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This paper focuses on efficiently numerical investigation of two-dimensional heat conduction problems of material subjected to
multiple moving Gaussian point heat sources. All heat sources are imposed on the inside of material and assumed to move
along some specified straight lines or curves with time-dependent velocities. A simple but efficient moving mesh method, which
continuously adjusts the two-dimensional mesh dimension by dimension upon the one-dimensional moving mesh partial
differential equation with an appropriate monitor function of the temperature field, has been developed. The physical model
problem is then solved on this adaptive moving mesh. Numerical experiments are presented to exhibit the capability of the
proposed moving mesh algorithm to efficiently and accurately simulate the moving heat source problems. The transient heat
conduction phenomena due to various parameters of the moving heat sources, including the number of heat sources and the
types of motion, are well simulated and investigated.

1. Introduction

Heat conduction phenomena of material involving moving
heat sources, which have attracted increasing attention by
scientists and engineers in the past few decades, have been
studied in a wide range of fields, such as welding, cutting,
drilling, laser hardening/forming, plasma spraying, heat
treating of metals, manufacturing of electronic components,
and even firing a gun barrel, solid propellant burning, and
dental treatment, see e.g., [1–5] and references therein.
The most important physical quantity of interest for such
practical applications is the temperature field of the
medium, which is usually modeled by the heat conduction
equation with time-dependent localized source terms for
moving heat sources. Once the temperature field is
obtained, many other thermophysical properties of mate-
rial, including metallurgical microstructures, thermal stress,
residual stress, and part distortion, could be subsequently
determined [6–10]. It is therefore particularly important
to precisely and efficiently predict the dynamic variation
of the temperature field around the moving heat sources
during these engineering processes.

In order to investigate the temperature field and the
related thermal properties of the problem with moving heat
sources, numerous methods, in either analytical or numerical
approach, have been developed, since the 1930s, when the
pioneering work of Rosenthal was proposed for the analytical
solution of a simplified moving heat source problem [11].
Although analytical methods are still popular nowadays
[12], they are usually only available for simple situations such
as the quasistationary problem of a single heat source moving
along a straight line with a constant speed. In comparison to
analytical methods, numerical methods could only provide
results approximately within an acceptable error tolerance,
but they are more flexible to deal with the complicated yet
practical situations such as the transient problem of multiple
heat sources moving in a complex geometry of the material
with time-dependent speeds [3]. However, most of numerical
studies, regardless using meshless methods [13, 14] or mesh-
based methods such as the finite element method [6, 10],
were concerned about problems involving only a heat source
moving along a straight line with a constant speed, or multi-
ple heat sources moving along parallel straight lines with the
same constant speed. Apart from these, the technique of

Hindawi
Advances in Mathematical Physics
Volume 2020, Article ID 6067854, 16 pages
https://doi.org/10.1155/2020/6067854

https://orcid.org/0000-0002-5523-5152
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/6067854


moving coordinate system, such that the heat source is sta-
tionary in the new coordinate system, is often introduced in
both analytical and numerical analyses of the quasistationary
problem [1, 13]. Nevertheless, it is obvious that this tech-
nique is limited and not applicable for problems subjected
to multiple moving heat sources with different velocities
and trajectories.

It is well known that the moving heat source might be
imposed on the surface or inside of material [2], which fol-
lows that the resulting mathematical model would contain a
source term in the boundary condition or the governing heat
conduction equation, respectively. Depending on the practi-
cal applications, the moving heat source can be modeled as
a point, line, or plane source with various geometries, such
as square, circle, semiellipsoidal and double ellipsoidal [1,
15, 16]. No matter what kind of the moving heat source, its
energy is always highly concentrated in a time-dependent
localized domain. It turns out that the resulting temperature
of material would change drastically in the localized region
around the moving heat source. Consequently, it is obvious
that a significant improvement in efficiency could be
achieved, if an adaptive mesh method, which concentrates a
number of mesh points dynamically in the local regions of
rapid variation of the temperature, is employed to solve the
problem with the same accuracy as the fixed mesh method.

The moving mesh method [17, 18] is one of the popular
adaptive methods and has been successfully applied to vari-
ous problems that contain time-dependent localized singu-
larities [19–21]. It usually tries to find a time-dependent
one-to-one coordinate transformation between the physical
domain and the computational domain, by solving an addi-
tional system of moving mesh partial differential equation
(MMPDE), which equidistributes a certain monitor func-
tion of the physical solution [22, 23]. The original physical
equation would be subsequently transformed into the com-
putational domain and then be solved by the standard uni-
form mesh method. For more details of the moving mesh
method, one is referred to [17, 23, 24]. Up to now, the
moving mesh method has been exhibited to work well for
problems with moving heat source in a one-dimensional
(1D) case [25, 26]. Yet the application of the moving mesh
method to the problem of moving heat source in multidi-
mensional case is still immature.

