi-

ate velocity and all of the speeds of S
 
, J , and S

!
tend to the

constant σ, which means that S
 
, J , and S

!
coincide. Corre-

spondingly, the intermediate density ρk∗ and internal energies
Hk

∗1 and Hk
∗2 simultaneously develop delta measures.

Now, we are ready to characterize the limit of solutions of
(3) (4) as k→ 0 for the case u− > u+.

Let us take a sloping test function ϕðξÞ ∈ C∞
0 ð−∞, +∞Þ

such that ϕðξÞ ≡ ϕðσÞ for ξ in a neighborhood Ω of ξ = σ.
Then, there exists k1 ∈ ð0, k0Þ such that when 0 < k < k1, it
holds σk− ∈Ω, σk0 ∈Ω, and σk+ ∈Ω. For k ∈ ð0, k1Þ, we have

ð+∞
−∞

ρkϕdξ =
ðσk−
−∞

+
ð+∞
σk+

 !
ρkϕdξ +

ðσk+
σk−

ρkϕdξ, ð52Þ

in which

lim
k→0

ðσk−
−∞

+
ð+∞
σk+

 !
ρkϕdξ

= lim
k→0

ðσk−
−∞

ρ−ϕdξ + lim
k→0

ð+∞
σk+

ρ+ϕdξ

=
ð+∞
−∞

ρ0 ξ − σð Þϕdξ,

ð53Þ

where

ρ0 xð Þ =
ρ−, x < 0,
ρ+, x > 0,

(
ð54Þ

lim
k→0

ðσk+
σk−

ρkϕdξ = lim
k→0

ρk∗ σk+ − σk−

� �
ϕ σð Þ =Mϕ σð Þ, ð55Þ

by virtue of the Lemma 9. Thus, we have obtained

lim
k→0

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

ϕdξ =Mϕ σð Þ: ð56Þ

For k ∈ ð0, k1Þ, we also have

ð+∞
−∞

Hkϕdξ =
ðσk−
−∞

+
ð+∞
σk+

 !
Hkϕdξ

+
ðσk0
σk−

Hk
∗1ϕdξ +

ðσk+
σk0

Hk
∗2ϕdξ,

ð57Þ

which gives

lim
k→0

ð+∞
−∞

Hk −H0 ξ − σð Þ
� �

ϕdξ =Nϕ σð Þ, ð58Þ

where

H0 xð Þ =
H−, x < 0,
H+, x > 0:

(
ð59Þ

For an arbitrary test function φðξÞ ∈ C∞
0 ð−∞, +∞Þ, we take

a sloping test function ϕ such that ϕðσÞ = φðσÞ and

max
ξ∈ −∞,+∞ð Þ

ϕ − φj j < μ: ð60Þ
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We have

lim
k→0

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

φdξ

= lim
k→0

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

ϕdξ

+
ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

φ − ϕð Þdξ
�
:

ð61Þ

The first term on the right side

lim
k→0

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

ϕdξ =Mϕ σð Þ =Mφ σð Þ: ð62Þ

The second term on the right side

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

φ − ϕð Þdξ

=
ðσk+
σk−

ρk − ρ0 ξ − σð Þ
� �

φ − ϕð Þdξ

=
ðσk+
σk−

ρk φ − ϕð Þdξ −
ðσk+
σk−

ρ0 ξ − σð Þ φ − ϕð Þdξ,

ð63Þ

which converges to 0 as k→ 0 by sending μ→ 0 and recal-
ling Lemma 9. Thus, we have that

lim
k→0

ð+∞
−∞

ρk − ρ0 ξ − σð Þ
� �

φdξ =Mφ σð Þ, ð64Þ

for all test functions φ ∈ C∞
0 ð−∞, +∞Þ. Similarly, we have

lim
k→0

ð+∞
−∞

Hk −H0 ξ − σð Þ
� �

φdξ =Nφ σð Þ, ð65Þ

for all test functions φ ∈ C∞
0 ð−∞, +∞Þ.

