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In this paper, we consider a class of nonlinear Caputo fractional differential equations with impulsive effect under multiple band-like
integral boundary conditions. By constructing an available completely continuous operator, we establish some criteria for judging

the existence and uniqueness of solutions. Finally, an example is presented to demonstrate our main results.

1. Introduction

Researches on fractional differential equations have witnessed
an unprecedented boom in recent years on account of the
far-reaching application in various subjects, such as physics,
biology, nuclear dynamics, chemistry, etc., for more details,
see [1-3] and the references therein. Considering the impulse
effect in the continuous differential equation can quantify the
impact of the instantaneous mutation of the model and pro-
vide a theoretical basis for the practical application. Therefore,
impulsive differential equation problems also attract great
attention from scholars. For the theories of impulsive differ-
ential equations, the readers can refer to [4-7]. In addition,
there have been some excellent results concerning the exist-
ence, uniqueness, and multiplicity of solutions or positive
solutions to some nonlinear fractional differential equations
with various nonlocal boundary conditions. As for some
recent bibliographies, we refer readers to see [8-11] and the
reference therein.

Yang and Zhang in [12] studied the following impulsive
fractional differential equation

‘Dy.x(t) = f(t,x(8), te]=(0,1), t#t,

Axlg = I(x(8)), Ax'| = I(x(&)), k=1,2,...,m,

x(0) = h(x), x(1) = g(x),
(1)

where “Dy, is the Caputo fractional derivative, € R, 1 < « < 2.
f:[0,1]xR— R is a continuous function, I,,I, are

continuous functions, g(x) = maxj((|x(fj)|)/(/\ + |x(fj)')),
h(x) = minj((|x(£j)£)/(’c + |x(£1)')) By transforming the

boundary value problem into an equivalent integral equation
and employing some fixed point theorems, existence result is
obtained.

The research results of fractional differential equations
with integral boundary conditions are also quite rich, and the
research on those questions remains as a hotpot among many
scholars in recent years. We refer readers to see [13-16] and
the reference therein.

In [13], Song and Bai considered the following boundary
value problem of fractional differential equation with
Riemann-Stieltjes integral boundary condition

Dg,u(t) + Af(t,u(t),u(t)) =0,0<t<l,n-1<ac<n,

uW0)=0, 0<k<n-2, ul)= Jlu(s)dA(s), 2)

0

wheren — 1 < a < n, A > 0, D, is the Riemann-Liouville frac-
tilonal derivative, A is a function of bounded variation,
_[ 0u(s)dA(s) denotes the Riemann-Stieltjes integral of u with
respect to A. By the use of fixed point theorem and the properties
of mixed monotone operator theory, the existence and unique-
ness of positive solutions for the problem are acquired.
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Moreover, Zhao and Liang in [14] added impulsive effect
to fractional equations with integral boundary conditions and
discussed the existence of solutions

. Dru(t) = f(t u,u, D[Hu),
AD (e, = 1u(t)

uw0)=u'(0)=0, u'Q)= J:g(s, u(s))ds,

t?’ztk)

k:1,2,...,m, (3)

where £, D is the Riemann-iouville fractional derivative of
order2 < a <3, J, = (tpoty k= 1,2,...,m. f € C(J x R, R),
I, e C(R,R),0 <% < 1,9 € C(J x R, R). By applying the con-
traction mapping principle and the fixed point theorem, some
sufficient criteria for the existence of solutions are obtained.

Inspired by the works above, we will study the impulsive
fractional differential equation with band-like integral bound-
ary conditions

“Di,x(t) = f(t,x(1)Dhx(®), te 1), t£E, ()

—Ax|t:5k = [(x(&)), k= n,

x(0) = x(1) = Za,ji x(H)g(t)dt,

i=0

(5)

where °Df, °DF. are the Caputo fractional derivatives
of order 1<a<2,0<B<1J=[0,1], ] =(&.&.]
fe C(]k x R?, ]R), fork =0,1,2,...,n and o, is a nonnegative
constant, g € C([0, 1], R") satisfying 0 < Zioocijg”g(t)dt <1,

0= EO < gl <eee< gn < £n+1 =1 x(EI:) = hmh—>0+x(Ek + h)’
and x(&;) = lim,_ ;- x(&, + h) represent the right and the left
limits of x(&) at t = &, Axl,_¢ = x(&) — x(§). L(x(&,)) €
C(R,R). By using the Leray-Schauder alternative theorem
and the Banach contraction mapping principle, the existence
and uniqueness theorems of solutions to problem (4) can be
established.