Based on the above observations, this paper is concerned
about the efficiently numerical study of two-dimensional
(2D) heat conduction problems involving multiple moving
heat sources by the moving mesh method. The Gaussian
point heat source, that is imposed on the inside of material
and allowed to move along any specified curve with a time-
dependent velocity, is taken for all heat sources as an example
of the model problem. A simple moving mesh method, which
generates the 2D moving mesh dimension by dimension
from 1D MMPDE with an appropriately defined monitor
function, is developed. The transient heat conduction phe-
nomena due to various parameters of the moving heat
sources, such as the number of heat sources and the types
of motion, are then investigated with the proposed moving
mesh method. Since only two additional 1D systems are
required to be solved, the resulting moving mesh method is

easy to be implemented and turns out to be very efficient to
give satisfactory results.

The rest of the paper is outlined as follows. In Section 2,
the mathematical model of the 2D heat conduction problem
with multiple moving heat sources is briefly introduced. The
detailed formulation of the moving mesh method for the
model problem is described in Section 3. Numerical experi-
ments are presented to show the efficiency of the proposed
moving mesh method in Section 4, where heat conduction
phenomena are also investigated in detail. Finally, some con-
clusions are given in the last section.

2. Mathematical Model

In a thin rectangular plate made of homogeneous material,
heat flow can be simplified to be viewed as a two-
dimensional flow. Let the plate occupy domain Ω = fðx, yÞ:
− Lx/2 ≤ x ≤ Lx/2,−Ly/2 ≤ y ≤ Ly/2g, where Lx and Ly are the
length and width of the plate, respectively. Suppose the plate
is initially at room temperature denoted by T0 and is heated
by several moving heat sources at time t > 0, as shown in
Figure 1. Then using Tðx, y, tÞ to represent the temperature
at position ðx, yÞ and time t, the evolution of the temperature
in the plate can be described by the following two-
dimensional heat conduction equation:

ρc
∂T
∂t

− k
∂2T
∂x2

+ ∂2T
∂y2

 !
= 〠

q

l=1
gl x, y, tð Þ, x, yð Þ ∈Ω, t > 0,

ð1Þ

where ρ, c, and k are the material density, the heat capacity,
and the thermal conductivity, respectively. In the current
investigation, these quantities are assumed to be constant
independent of the position and temperature. The right-
hand side of (1) represents the heat source term, where q is
the number of heat sources and glðx, y, tÞ is the volumetric
heat generation rate of the lth heat source.

Depending on the physical nature of the problem, a
moving heat source can be roughly classified into three
types, namely, the point, line, and plane heat source. All
of them concentrate high power in a time-dependent
localized region and can be well modeled by a Dirac delta
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Figure 1: Sketch of the rectangular plate with a moving point
heat source.
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function [1, 2, 8, 12]. However, the singularity of delta func-
tion introduces additional difficulties especially for numerical
simulation of practical engineering applications. Conse-
quently, a well-defined smooth function such as the localized
Gaussian distribution function is usually introduced to
replace the delta function when researchers study the prob-
lem from numerical approaches [6, 10, 13, 14]. In this paper,
we are mainly interested in the heat conduction due to mov-
ing Gaussian point heat sources, which takes the form

gl x, y, tð Þ =Ql exp −
x − αl tð Þð Þ2 + y − βl tð Þð Þ2

r2l

 !
, ð2Þ

for the lth heat source. Here, rl is the effective heating radius
of the lth heat source, and Ql is the maximum heat flux at the
center of the corresponding heat source, whose moving tra-
jectory is given by ðαlðtÞ, βlðtÞÞ.

To complete the description of the problem, it remains
to give the initial condition at time t = 0 and the boundary
condition throughout the simulation time t. Obviously, we
have the initial condition Tðx, y, 0Þ = T0 from the previous
assumption. For the boundary condition, it is convenient
to divide the boundary of the plate into two parts, i.e.,
∂Ω = Γ1 ∪ Γ2, and let

T = �T onΓ1,
n · k∇T = �q onΓ2,

ð3Þ

where �T and �q are the prescribed temperature and heat
flux, respectively, and n is the unit outward normal vector.
In other words, the Dirichlet boundary condition is applied
on Γ1, while the Neumann boundary condition is applied
on Γ2.

At last, it is noted that the above 2D model is also able to
describe the temperature evolution with the moving line heat
source, as shown in [1, 2].

3. Formulation of the Numerical Method

This section is devoted to illustrate the details of the moving
mesh method to solve the model problem (1)–(3). We first
give a brief review of the 1D moving mesh partial differential
equation. Based on it, a strategy of 2D moving mesh genera-
tion is introduced. The discretization of the model equations
on the resulting moving mesh, together with the final algo-
rithm of numerical simulation, will then be presented.