Let ψðx, tÞ ∈ C∞
0 ðð−∞, +∞Þ × ½0, +∞ÞÞ be an arbitrary

test function, and let ~ψðξ, tÞ≔ ψðξt, tÞ. Then, it follows that

lim
k→0

ð+∞
0

ð+∞
−∞

ρk
x
t

� �
ψ x, tð Þdxdt

= lim
k→0

ð+∞
0

ð+∞
−∞

ρk ξð Þψ ξt, tð Þd ξtð Þdt

= lim
k→0

ð+∞
0

t
ð+∞
−∞

ρk ξð Þ~ψ ξ, tð Þdξ
� �

dt,

ð66Þ

and with (64), we have

lim
k→0

ð+∞
−∞

ρk ξð Þ~ψ ξ, tð Þdξ

=
ð+∞
−∞

ρ0 ξ − σð Þ~ψ ξ, tð Þdξ +M~ψ σ, tð Þ

= t−1
ð+∞
−∞

ρ0 x − σtð Þψ x, tð Þdx +Mψ σt, tð Þ:

ð67Þ

Combining the two relations above yields

lim
k→0

ð+∞
0

ð+∞
−∞

ρk
x
t

� �
ψ x, tð Þdxdt

=
ð+∞
0

ð+∞
−∞

ρ0 x − σtð Þψ x, tð Þdxdt

+
ð+∞
0

Mtψ σt, tð Þdt:

ð68Þ

By the definition, the last term

ð+∞
0

Mtψ σt, tð Þdt = Mtδx=σt , ψ x, tð Þh i: ð69Þ

Similarly, we can show from (65) that

lim
k→0

ð+∞
0

ð+∞
−∞

Hk x
t

� �
ψ x, tð Þdxdt

=
ð+∞
0

ð+∞
−∞

H0 x − σtð Þψ x, tð Þdxdt

+
ð+∞
0

Ntψ σt, tð Þdt,

ð70Þ

with

ð+∞
0

Ntψ σt, tð Þdt = Ntδx=σt , ψ x, tð Þh i: ð71Þ

Thus, we obtain the following conclusion.

Theorem 10. Letu− > u+andρ±,H± > 0. For fixedk > 0,

assume thatðρk, uk,HkÞðx, tÞis theS
 
J S
!
solution to (3) and

(4). Then,

lim
k→0

uk x, tð Þ =
u−, x < σt

σ, x = σt,
u+, x > σt:

8>><
>>: ð72Þ

ρkandHkconverge in the sense of distributions, and the
limit functions are the sum of a step function and a Dirac delta
function supported onx = σtwith weights

ffiffiffiffiffiffiffiffiffiffi
ρ−ρ+
p

u− − u+ð Þt, ð73Þ
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ρ−ρ+ u− − u+ð Þ2 + 2
ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �

H−
ffiffiffiffiffi
ρ+
p +H+

ffiffiffiffiffi
ρ−
p� �

2
ffiffiffiffiffi
ρ−
p + ffiffiffiffiffi

ρ+
p� �2

� u− − u+ð Þt,
ð74Þ

respectively, whereσ = ð ffiffiffiffiffiρ−p
u− +

ffiffiffiffiffi
ρ+
p

u+Þ/ð ffiffiffiffiffiρ−p + ffiffiffiffiffi
ρ+
p Þ.

It can be seen that the limit of ðρk, uk,HkÞðx, tÞ is just the
delta shock solution of the Riemann problem of the Euler
equations for pressureless fluids (5).

5. Limit of Solution to (3)–(4) for u− < u+

This section discusses the limit behavior of the Riemann
solution to the pressureless MHD system for u− < u+ and
ρ±,H± > 0 as the magnetic field vanishes.

