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In this paper, we study the SIR epidemic model with vital dynamics _S = −βSI + μðN − SÞ, _I = βSI − ðγ + μÞI, _R = γI − μR, from the
point of view of integrability. In the case of the death/birth rate μ = 0, the SIR model is integrable, and we provide its general
solutions by implicit functions, two Lax formulations and infinitely many Hamilton-Poisson realizations. In the case of μ ≠ 0, we
prove that the SIR model has no polynomial or proper rational first integrals by studying the invariant algebraic surfaces.
Moreover, although the SIR model with μ ≠ 0 is not integrable and we cannot get its exact solution, based on the existence of an
invariant algebraic surface, we give the global dynamics of the SIR model with μ ≠ 0.

1. Introduction and Statement of the
Main Results

Over the past one hundred years, the mathematical model-
ling of epidemics has been the object of a large number of
studies. The Susceptible-Infected-Recovered (SIR) model is
one of the most interesting and best understood nonlinear
epidemic models [1, 2]. The first SIR model was proposed
by Kermack and McKendrick in 1927 [2]. After that, many
different epidemic models including time delay, age struc-
ture, space factor, white noise, multigroup, and seasonality
have been proposed and studied (see [1] and the references
therein). Observing the spread of marketing message is anal-
ogous to an epidemic, Rodrigues and Fonseca [3] used a SIR
model to study the effects of a viral marketing strategy.

We consider the SIR epidemic model with vital dynamics
which is given by

_S = −βSI + μ N − Sð Þ,
I = βSI − γ + μð ÞI,
_R = γI − μR,

ð1Þ

where S is the number of healthy individuals who are suscep-
tible to the disease, I is the number of infected individuals
who can transmit the disease to the healthy ones, and R is
the number of individuals who have been infected and then
recovered from the disease and the parameters β, γ, μ, and
N denote the average number of contacts per infective per
day, the recovery rate, the death rate, and the initial total
fixed number of the individuals, respectively. It is assumed
that the birth rate is equal to the death rate in this model
(1). For μ = 0, it is called the SIR model without vital dynam-
ics and was proposed by Kermack and McKendrick [2].

The aim of this paper is to study system (1) from the inte-
grability point of view. The integrability of differential equa-
tions has been an old and important problem and has
attracted much attention. Many scholars have developed a
lot of ways to deal with the integrability for both partial dif-
ferential equations (see [4–13] for instance) and ordinary dif-
ferential equations (see [14–16] for instance). In particular,
the existence of first integrals plays a crucial role in the inte-
grability of ordinary differential equations [17–20]. If the
considered system of ordinary differential equations admits
a straight line solution, by the differential Galois method,
one can usually prove that this system has no rational first
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integrals for almost all the parameters [21–23]. However,
this method cannot tell whether this system is integrable
for the remaining parameters. The SIR epidemic model
(1) is exactly the case. Another tool that deals with the
integrability of 3D differential systems is the Darboux the-
ory of integrability [15, 16], which is a useful tool to find
first integrals for polynomial ordinary differential equa-
tions, and has been successfully applied in many nonlinear
models [24–27]. This theory can also help us make a more
precise analysis of the global dynamics of a system topolog-
ically (see [28, 29] and the references therein). In the
framework of the Darboux theory of integrability, we will
give a complete classification of the irreducible Darboux
polynomials, of the polynomial first integrals, of the proper
rational first integrals, and of the algebraic integrability for
the SIR model.

In the case of the constant population, i.e., μ = 0, the SIR
model (1) admits a first integral and can be reduced into a
planar system with respect to the variables ðS, IÞ. The integra-
bility of the reduced planar system has been investigated
extensively by different methods, namely, the Adomian
decomposition method [30], the homotopy analysis method
[31], and the variational iteration method [32]. Recently,
Bohner et al. investigated a rational SIR model with the
constant population and the time-dependent coefficients
and present an alternative solution method to Gleissner’s
approach [33]. Based on a quantum mechanical method,
Williams et al. provided an exact analytical solution of the
stochastic SIR model with the constant population [34].
However, in the case of the varying population, i.e., μ ≠ 0,
the integrability of the full SIR model is an area where little
research has been done. Harko et al. reduced the SIR model
(1) into the Abel equation and provided its form series solu-
tion by using a perturbation approach [35]. To our knowl-
edge, the first integrals of the SIR model (1) with μ ≠ 0 have
not been investigated previously. The aim of this work is to
cover this gap.

Recall that a real polynomial FðS, I, RÞ ∈ℝ½S, I, R� is
called a Darboux polynomial of system (1) if it satisfies

−βSI + μ N − Sð Þð Þ ∂F
∂S

+ βSI − γ + μð ÞIð Þ ∂F∂I + γI − μRð Þ ∂F∂R
= KF,

ð2Þ

for some polynomial KðS, I, RÞ ∈ℝ½S, I, R�, called a cofactor
of F. Clearly, if F is a Darboux polynomial, then F = 0 is
invariant with respect to the flow of system (1). Hence, we
call F = 0 an invariant algebraic surface of system (1). It is
well known that a polynomial function f = f n11 ,⋯, f nmm is a
Darboux polynomial iff each irreducible factor f i, i = 1,⋯,
m is also a Darboux polynomial. Hence, for simplicity, we
only focus on the irreducible Darboux polynomials of sys-
tem (1).