We emphasize that the discontinuous points caused by
impulse are just the upper and lower limits of the band-like
integral values in the boundary conditions of (4). In other words,
the value of the unknown function at the endpoint of the interval
[0,1] is related to the linear combination of the integral values
of the unknown function between the discontinuous points.

Another thing worth mentioning is that despite the compli-
cated boundary conditions and the interference of the impulse,
we use a piecewise function to represent the operator F in a
concise form based on the form of the Green’s function and
accurately estimate the upper bound of its absolute value, which
is fully prepared for the establishment of the main theorem.

Accordingly, the conclusions we reached are extensive
results compared with the reference [4-7, 15-20] and a mean-
ingful supplement to the theory of impulsive fractional differ-
ential equations.

2. Preliminaries

In this section, we present some definitions, lemmas, and some
prerequisite results that will be used to prove our results.

Advances in Mathematical Physics

Definition 1 [19]. The Riemann-Liouville fractional integral
of order a > 0 of a function f: (0,00) — R is defined as

510 = 1 )j (t— 5y f(s)ds, ©)

if the right-hand side is pointwise defined on (0, c0), where
I'(ex) is the Euler gamma function satisfyingI'(«) = jgot“’le’tdt,
fora > 0.

Definition 2 [16]. The Caputo fractional derivative of order
a > 0 for a function f : (0,00) — R is defined as

1
‘Dy, f(t) = T =

where n = [a] + 1 and [«] stands for the largest integer that
not greater than a.

“)Jof O - ds, (@)

Lemma 1. For h € L'(0,1), the solution of the fractional
differential equation “Dy,u(t)+h()=0,0<t <1 can be
expressed as

ue) = - (1 )I (t — ) "h(s)ds

-1
+e ",

(8)
+tot+-- 0<t<l,
wherec, € R, fori=1,2,...,n

Lemma 2. For anyv € L'(0, 1), the following boundary value
problem

—v(t),
—Ax g = I(x(§)),

= = ialj g(t)dt, (10)

has a unique solution
x(t) = A, () + A%(t) + B,(v) + By(v)

+ i G(t, §) I (x(8,))

D, x(t) = t €T 9)

k=1,2,.

(11)

n

%i%ffzctgﬂw@»

i=0

where
e N K
A t) = fa-Dl 0(s )" “v(t)d1ds,
fort € J,k=0,1,2,.
n+l
Al(t) = J J (s — 7)* *v(1)dds,

—l

fort € ]k,k=0,1,2,...,n,

S [t (S
ocij J J (s — 7)**v(1)drdsdt,
& :

1 n
B,(v) = _Al‘(oc— 1);

, ntl

AF(oc 1)Z J ZG(t %)

i=0 & k=

B,(v) =

£, (12)
. J j (s — 1) *v(r)drdsdt,
Ek 1 0
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where

AR

0<& <t, k=1,2,...,n,

t<& <1, k=1,2,...,n
i=0 &t
a=1-Y o[ gt (13)
n &
Proof. From equation (9), through calculation we have
-1 ! a=2
x'(t) = a1 Jo(t -9 v(s)ds + a, (14)

where a is an arbitrary real constant.
Fort € ], according to (15), we can obtain

x(t) = @I;“ - ) y(s)ds + b + at, (15)

where b is an arbitrary real constant.
Fort € ]1, based on (15) and (16), we have

1"(01 nJe _[ (s — 1) v(r)drds
"t JQ (&, - s)“ v(s)ds + at + b — I,(x(&,)). (16)

x(t) =

n, it holds that

_1 t s w2
x(t) = mjﬁkjo(s - 1) "v(t)dtds

Analogously, fort € J,,k=2,3...,

—1 y & ) a=2
B T(a-1) k; J-Ek,lj.o(s - 1) *v(r)drds (17)

+at+b- Z L(x(&)).