Let k2 be the constant satisfying

u+ − u− = ±2k2
ffiffiffiffiffi
ρ+
p − ffiffiffiffiffi

ρ−
pð Þ, ð75Þ

then, for any k ∈ ð0, k2Þ, the solution to (3) and (4) contains
two rarefaction waves. Furthermore, let k3 be the constant
satisfying

u− + 2k3
ffiffiffiffiffi
ρ−
p = u+ − 2k3

ffiffiffiffiffi
ρ+
p , ð76Þ

then, for any k ∈ ðk3, k2Þ, the Riemann solution contains non-
vacuum intermediate states between two rarefaction waves

where the backward rarefaction wave R
 
connecting ðρ−, u−,

H−Þ and ðρk∗, uk∗,Hk
∗1Þ can be expressed as

R
 
:

ξ = λ− = u − k
ffiffiffi
ρ
p ,

u − u− = −2k ffiffiffi
ρ
p

− ffiffiffiffiffi
ρ−
pð Þ,

H
H−

= ρ

ρ−
,

ρ < ρ−:

8>>>>>><
>>>>>>:

ð78Þ

The forward rarefaction wave R
!
connecting ðρk∗, uk∗,Hk

∗2Þ
and ðρ+, u+,H+Þ can be expressed as

R
!
:

ξ = λ+ = u + k
ffiffiffi
ρ
p ,

u+ − u = 2k ffiffiffiffiffi
ρ+
p −

ffiffiffi
ρ
pð Þ,

H
H+

= ρ

ρ+
,

ρ+ > ρ:

8>>>>>><
>>>>>>:

ð79Þ

ðρk∗, uk∗,Hk
∗1Þ and ðρk∗, uk∗,Hk

∗2Þ are connected by a contact
discontinuity J with speed

σk0 = uk∗ = u− + 2k ffiffiffiffiffi
ρ−
p − 2k

ffiffiffiffiffi
ρk∗

q
= u+ − 2k ffiffiffiffiffi

ρ+
p + 2k

ffiffiffiffiffi
ρk∗

q
:

ð80Þ

From (80), we have

u+ − u− = 2k ffiffiffiffiffi
ρ−
p −

ffiffiffiffiffi
ρk∗

q� �
+ 2k ffiffiffiffiffi

ρ+
p −

ffiffiffiffiffi
ρk∗

q� �

≔G k, ρk∗
� �

,
ð81Þ

or

u− + 2k ffiffiffiffiffi
ρ−
pð Þ − u+ − 2k ffiffiffiffiffi

ρ+
pð Þ = 4k

ffiffiffiffiffi
ρk∗

q
, ð82Þ

with which it is obvious that ρk∗ is monotonic increasing
with respect to k. Taking the limit k→ k3 on both sides of
(82), we have

ρk, uk,Hk
� �

ξð Þ =

ρ−, u−,H−ð Þ, −∞ < ξ < u− − k
ffiffiffiffiffi
ρ−
p ,

R
 
, u− − k

ffiffiffiffiffi
ρ−
p ≤ ξ ≤ u− + 2k ffiffiffiffiffi

ρ−
p − 3k

ffiffiffiffiffi
ρk∗

q
,

ρk∗, uk∗,Hk
∗1

� �
, u− + 2k ffiffiffiffiffi

ρ−
p − 3k

ffiffiffiffiffi
ρk∗

q
≤ ξ ≤ u− + 2k ffiffiffiffiffi

ρ−
p − 2k

ffiffiffiffiffi
ρk∗

q
,

ρk∗, uk∗,Hk
∗2

� �
, u+ − 2k ffiffiffiffiffi

ρ+
p + 2k

ffiffiffiffiffi
ρk∗

q
≤ ξ ≤ u+ − 2k ffiffiffiffiffi

ρ+
p + 3k

ffiffiffiffiffi
ρk∗

q
,

R
!
, u+ − 2k ffiffiffiffiffi

ρ+
p + 3k

ffiffiffiffiffi
ρk∗

q
≤ ξ ≤ u+ + k

ffiffiffiffiffi
ρ+
p ,

ρ+, u+,H+ð Þ, u+ + k
ffiffiffiffiffi
ρ+
p < ξ < +∞,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð77Þ
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lim
k→k3