Our main result on the integrability of system (1) is as
follows, which characterizes all irreducible Darboux polyno-
mials of system (1).

Theorem 1.All irreducible Darboux polynomials of system (1)
consist of F1ðS, I, FÞ = S + I + R −N with the cofactors K1ðS,
I, RÞ = −μ and F2ðS, I, FÞ = I with the cofactor K2ðS, I, RÞ =
βS − γ − μ.

In addition, Darboux polynomials can help us construct
the algebraic (polynomial or rational) first integrals. By The-
orem 1, we can easily obtain the following result.

Corollary 2. The following statements hold for system (1).

(1) It has a polynomial first integral if and only if μ = 0,
and in this case, the polynomial first integral is F = S
+ I + R

(2) It has no any proper rational first integral

(3) It is not algebraically integrable

It is not surprising that the SIR model without vital
dynamics, i.e., μ = 0, has a first integral F = S + I + R which
is the total number of individuals in the given population.
Furthermore, system (1) with μ = 0 has another first integral
GðS, I, RÞ = γ ln S + βR, which can help us compute the num-
ber Sð+∞Þ of individuals that will never contract the infec-
tion. Let us mention that the first integral G = γ ln S + βR
can be built by the classical Jacobi last multiplier method,
observing system (1) admits a Jacobi last multiplier M = 1/S
I. In a word, the system with μ = 0 is a completely integrable
system with two functionally independent first integrals F,G.
Based on this fact, we have the following remarks on its
integrability.

(i) The orbits of system (1) with μ = 0 are contained in
the curves

S, I, Rð Þ ∣ F S, I, Rð Þ = c1, G S, I, Rð Þ = c2f g, ð3Þ

and its general solutions are given by the following implicit
functions:

R = −
γ

β
ln S + c2

β
,

I = γ

β
ln S − S −

c2
β

+ c1,ð 1
S βS − γ ln S + c2 − βc1ð Þ dS = t + c3,

ð4Þ

where c1, c2, c3 are constants

(ii) System (1) with μ = 0 has two Lax formulations _Li
= ½Li,Ni�, i = 1, 2, where the matrices Li and Ni are
given by
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(iii) System (1) with μ = 0 has infinitely many Hamilton-
Poisson realizations parameterized by the group S
Lð2,ℝÞ; that is, ðℝ3, f·, · gab,HcdÞ is a Hamilton-
Poisson realization where the Poisson bracket f·, · g
reads

f , gf gab ≔ v∇Cab · ∇f × ∇gð Þ, ð6Þ

for any functions f , g ∈ C∞ððℝ+Þ3,ℝÞ, v = 1/ðSIÞ, the Casi-
mir function

Cab = a ln Sð Þ + βRð Þ + b S + I + Rð Þ, ð7Þ

the Hamiltonian function

Hcd = c ln Sð Þ + βRð Þ + d S + I + Rð Þ, ð8Þ

and the coefficients a, b, c, d ∈ℝ such that ad − bc = 1
As mentioned above, the SIR model with μ = 0 is integra-

ble with two first integrals, which implies it is orbitally equiv-
alent to a linear differential system. Meanwhile, the SIR
model with μ ≠ 0 has no polynomial/rational first integrals.
However, based on the existence of an invariant algebraic
surface, we can characterize the global phase portraits of
the SIR model with μ ≠ 0, which helps us understand the final
evolutions of this model and the spread of the disease.

Theorem 3. The following statements hold for system (1) with
μ ≠ 0.

(a) All orbits with initial points not on the invariant alge-
braic surface F1 = 0 and not at infinity are heteroclinic

ones, which all positively approach the surface F1 = 0
and negatively go to infinity

(b) The dynamics of system (1) at the infinity S2 is topo-
logically equivalent to the one described in Figure 1

(c) System (1) on the invariant algebraic surface F1 = 0
has four topologically different phase portraits, which
are described in Figure 2

Theorem 3 provides the final evolutions of this model. As
we have shown, there are only two possible final evolutions
for this model. In the first type, both infective and recovered
individuals tend to zero; that is, the disease fails to spread,
and in the second type, the infective individuals cannot tend
to zero; that is, the disease is endemic.

The paper is organized as follows: in Section 2, we prove
Theorem 1 and Corollary 2. The proof of Theorem 3 will be
given in Section 3. In the last section we draw our conclu-
sions, including some discussions on the biological meaning
of our results.