&<t

Since x(0) = x(1) =
receive that
_1 n+l fk

=TT ;; LHJ (s — )" *v(r)dtds + Z I x(’g’k)()ls)

Substituting a into (18), and based on the form of Green’s
function, we get

) =b- r(al— ) J;Io(s -0

n+l

ZG (t,&,) J J
+;G(t’ Ek)Ik(x(Ek));

Subject to (20), using boundary conditions of (10), we have

" n &int 1
b=b ocij (e - a, |
; & g 0 & F(OC - 1)

. J-t Is(s - 1) (1) g(t)drdsdt
4

J0

i &in
Yl
-0 7§

i

b, together with (16) and (18), we

v(t)drds

- 1) y(1)drds

(19)
fort € J,.

=l

n+l

: jt r (s— T)“’zv(r)g(t)drdsdt
gJo

n ¢ n

Y] Y G ELGE)0dE (o)

i

3
Consequently,
n E "
AI‘((x D IZ%L I I g(t)(s — 7)**v(1)drdsdt
n £, ntl

Ar(a_ 1 Z"%J ‘ ZG (t.&)
) _r JS(S - 1)*?g(t)v(r)drdsdt

&Jo
* %Z‘X'j 9 ZG (6 E)T(x(&))dt, (1)

i=0 & =

where A =1 - t)dt. In what follows, we always

z 0 “zjg
assume that 0 < Y 0“’«[5 Hdt < 1.
From (18)-(20), and (22), it can be received that

x(t) = AL(t) + A2(t) + B,(v) + B,(v)

+ Z G(t, Ek)Ik(x(Ek)) (22)
1 n i
= Z « J Y. Gt §)L(x(8,))dr
i= & k=1
where A (t), A2 (t), B,(v), B,(v) are denoted by (12). g

Define X = {x(t) : x(t) € C(J,),DE x(t) € C(J), x(&), x(&;)
exit and x(&) =x(&,), k=0,1,...,n}. Obviously, X is a
Banach space endowed with the norm || x|, = D§+x“ =
SUP; (o, X ()] + sup, ¢ ) |CD§+x(t

Lemma 3. For anyveL'[0, 1], the following results are true

(1) A=<

2,...,n
(2) (t)| < |WI/T(a + 1), fort € J,,k =0,1,2,.
() |B,(v)| < (IVI/AT (@ + 1) X0, [(1/ (o + )
(ff’ﬁl - :Hl) +&0 (& - & )]
@) |B,0)| < (VI AT (o + D) Y1yt (Erry = &,).

(vl/T e+ D)(1 - &), for t € Jok = 0,1,

Proof. Fort € J,,k=0,1,2,...,n, we have

1 1 s a2
[0 = o )uo(s—f) [v(o)ldrds
vl «
< r(‘Hl)(l—fk), (23)
()] < T J j (s = 1) |v(7)|drds
vl 5 «
“Ta+D 2 Z(Ek §c-1)
_ vl
T T+ 1) @4

According to (24) and (25), we get



4
n St
_ a-2
|B,(v)] < A D) ;aiLi J J (s = 7)*?|v(7)|drdsdt
Il - [ ga
AI‘(oc—l);“iLi (= &)t
”V” c 1 a+1 a+1 o o+1
CAT(a+1) ;“i[(x+ 1(5"+1 & ) AR ]
”V” C 1 o+l o+l o
T Al(a+1) ;“i[“+l( & )+Ei+1( i~ & )]
(25)
and
RSN A N A
|B,(v)| < ATl 1) ;’aiL, k; |G(z, Ek)|'|>gk71J’0(s - 1) *drdsdt
IVl (N e ge
= AT(ax+1) ;“iL, ; (& —&)dt (26)
vl < B
= AT(ax+1) ;ai(EHl Ex) 0
Apparently, |G(t,&,)| < 1fort € [0,1]andk = 1,...,1,50

in view of Lemma 3, and combing with (11), we can write

2||v|l vl <
T(a+ 1) Ar(a+1)Z“’( &)

vl < 1 ot vant i
" ATl(ex + 1) ;“i[a+l( & )+f,~+1( =& )}

RT3 I A

i=0

[x ()] <

(27)