ρk∗ = 0: ð83Þ

Besides, fromHk
∗1/H− = ρk∗/ρ− and Hk

∗2/H+ = ρk∗/ρ+, we have

lim
k→k3

Hk
∗1 = lim

k→k3
Hk

∗2 = 0: ð84Þ

Furthermore, from (80), one has

lim
k→k3

σk0 = lim
k→k3

uk∗ = u− + 2k3
ffiffiffiffiffi
ρ−
p = u+ − 2k3

ffiffiffiffiffi
ρ+
p ≔ u1: ð85Þ

Moreover, as k→ k3, both the wave front ξfront = u− + 2kffiffiffiffiffi
ρ−
p − 3k

ffiffiffiffiffi
ρk∗

p
of R
 
and the wave back ξback = u+ − 2k ffiffiffiffiffi

ρ+
p +

3k
ffiffiffiffiffi
ρk∗

p
of R
!
tend to ξ = u1. Therefore, as k→ k3, the vacuum

begins to appear and the wave front of R
 
, the wave back of R

!
,

and the contact discontinuity J coincide. When k decreases
so that 0 < k < k3, the solution to (3) and (4) contains a vac-
uum intermediate state between two rarefaction waves

with (78) and (79). Then, when k continues to decrease, the
rarefaction waves become narrower and narrower and the
vacuum region in between becomes wider and wider. Finally,
when k drops to zero, the rarefaction waves become two lines
with ξ = u− and ξ = u+ and between which is a vacuum state.
In summary, we have

lim
k→0

ρk, uk,Hk
� �

ξð Þ =
ρ−, u−,H−ð Þ, −∞ < ξ ≤ u−,
0, ξ, 0ð Þ, u− ≤ ξ ≤ u+,
ρ+, u+,H+ð Þ, u+ ≤ ξ < +∞,

8>><
>>:

ð87Þ

which is just the vacuum Riemann solution to the Euler equa-
tions for pressureless fluids.

6. Conclusions and Further Discussions

In this paper, we propose the pressureless MHD system. As
the magnetic field vanishes, its limit system is just the Euler
equations for pressureless fluids consisting of the mass,
momentum, and energy conservation laws, which is one of
the popular models admitting delta shocks, an interesting
topic. Using classical methods of hyperbolic conservation
laws, we solve the Riemann problem for the pressureless
MHD system. In the main part, we investigate the limits of
the Riemann solutions to the pressureless MHD system as
the magnetic field vanishes. It is shown that the vanishing
magnetic field limits of the Riemann solutions to the pres-
sureless MHD system are just the Riemann solutions to its
limit system. From another point of view, we show how the
delta shock solution of the Euler equations for pressureless
fluids appears as the vanishing magnetic field limit of solu-
tion to the pressureless MHD system containing two shocks

and possibly a contact discontinuity and how the vacuum
solution to the Euler equations for pressureless fluids appears
as the vanishing magnetic field limit of solution to the pres-
sureless MHD system containing two rarefaction waves and
possibly a contact discontinuity.

Following the investigations in this paper, two interesting
topics are put forward. In (3), instead of the linear relation
b = kρ, if b = kgðρÞ, where gðρÞ is a smooth function satisfy-
ing some growth conditions, then the discussion in this paper
can be carried out. Besides, for general types of initial data,
one can study the solution for the Euler equations of pres-
sureless fluid by considering the vanishing magnetic field
limit of solution to the pressureless MHD system. We will
study them in the future.
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ρk, uk,Hk
� �

ξð Þ =

ρ−, u−,H−ð Þ, −∞ < ξ < u− − k
ffiffiffiffiffi
ρ−
p ,

R
 
, u− − k

ffiffiffiffiffi
ρ−
p ≤ ξ ≤ u− + 2k ffiffiffiffiffi

ρ−
p ,

0, ξ, 0ð Þ, u− + 2k ffiffiffiffiffi
ρ−
p ≤ ξ ≤ u+ − 2k ffiffiffiffiffi

ρ+
p ,

R
!
, u+ − 2k ffiffiffiffiffi

ρ+
p ≤ ξ ≤ u+ + k

ffiffiffiffiffi
ρ+
p ,

ρ+, u+,H+ð Þ, u+ + k
ffiffiffiffiffi
ρ+
p < ξ < +∞,

8>>>>>>>>><
>>>>>>>>>:
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