3.1. 1D Moving Mesh Partial Differential Equation. Let x and
ξ denote the physical and computational coordinates, respec-
tively. A time-dependent one-to-one coordinate transforma-
tion between the physical domain and the computational
domain, which are without loss of generality assumed to be
½a, b� and ½0, 1�, respectively, is denoted by

x = x ξ, tð Þ, ξ ∈ 0, 1½ �, ð4Þ

with xð0, tÞ = a and xð1, tÞ = b. For a uniform mesh on the
computational domain, given by ξj = j/N with j = 0, 1,⋯,N,

a time-dependent mesh on the physical domain can be cor-
respondingly obtained by setting xjðtÞ = xðξj, tÞ for all j.
Therefore, in order to find an adaptive physical mesh that
dynamically concentrates mesh points in regions of inter-
est, e.g., the regions of a rapid variation of the solution, it
is equivalent to find a suitable coordinate transformation
xðξ, tÞ according to some special measure of the solution.

Based on the equidistribution principle, such a trans-
formation can be obtained by solving the following equa-
tion [17, 22]:

∂
∂ξ

M x ξ, tð Þ, tð Þ ∂x∂ξ
� �

= 0, ð5Þ

with boundary conditions xð0, tÞ = a and xð1, tÞ = b. Here,
Mðx, tÞ is a user-defined function of the solution to con-
trol the concentration of the mesh. It is called the monitor
function or the mesh density function in the theory of the
moving mesh method and will be given specifically in Sec-
tion 3.4 for our numerical experiments.

In practice, the quasistatic equation (5) is usually
relaxed by adding terms involving the mesh speed
_xðξ, tÞ = ð∂/∂tÞ xðξ, tÞ. The resulting equation is referred to
as a moving mesh partial differential equation (MMPDE).
Among the various MMPDEs proposed over the past few
decades, we would like to utilize the so-called MMPDE6
[22] in the present work, since it has been shown to work
well for the moving heat source problem [25, 26]. The
MMPDE6 reads

∂2 _x
∂ξ2

= −
1
τ

∂
∂ξ

M
∂x
∂ξ

� �
, ð6Þ

where τ is a positive parameter for adjusting the response
time of mesh movement to the change of the monitor
function Mðx, tÞ. With boundary conditions x0ðtÞ = a and
xNðtÞ = b, the adaptive physical mesh would be updated
at the moment by solving the linear system derived from
the finite difference discretization of MMPDE6, that is,

xn+1j+1 − 2xn+1j + xn+1j−1

� �
− xnj+1 − 2xnj + xnj−1
� �

Δtn

= −
1
τ

Mn
j+1/2 xn+1j+1 − xn+1j

� �
−Mn

j−1/2 xn+1j − xn+1j−1

� �� �
ð7Þ

for j = 1, 2,⋯,N − 1, where Δtn = tn+1 − tn is the time step
length, xnj ≈ xjðtnÞ is the numerical approximation of the
jth mesh point at time tn, and Mn

j+1/2 = ðMn
j+1 +Mn

j Þ/2 with
Mn

j =Mðxnj , tnÞ is the discrete monitor function on the jth
mesh point at time tn. Nevertheless, it is pointed out that
the MMPDE6 could also be solved by the MATLAB package
called MMPDElab [23].

3.2. 2D Moving Mesh Generation. A complete two-
dimensional MMPDE and the resulting moving mesh
method, as can be seen in [17], are in some sense a little
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complicated and not easy to use. On the other hand, an adap-
tive rectangular mesh on the physical domain generated by
1D mesh strategy is obviously much simpler and has also
been successfully applied to reaction-diffusion equations of
quenching type, see e.g. [19, 27]. Accordingly, we shall follow
the later approach to generate the adaptive rectangular mesh
on the physical domain via 1D MMPDE dimension by
dimension in this paper.

To be specific, let the time-dependent one-to-one coor-
dinate transformation between 1D domains ½−Lx/2, Lx/2�
and ½0, 1� be still denoted by x = xðξ, tÞ with xð0, tÞ = −Lx/2
and xð1, tÞ = Lx/2. Given a uniform mesh on the
domain ½0, 1� with ξi = i/Nx for i = 0, 1,⋯,Nx , a time-
dependent mesh on the domain ½−Lx/2, Lx/2� could be
obtained by setting xiðtÞ = xðξi, tÞ for all i. Similarly, by
introducing a time-dependent one-to-one coordinate trans-
formation y = yðη, tÞ with yð0, tÞ = −Ly/2 and yð1, tÞ = Ly/2
between 1D domains ½−Ly/2, Ly/2� and ½0, 1�, a time-
dependent mesh on the domain ½−Ly/2, Ly/2� could be
obtained by yjðtÞ = yðηj, tÞ, where η j = j/Ny with j = 0, 1,⋯,
Ny is the uniform mesh on the domain ½0, 1�. Then a time-
dependent rectangular mesh on the physical domain Ω
would be generated by setting the mesh point to be ðxiðtÞ,
yjðtÞÞ for all i and j.