Lemma 4. (the Leray-Schauder alternative theorem). Let
F: X — X be a completely continuous operator (i.e., a map
that restricted to any bounded set in X is compact). Let

eF)={xe X:x=AF(x),0< A< 1}. (28)
Then either the set e(F) is unbounded, or F has at least one fixed
point.
The operator F : X — X is defined by
F(x)(t) = A (t) + A% (1) + B,(f,) + B,(f,)
+ Z G(t, §)L.(x(&,))
k=1
1 & §in 2
t1Ya| Y GEEILE A o)
=
where f,_ = f(t,x(t)," Dy, x(t)). Accordingly, we know that

F(x)'(t) = F((X_—il)Jo(t—s)H f(t x(0), Dh,x(1))ds

=1 skfl 0

. f(t, x(t),CDg+x(t))des + i I(x(&)) (30)
P
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and

D€+F(x)(t) = Jt ﬁF(yI)(S)(t _ S)Vl*ﬁ—lds
(31)

_ B
j =9 B ()(s)ds.

of(1-5)

Lemma 5. The operator F : X — X is completely continuous.

Proof. The operator F is contlnuous in view of the continuity
of G(t,&,), f(t x(t), D x(t)) and I, (x). Let Q c X be
bounded. Then there are positive constants T} and T, such
that

|F(t: (), D5, x(O)| < Tp,  |L(x(E))| < Ty, forx e Q.
(32)
For convenience, we set
1 1

T = T,T,}, R=— ,

max{T,, T,} F(oc)+F(oc+1)+n

2 1 z
TTa+ 1) AT+ 1) Z“f(ff“ -8

n

Al‘(oc+ 1) Z:(xl|:oc+ 1( ;Tl B EDH- )+ Et+1(£z+1 E:x)

i=0

[ . i‘xl z+1 i ] (33)

i=0

For any x € Q, we have

[F(x)(®)] <

J J s — 1) 2| f.(7)|drds

Z |G(t. &) j J. (s = 1)7?| f(7)|drds

1
I(ex 1)
F(oc

L it
Al(x— 1) Z“i*[f; J J (s = )| f.(v)|drdsdt

i=0

&, ntl

1 n
+ AT(@—1) ; zJ c Z'G(t fk)|
' r(s )| f,(v)|drdsdt

3Tl S lee e

1=l

M: DI’_‘ Lo

+

|G(t §) T (x(&)]

2-&
I(a+1)

1 a+1
1“+1(1+1

n
+nT< Z(xl il

i=0

>~
Il
—

<T

1

——

n
1
Ara+1)zo" w1~ 8 T AT@+ D)

i=0

)+ £ - )]}

)+1) sty Y

.Mx

i}
=}

Meanwhile, for x € ), we can get
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1 1
F(x)'(t) ST<—+ +n>
| =T, I(a) T(a+1) (35)
<TR.
Furthermore, for x € ), we have

1

r(1-p)
F(l—ﬁ),[o(t s)"ds
TR 1

ra-p1-p

__IR (36)
I(2-p)

Hence, the following result can be derived

IF(0)ly = Df F(x)|

R
]| e

Thus, we have shown the operator F is uniformly bounded.
Next, we will show that F is equicontinuous. Lett,,t, € J,
witht; <t,, then we have

D, F(x)(t)| j F(x)'(s)(t — 5) Pds

IA

IN

ST[N+

(E)(6) - (B0 < Ty 5 6 - 1)
Tlﬁhz—q
+Tlm —t‘l")itx, & -
+T1A1"(oc+1) tllioa’ =8
+nT,|t, - tl% g%(fm &)+ T,lt, - t|n
<l -t r(iTJ:n Ar(a+1)i“’( =4
+nT2ig;:x, = +Tn]
(38)
and

PG (8) - Fo)'(8,)] = j (s - 1) f (D)

- 1)

1 t,
F(oc—l),[ (s—-1)*" f(‘r)d‘r
1 a—1 a-1
<T1r( )(t -t57)
(39)
_T1m|t2—tl|.