As stated in the previous subsection, both xiðtÞ and yjðtÞ
can be determined from 1D MMPDE6 by utilizing appropri-
ate monitor functions Mðx, tÞ and Gðy, tÞ, respectively,
where Mðx, tÞ and Gðy, tÞ are functions of the 2D solution
Tðx, y, tÞ, and will be specified in Section 3.4.

Obviously, the above strategy of 2D moving mesh
generation is very efficient and easy to be implemented,
since only two one-dimensional linear systems are need
to be solved.

3.3. Discretization on the Moving Mesh. It is now ready to
introduce the discretization of the model equations (1)–(3)
on the 2D rectangular moving mesh using the central finite
difference method.

Using the time-dependent coordinate transformations
x = xðξ, tÞ and y = yðη, tÞ between the physical coordinates
x, y and the computational coordinates ξ, η, any function
of x, y, and t can be expressed as a function in terms of ξ,
η, and t, that is, f ðx, y, tÞ = f ðxðξ, tÞ, yðη, tÞ, tÞ. By the
chain rule, it follows that

∂f
∂ξ

= ∂f
∂x

∂x
∂ξ

, ∂f
∂η

= ∂f
∂y

∂y
∂η

, ∂f
∂t ξ,ηfixed =

∂f
∂t

����
����
x,yfixed

+ ∂f
∂x

_x ξ, tð Þ + ∂f
∂y

_y η, tð Þ:

ð8Þ

In order to distinguish the two partial derivatives with
respect to t in the above expression, the notation _f , similar
to the notation of mesh speed _x, is introduced for the first
one, i.e., _f = ∂f /∂tjξ,ηfixed, and the other one is simplified to
the original notation ∂f /∂t without causing confusion.
Then, in the computational coordinates ξ, η ∈ ½0, 1� and
t > 0, the original physical equation (1) becomes

_T −
∂T
∂ξ

/ ∂x
∂ξ

� �
_x −

∂T
∂η

/ ∂y
∂η

� �
_y

− μ
∂
∂ξ

∂T
∂ξ

/ ∂x
∂ξ

� �
/ ∂x
∂ξ

+ ∂
∂η

∂T
∂η

/ ∂y
∂η

� �
/ ∂y
∂η

� �
= ~g ξ, η, tð Þ,

ð9Þ

where μ = k/ðρcÞ is the thermal diffusivity and ~gðξ, η, tÞ =
1/ðρcÞ∑q

l=1 glðxðξ, tÞ, yðη, tÞ, tÞ.
The above equation can be discretized using the second-

order central finite difference method on the uniform com-
putational mesh ðξi, ηjÞ with i = 0, 1,⋯,Nx and j = 0, 1,⋯,
Ny . This subsequently yields a system of ordinary differential
equations of the form

_Ti,j −A i,j tð Þ _xi −Bi,j tð Þ _yj −L i,j tð Þ = 0,
i = 1, 2,⋯,Nx − 1, j = 1, 2,⋯,Ny − 1,

ð10Þ

where Ti,j = Ti,jðtÞ = Tðξi, ηj, tÞ, xi = xiðtÞ, yj = yjðtÞ, and

A i,j tð Þ=
Ti+1,j tð Þ − Ti−1,j tð Þ
xi+1 tð Þ − xi−1 tð Þ , Bi, j tð Þ =

Ti,j+1 tð Þ − Ti,j−1 tð Þ
yj+1 tð Þ − yj−1 tð Þ ,

L i,j tð Þ= μ
2

xi+1 tð Þ − xi−1 tð Þ
Ti+1,j tð Þ − Ti, j tð Þ
xi+1 tð Þ − xi tð Þ

−
Ti,j tð Þ − Ti−1,j tð Þ
xi tð Þ − xi−1 tð Þ

� ��

+ 2
yj+1 tð Þ − yj−1 tð Þ

Ti,j+1 tð Þ − Ti,j tð Þ
yj+1 tð Þ − yj tð Þ

−
Ti,j tð Þ − Ti,j−1 tð Þ
yj tð Þ − yj−1 tð Þ

 !#

+ ~g ξi, ηj, t
� �

:

ð11Þ

Using the Crank-Nicolson method for temporal discreti-
zation, a full discretization, which has second-order time
accuracy, can be obtained by

Tn+1
i,j − Tn

i,j
Δtn

−
An

i,j +An+1
i,j

2
xn+1i − xni

Δtn

−
Bn

i,j +Bn+1
i,j

2
yn+1j − ynj

Δtn
−
Ln

i,j +Ln+1
i,j

2 = 0,
ð12Þ

for i = 1, 2,⋯,Nx − 1 and j = 1, 2,⋯,Ny − 1. In the above
equation, Tn

i,j ≈ Ti,jðtnÞ is the numerical approximation of
the temperature at ðξi, η jÞ at time tn, equivalently at ðxni , ynj Þ
of the physical domain at time tn. As for A

n
i,j, B

n
i,j, and Ln

i,j,
they are numerical approximations of A i,jðtnÞ, Bi,jðtnÞ,
and L i,jðtnÞ, respectively, and computed by substituting
all time-dependent quantities with the corresponding
numerical approximations in (11). Similarly, Tn+1

i,j , An+1
i,j ,

Bn+1
i,j , and Ln+1

i,j are corresponding numerical approxima-
tions at time tn+1.

Supplemented with appropriate discretization of
boundary condition (3), the linear system (12) can then
be solved for all Tn+1

i,j . Let us take the left boundary where
x = −Lx/2 or equivalently ξ = 0 as an example. If on the left
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boundary it is subjected to the Dirichlet boundary condi-
tion, we shall directly set

Tn+1
0,j = �T , ð13Þ

for all j. Alternatively, if on the left boundary it is sub-
jected to the Neumann boundary condition, which
reduces to

−k
∂T
∂x

= �q, ð14Þ

we shall take the following discretization:

Tn+1
1,j − Tn+1

0,j
xn+11 − xn+10

+
Tn+1
2,j − Tn+1

0,j
xn+12 − xn+10

−
Tn+1
2,j − Tn+1

1,j
xn+12 − xn+11

= −
�q
k

ð15Þ

for all j, to make sure the discretization of the boundary
condition is also second-order accuracy.

3.4. Final Algorithm and the Monitor Function. Now, we are
in a position to describe the whole numerical algorithm that
simulates the moving heat source problem with the moving
mesh method. It is evident that the full discretization, includ-
ing the system of the discretization (12) and the discretiza-
tion of two 1D MMPDE6 for xn+1i and yn+1j , respectively, is
coupled together via the monitor functions and the physical
mesh. A simple decouple strategy is adopted in the present
algorithm, that is, the mesh equation and the physical equa-
tion are solved alternately one by one. A flowchart of the final
moving mesh algorithm is then presented in Algorithm 1.
However, to close this section, it remains to give the details
of the monitor functions Mn

i and Gn
j .

It is well known that the monitor function plays an
important role to the success of the moving mesh method
[17]. One of the popular choices is the arc-length monitor
function, which is aimed at equidistributing the arc-length
of the solution curve between each two adjacent mesh points.
As a result, it usually works well and is able to concentrate the
mesh points in the local regions of a large derivative of the
solution. Additionally, if there are local regions with large

curvature of the solution, then the curvature monitor func-
tion might be a good candidate.

For the moving heat source problem, it is easy to show
that there are not only local regions with large derivatives
of the solution but also local regions, e.g., the neighbor-
hood of the point heat source, where the curvature of
the solution is large and the derivative is close to 0. In
view of these, a linear combination of the arc-length mon-
itor function and the curvature monitor function, which
reads

M x, tð Þ = θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ∂u

∂x

� �2
s

+ 1 − θð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ∂2u

∂x2

 !2
4

vuut , ð16Þ

is employed in our numerical experiments. Here, u = uðx, tÞ
is a 1D function defined later by a certain average of the
2D temperature Tðx, y, tÞ with respect to y, and θ is the
weight of the arc-length monitor function. Applying the
central finite difference method to (16), one can obtain
Mn

i on xni by

Mn
i = θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + uni+1 − uni−1

xni+1 − xni−1

� �2
s

+ 1 − θð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 2

xni+1 − xni−1

uni+1 − uni
xni+1 − xni

−
uni − uni−1
xni − xni−1

� �� �2
4

s
,

ð17Þ

where uni = uðxni , tnÞ. Apparently, it is enough to give uni
in the computation of Mn

i . Taking the whole 2D temper-
ature field into consideration, the value of uni may be
defined by

uni =
1

Ny + 1〠
Ny

j=0
Tn
i,j: ð18Þ

Furthermore, it is pointed out in [17] that the smoothness
of the monitor function may affect the stability and quality of

Input: The end time tend , initial physical mesh (x0i , y
0
j ) and initial temperature field T0

i, j.
Output: The final physical mesh (xni , y

n
j ) and the corresponding temperature field Tn

i,j.
1 Let n = 0 and tn = 0;
2 while tn < tend do
3 Determine the time step Δtn;
4 Compute the 1D monitor functionsMn

i on xni for all i, and G
n
j on ynj for all j, based on the current physical mesh (xni , y

n
j ) and the

corresponding temperature field Tn
i,j;