So we have

5
“(-s)”
“Dj, F(x)(t,)-Dh, F(x)(t,)| = T B F(x) (s)ds
. A
_ jo %F(x)'(s)ds
_F(x)'(s) [ 1-p 1B
“e-plt )
T1|t2 B t1|2 (40)
C T(@T(2- By
Hence, we can get
||F(x)(t2) - F(x)(tl)”X
2T, "
<le-nll s Af(oc ) ;“1(5’“
1 ¢ T1| 2~ 1|
T, — +T _—
+nl, ;“z( il T ot (@2 —ﬁ)tf (41)

which implies that |[F(x)(t,) - F(x)(t,)|, — 0 as t, — f,.
Therefore, the operator F is equicontinuous, and the operator
F is completely continuous. O

3. Main Results

In the following discussion, we assume that the following
hypotheses are valid, where p;, L; and M; are positive con-
stants, fori =1,...,4,j=1,2.

(H,) |f(t’ X, )’)| < py+polxl+ pslyl
(H,) ILx(&)] < pylx(E )], fork =1,...,n

Hy) If(t %, y) = f(6x, y)l < Ly[lx = x| + Iy ]
(Hy) L) = LW < L,lu-v|,fork = 1,.
(Hs) M, = sup,;o| f(£,0,0)], M, = 1,(0), fork =1,...,n

The first result is based on the Letay—Schauder alternative
theorem.

Theorem 1. Assume that (H,) and (H,) hold. In addition it is
assumed that

R
”“[N+r(2—ﬁ)] <b (42)

where p, = max{p,, p;, p,}. Then boundary value problems (4)
and (5) have at least one solution.

Proof. It will be verified that the set e={x e Xx=
AF(x),0 < A < 1} is bounded. Let x € ¢, then x = AF(x). For
allt € [0, 1], we have

x(t) = MFx)(t). (43)



According to (H,), (H,) and Lemma 3, fort € J,,k =0,1,...,n,

we have

Ix(O)] = IMEx)(®)] < [(Fx)(t)]. (44)

and

[(Fx) ()] < |AY (®)1+1A% (O)1+1B,(£,)I+IB,(f,)
+ Z |Gt EIT(x(&)]

SO W AN
0:x(t)])

< (p + polx(®)] + p,|'D

Z—fk N 1 <
I'a+1)

AT(a + 1) - Z“i(EiH - Ez)

C (x+1 _ gatl
AI“(oc+1)IZOC’[oc+1(’+1 & )
+ 1+1 1+1 ) }
+ np4|x Ek ( Z(xz i+l )
i=0

< (py + pollxllx)N. (45)

Analogously, we have

[FG)' )] < (py + palx(®)] + py|" D, x(8)])
1 1
(F* T ) Gl
< (p + polixlx)R, (46)

accordingly, we can get

DY, Fx(t)| = J e ‘B)F (s)(t - s)Pds
ft-s)F
< (pu+ bR | s
R
= (p, + Po||x||x)m- (47)
Hence, we have
Il = IFG)] + | D5, Fx)|
R
< (Pl + Po"x”x)[N + M]) (48)

which means that p,[N + R/T(2 — )] < 1 and ¢ is bounded.
Therefore, by Lemma 4, the operator F has at least one fixed
point. So boundary value problems (4) and (5) have at least
one solution. O

Next, we will prove the uniqueness of solutions to bound-
ary value problems (4) and (5) via the Banach contraction
mapping principle.
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Theorem 2. Suppose that (H;)-(H;) are true, in addition that

-1
L] , (49)
r2-p)
then there is a unique solution for boundary value problem (4)
and (5).