5 Solve two linear systems of discretization of 1D MMPDE6 withMn
i and G

n
j , respectively, to get two new 1D mesh xn+1i and yn+1j ;

6 Construct the new physical mesh (xn+1i , yn+1j );

7 Solve the system of discretization (12) to get the new temperature field Tn+1
i,j ;

8 Let tn+1 = tn + Δtn and n≔ n + 1;
9 end

Algorithm 1. Flowchart of the moving mesh algorithm for moving heat source problem.
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themovingmesh. Consequently,Mn
i is smoothed in our simu-

lations by the strategy proposed in [28], i.e.,

Mn
i ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
i+ν

k=i−ν
Mn

kð Þ2 γ

1 + γ

� �∣k−i∣

/ 〠
i+ν

k=i−ν

γ

1 + γ

� �∣k−i∣
vuut , ð19Þ

where γ > 0 and ν ≥ 0 are two smoothing parameters, given by
γ = 2andν = 2currently.Following the sameapproach,wecan
getGn

j by replacing i, x
n
i , and u

n
i in the right-hand side of (17),

respectively, with j, ynj , and

~unj =
1

Nx + 1〠
Nx

i=0
Tn
i,j: ð20Þ

Then,Gn
j would be smoothed with the same strategy of (19).

4. Numerical Experiments and Discussion

Several numerical experiments are carried out in this section
to show the capability to efficiently and accurately simulate
moving heat source problems with the proposed algorithm,
which is implemented in MATLAB (Release 2016a, The
MathWorks, Inc., Natick, Massachusetts, MA, USA). Heat
conduction phenomena in the plate due to the number of
moving point heat sources, the types of motion, and some
other properties are also investigated in detail.

Throughout the simulation, the units presented in
Table 1 are employed for the involved physical variables,
and the plate is assumed to be homogeneous with the mate-
rial density ρ = 7:6 × 10−6, the heat capacity c = 658, and
thermal conductivity k = 0:025. The room temperature 20
is adopted for both the initial temperature T0 and the
boundary temperature �T . When the Neumann boundary
condition is taken into account, the boundary heat flux �q
would be 0:001. Moreover, the time step length is given by
Δtn = 0:001, the parameter τ in MMPDE6 takes the value
of 5 × 10−3, and the weight θ in the monitor function is
set to be 0:05, if they are not explicitly pointed out below.
For the rest of the parameters, they will be specified for
each experiment individually.

4.1. A Heat Source Moving along a Straight Line. The first
experiment focuses on the case that the plate is subjected
to a single Gaussian point heat source, which moves along
the x-axis with a constant speed. A lot of research, including
both numerical and analytical studies, can be found in the
literature for this case. Here, the same problem settings as

in [13, 14] are considered. To be specific, the plate has the
length of Lx = 100 and the width of Ly = 50. The Dirichlet
boundary condition is applied on the left boundary of the
plate, while the rest of the boundaries of the plate are sub-
jected to the Neumann boundary condition. The moving
Gaussian point heat source, defined by the effective radius
of r1 = 2 and the maximum heat flux of Q1 = 5, is initially
at the center of the right boundary and moves from right
to left along x-axis with a constant speed of 2. It follows that
α1ðtÞ = 50 − 2t and β1ðtÞ = 0.

The test is simulated on the moving mesh with several
different values of Nx and Ny . Numerical results are subse-
quently compared with the solutions obtained from the dis-
cretization (12) on the uniform mesh with various Nx and
Ny . As presented in Figure 2, for the temperature profile
along the heat source moving path, i.e., x-axis with y = 0, at
t = 5, it can be seen that the solution on the moving mesh
with Nx = 50 and Ny = 25 is much more accurate than the
solution on the uniform mesh with the same Nx and Ny. In
fact, it is comparable to the results in the uniform mesh with
Nx = 100 and Ny = 50. In each time step, a single linear sys-
tem of order Nx ×Ny is required to be solved for the uniform
mesh algorithm, whereas for the moving mesh algorithm,
three linear systems of order Nx , Ny, and Nx ×Ny, respec-
tively, are required to be solved. It follows obviously that
the proposed moving mesh algorithm is able to give the solu-
tion within the same accuracy more efficiently than the
related uniform mesh algorithm.

The transient 2D temperature field obtained by the mov-
ing mesh algorithm with Nx = 50 and Ny = 25, together with
the corresponding physical mesh, is presented in Figure 3, at
time instances t = 15 (a), 25, 35, and 45 (d), respectively. It
turns out that these temperature fields show a good agree-
ment with the results reported in [13, 14]. It is also found that
during the simulation, the physical mesh could be adjusted
successfully and dynamically according to the temperature
field, so that the algorithm always concentrates a number of
mesh points in regions of interest as the monitor function
indicated.

At last, it is worth mentioning that the peak temperature
occurs near the rear of the moving heat source, rather than
the exact position of the heat source, as can be observed in
Figure 2. This is not surprising and can be understood by
noting that the moving heat source is always exposed to a
much cooler position, and the temperature near the rear of
the heat source may continue to increase if the heat does
not spread out in time. In addition, similar phenomena have
been observed from the results reported in [14].

Table 1: Units of parameters for numerical experiments.

Length of the plate (Lx) mm Width of the plate (Ly) mm

Time (t) s Temperature (T , �T) °C

Density (ρ) Kg/mm3 Heat capacity (c) J/kg/°C

Thermal conductivity (k) W/mm/°C Effective radius of heat source (rl) mm

Maximum heat flux (Ql) W/mm2 Boundary heat flux (�q) W/mm2
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Figure 2: Comparison of temperature profile (a) and their zooms (b, c) along x-axis at t = 5 obtained on the moving mesh with Nx = 50,
Ny = 25 and the uniform mesh with various Nx and Ny .
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4.2. A Heat Source Moving along a Circle. The second exper-
iment considers the case that a square plate with side length
Lx = Ly = 100 is subjected to a single Gaussian point heat
source, which moves along a circle of radius 15 with a con-
stant speed in a counterclockwise direction. Specifically,

the heat source has the effective radius of rl = 2 and the
maximum heat flux of Ql = 15. Its moving path is set to
be α1ðtÞ = 15 cos ðπt/2Þ and β1ðtÞ = 15 sin ðπt/2Þ. Addi-
tionally, all boundaries of the plate are assumed to satisfy
the Dirichlet boundary condition.

–50 –10
x

–25

–15

–5

5

15

25

y

–50 –30 –10 10
–30 3010 50

30 50
x

–25

–15

–5

5

15

25

y

100

200

300

400

500

(a)

100

200

300

400

500

–25

–15

–5

5

15

25

y

–50 –30 –10 10 30 50
x

–25

–15

–5

5

15

25

y
–50 –10

x
–30 3010 50

(b)

100

200

300

400

500

–25

–15

–5

5

15

25

y

–50 –30 –10 10 30 50
x

–25

–15

–5

5

15

25

y

–50 –10
x

–30 3010 50

(c)

100

200

300

400

500

–25

–15

–5

5

15

25

y

–50 –30 –10 10 30 50
x

–25

–15

–5

5

15

25

y

–50 –10
x

–30 3010 50

(d)

Figure 3: The transient temperature field and the corresponding moving mesh at t = 15 (a), 25, 35, and 45 (d), respectively, for a single heat
source moving along x-axis from right to left.
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Figure 4: The transient temperature field and the corresponding moving mesh at t = 1 (a), 2, 3, and 4 (d), respectively, for a single heat source
moving along a circle in a counterclockwise direction.
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This experiment is simulated by the moving mesh algo-
rithm with Nx =Ny = 50 and the weight in the monitor
function to be θ = 0:2. The transient 2D temperature field
at time instances t = 1 (a), 2, 3, and 4 (d), respectively, as
well as the corresponding physical mesh, is depicted in
Figure 4, where the pink circle represents the heat source
moving path. As can be seen from Figure 4, the moving
mesh algorithm still successfully concentrates enough mesh
points in regions of interest as the monitor function
indicated.

As a result, the proposed algorithm is also able to be
employed to investigate heat conduction phenomena for this
case accurately with a small number of Nx and Ny. Thus, a
great improvement in efficiency can be obtained by the pro-
posed algorithm.

After a long time simulation, a quasistationary temper-
ature field can be achieved. As shown in Figure 5, it would
be stationary in the moving coordinate system that
attaches to the moving heat source. Similar results can also
be found in [29].

4.3. Multiple Heat Sources Moving along Straight Lines. Now
let us go to investigate the heat conduction phenomena of the
plate subjected to multiple moving heat sources. Three cases,
that is, two heat sources moving along x-axis in opposite
directions, two heat sources moving along two intersecting
straight lines, and three heat sources moving along three
straight lines parallel to x-axis, are considered below. In all
cases, the Dirichlet boundary condition is adopted for the left
boundary of the plate, while the Neumann boundary condi-
tion is adopted for the rest of the boundaries of the plate.
The all involved heat sources are assumed to be Gaussian
point heat source with the effective radius to be rl = 2 and
the maximum heat flux to be Ql = 5, except for the last case
where Ql = 15.