L<[N+

Proof. For convenience, we denote
L=max(L,L,), M =max(M,,M,). (50)

Weset B, = {x € X : ||x||x < 6} for x € By, on the basis of (H,)
and (H;), we have

| F(t x(6)5 D5, x())| < | £(& x()5Df, x(8)) = £(£,0,0)[+] £(£,0,0)|
1[ 0+x"] +M, (51)
= L,lIxlly + M,.
According to (H,) and (H;), we have

|1(x)] < L () = L0)] + | (0)] < Ly llxl| + M,
< L,llxllx + M,. (52)

So for x € By, we have

2 _ (*4
IFGIO < (L, Ik + M) | o f’;)

Z &; (EHI i .

par Al"(oc+1)
ol Al e -9}
iaz z+1 )

i=0

AF(oc +1)

DI'—‘

+ (L, lIxll5 + Mz)n<
< (Llxlly + M)N. (53)

On the other hand, we get

|F(x)'(t)| (L Ixlx + M, )[r( ) r(“1+ 1)]

+ > (Lyllxlly + M)
k=1

1 1
< (Ll + M)[r(a) Ta+) | ”]

= (L8 + M)R, (54)

further,

$)(t —s)Pds

0] - U p
< (16 + M)RJO S(l —)ﬂ)

- L6 + M)R.
F(2—/3)( M (55)
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In consequence,

IFxlly = IF(x ) D, F(x)| < (L0 + M)N
* T (2 B (L0 + M)R
=(L6+M)[N+r(2 ﬁ)] (56)
Therefore, provided
M(NT(2 - ) +R) 7

~T(2-p) - L[NT(2-B) +R]’

we have FB, C B,.
Forx,ye X,te ], k=0,1,...

|E)(®) = F(y) ()]

= F((xl— 1)J J (-0

1 n+l

Z‘G (t.&) J J (s—1)% 2|f (r) - f (T)|d‘rds

, 1, we obtain

fo(1) - f(T)ldeS
F(oc 1) &

Ar(a—l)io JEJ J(S_T)“

1

f(@) = f,(v)|drdsdt
§+1"+1

Ar(oc—l)z J ZiG“’r"

i=0

N

+Z|Gt£k I (x,)

13l S I6 e - Lok

i=0 & k=1 (58)

f(0) = f,(0)|drdsdt

-1 )’k)l

According to (H;)-(H;), we get
|F(x)(2) - F(y)(®)]

2-§
<Ll s +

n

Al"((x+1)z“'[oc+l( f:rll £M1)+E’+l(£’“ )]}

1=

1 n
L (R X TN )
i=0

< L|x = y]N. (59)
Similarly, it holds that

|F'(x)<t) - F'( y)(t)l < Lfx - y|cR,
L F(x)(t)-

n
Ar(oc 1) Z LG

i=l

R
DLFO)O| < ey

Based on the above derivation, we conclude that

IFGe) = F(3)llx < Llx =yl N + L|x =yl r(z}i B

R
SL||x-y||x[N+ m] (61)

So if

L< [N+—r(21iﬁ)], (62)

then boundary value problem (4) and (5) has one and only
one solution.

Example 1. Consider the following fractional order
boundary value problem

Dyx(t) = f(tx()°De;x(t)), te(0,1), t#E&,

(63)
with multistripe and band-like boundary conditions
_Ax|t={l = Il(x(gl))’
Lk (64)
x(0) = x(1) = ociJ- x(t)g(t)dt,
i=0 &
where
cy0.5 _ 0.5 1
f(t, x5 Dg7x(t)) = s 1)x( 2T brx(t) +
1 1
gty =t, L(x(&))= 16 Ex(gl)’
1 1 1
§ =0, 51:? §=1 “OZZ) 061_3-
(65)
Clearly,
1
£ < —|x(t>| b)) +
puawSR+Rhs
1
(6% 9) = fltoxn )l < Slbe=xl+ly =l
1
L) - L) < el
1 1
M, = sup |f(£,0,0)| = o M, = L,(0) = & (66)

te[0,1]

It is easy to verify that (H,)-(H;) hold. And by calculation, the
following results can be obtained,

B 1 _ 1 _ 1 B 1 _ 1
P1 12’ P = 12° P = 12 Py = 16’ Po = 12’
1 1 1
L. =M =—, L, =M,=—, L=M=—.
1 171 2 2~ 16 12 (67)

Furthermore, we have

A =0.9063,
PO[N+

R =2.8811, N =3.0941,

T ﬁ)] =0.5288 < 1. (68)

By Theorem 1, boundary value problems (63) and (64)
have at least one solution. We also have

vt -

0.1576 > L. (69)



By Theorem 2, boundary value problems (63) and (64)
have a unique solution.
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