For the first case, the size of the plate is set to be Lx = 200
and Ly = 100. The two heat sources are suddenly imposed
on the position ð±50, 0Þ, respectively, at the initial time,
and then move along x-axis in opposite directions with
a constant speed of 2. The resulting moving paths are
α1ðtÞ = −α2ðtÞ = −50 + 2t and β1ðtÞ = β2ðtÞ = 0.

Obviously, the two heat sources will meet each other at
time instance t = 25. The simulation is performed by the pro-
posed moving mesh algorithm with Nx = 100 and Ny = 50.
The corresponding transient 2D temperature field as well as
the physical mesh are presented in Figure 6, for time
instances t = 15 (a), 25, 35, and 45 (d), respectively. Addition-
ally, the 1D temperature profiles along the heat source mov-
ing path at time instances t = 15, 25, 35, 45, 55, and 65 are
given in Figure 7. It can be seen that the physical mesh moves
adaptively according to the monitor function of the temper-
ature field, in which there exists a peak following each heat
source. As the two heat sources approach each other, two
peaks would merge into a single peak, causing the peak tem-
perature to increase rapidly to a high level near 1200. Then
two peaks are separated as the two heat sources move away
from each other, and the peak temperature subsequently
decreases to the normal level around 650.

For the second case, the plate is square with side length
Lx = Ly = 100. The heat source moving paths are set to be

α1ðtÞ = −α2ðtÞ = β1ðtÞ = β2ðtÞ = −25 +
ffiffiffi
2

p
t. That is, the two

heat sources are initially at the position ð±25,−25Þ, and move
along the straight lines y = ±x, respectively, with the constant
speed of 2. Thus, they will meet each other at the original
point ð0, 0Þ at time instance t ≈ 17:678. The transient 2D
temperature field and the corresponding physical mesh,
obtained by the moving mesh algorithm with Nx =Ny = 50,
are plotted in Figure 8 for time instances t = 10 (a), 17:678,
25, and 35 (d), respectively. Similar phenomena could be
observed as the previous case.
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Figure 5: The quasistationary temperature field for a single heat source moving along a circle in a counterclockwise direction.
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For the last case, the plate is the same as the first case,
i.e., Lx = 200 and Ly = 100. The moving paths of the three
heat sources are set to be α1ðtÞ = α2ðtÞ = α3ðtÞ = 100 − 20t,
β1ðtÞ = −β3ðtÞ = 20, and β2ðtÞ = 0, which follows that the
three heat sources are initially at the right boundary and

move from right to left along horizontal lines with the same
constant speed of 20. The resulting transient 2D temperature
field and the corresponding physical mesh by the moving
mesh algorithm with Nx = 100 and Ny = 50 are shown in
Figure 9 for time instances t = 1 (a), 3, 5, 7, and 9 (e),
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Figure 6: The transient temperature field and the corresponding moving mesh at t = 15 (a), 25, 35, and 45 (d), respectively, for two heat
sources moving along x-axis in opposite directions.
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Figure 7: The transient temperature profile along x-axis at t = 15 (a), 25 (b), 35 (c), 45 (d), 55 (e), and 65 (f), for two heat sources moving in
opposite directions.
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Figure 8: The transient temperature field and the corresponding moving mesh at t = 10 (a), 17:678, 25, and 35 (d), respectively, for two heat
sources moving along the straight lines y = ±x.
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Figure 9: The transient temperature field and the corresponding moving mesh at t = 1 (a), 3, 5, 7, and 9 (e), respectively, for three heat sources
moving along the straight lines parallel to x-axis.
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respectively. Again, the physical mesh could be adjusted suc-
cessfully according to the monitor function of the tempera-
ture field. Since the heat sources move much faster than
other cases, the peak temperature in this case is smaller than
the one in the previous cases.

5. Conclusions

A simple moving mesh algorithm has been developed to
numerically solve the 2D model equations of moving heat
source problems with Gaussian point heat sources. In the
present algorithm, only two additional 1D mesh equations
are required to be solved for each time step. However, it is
found that the physical mesh could successfully and dynam-
ically concentrate a number of mesh points in regions of
interest as the monitor function indicated. Therefore, the
proposed algorithm is able to simulate the moving heat
source problem very accurately and efficiently. Heat conduc-
tion phenomena of the rectangular plate subjected to moving
Gaussian point heat sources with various types of motion,
including moving along straight lines and a circular trajec-
tory, have then been numerically investigated. Numerical
results validate the accuracy and efficiency of the proposed
algorithm, which shows that the proposed moving mesh
algorithm is a promising approach for such moving heat
source problems.

Finally, the extension of the proposed moving mesh algo-
rithm to other localized heat source models, such as Dirac
delta point heat source and plane heat source, is ongoing
and would be presented elsewhere soon. The full 3D simula-
tion of the moving heat source problem with the moving
mesh method will also be studied in the future work.
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