2. Proof of Theorem 1 and Corollary 2

2.1. Proof of Theorem 1. When μ = 0, it is easy to see that
S + I + R −N is a Darboux polynomial of system (1) with
zero cofactor. In what follows, we deal with the case μ ≠ 0.
For simplicity, we introduce the change of variables

S = γ + μ

β
x,

I = γ + μ

β
y,

R = μ

β
z

ð9Þ

and a time rescaling t =~t/ðμ + γÞ. Then, system (1) becomes

x′ = a − bx − xy,
y′ = −y + xy,
z′ = y − bz,

ð10Þ

where the prime ′ denotes a derivative with respect to the
new time ~t and the coefficients a = μNβ/ðμ + γÞ2 > 0 and
b = μ/ðμ + γÞ ∈ ð0, 1Þ. Clearly, to complete the proof of
Theorem 1, we need only to prove the next result.

Proposition 4. All irreducible Darboux polynomials of system
(10) consist of f ðx, y, zÞ = x + y + ð1 − bÞz − a/b with the
cofactors k1ðx, y, zÞ = −b and f2ðx, y, zÞ = y with the cofactor
k2ðx, y, zÞ = x − 1.

Suppose f ðx, y, zÞ is a Darboux polynomial of system
(10) with the cofactor kðx, y, zÞ, that is,

a − bx − xyð Þ ∂f
∂x

+ xy − yð Þ ∂f
∂y

+ y − bzð Þ ∂f
∂z

= kf : ð11Þ
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Comparing the degree of both sides of (11), we get that
the cofactor kðx, y, zÞ is a polynomial with degree less than
two. Without loss of generality, we set kðx, y, zÞ = k0 + k1x +
k2y + k3z. Then, we claim k3 = 0. In fact, we write f as powers
in the variable z, i.e., f ðx, y, zÞ =∑n

j=0 f jðx, yÞzj, where each
f j is a polynomial in the variables x and y and f n ≠ 0.
Computing the coefficient in (11) of zn+1, we have 0 = k3 f n
ðx, yÞ which implies k3 = 0.

We make the change of the variables x = α−1X, y = α−1Y ,
z = Z, and ~t = αT and rewrite (10) into

dX
dT

= −XY − αbX + α2a,

dY
dT

= XY − αY ,

dZ
dT

= Y − αbZ:

ð12Þ

Let n be the highest weight degree in the weight homo-
geneous components of f in x, y, z with the weight exponent
ð1, 1, 0Þ. Set

F X, Y , Zð Þ = αn f α−1X, α−1Y , Z
� �

= F0 X, Y , Zð Þ
+ αF1 X, Y , Zð Þ+⋯+αnFn X, Y , Zð Þ,

K X, Y , Zð Þ = αk α−1X, α−1Y , Z
� �

= k1X + k2Y + αk0,
ð13Þ

where Fi is a weight homogeneous polynomial of weight
degree ðn − iÞ in ðX, Y , ZÞ. Since f is a Darboux polynomial
of system (10) with the cofactor k, it is not difficult to check
that F is a Darboux polynomial of system (12) with the
cofactor K , that is,

−xy − αbx + α2a
� �

〠
n

i=0
αi
∂Fi

∂x
+ xy − αyð Þ〠

n

i=0
αi
∂Fi

∂y

+ y − αbzð Þ〠
n

i=0
αi
∂Fi

∂z
= k1x + k2y + αk0ð Þ〠

n

i=0
Fi,

ð14Þ

where we still use x, y, z instead of X, Y , Z.
Equating the terms with α0 in (14) yields

L F0½ � = k1x + k2yð ÞF0, ð15Þ

where L stands for a linear partial differential operator

L≔ −xy
∂
∂x

+ xy
∂
∂y

+ y
∂
∂z

: ð16Þ

To solve (15), we introduce the change of variables

u = x,
v = x + y,
w = x exp zð Þ

ð17Þ

and transform (15) into

u u − vð Þ ∂
�F0

∂u
= k1 − k2ð Þu + k2vð Þ �F0, ð18Þ

where �F0 is F0 written in terms of u, v,w. Solving (18)
yields �F0 = G0ðv,wÞðv − uÞk1u−k2 with G0 being an arbitrary
smooth function in v,w. Clearly, in order for F0ðx, y, zÞ =
�F0ðu, v,wÞ =G0ðx + y, x exp ðzÞÞyk1x−k2 to be a weight
homogeneous polynomial of degree n in x, y, z, we must
have k1 =m, k2 = −s and

F0 = a0x
sym x + yð Þl, s +m + l = n, ð19Þ

for some nonzero number c0 ∈ℝ/f0g and nonnegative inte-
gers s,m, l ∈ℕ ∪ f0g.

Similarly, equating the terms with α in (14) leads to

L F1½ � =mxF1 − syF1 + bx∂xF0 + y∂yF0 + bz∂zF0 + k0F0:

ð20Þ

Substituting F0 = a0x
symðx + yÞl into (20) yields

L F1½ � = mx − syð ÞF1 + a0x
sym x + yð Þ1−1 bs + bl +m + k0ð Þxf

+ bs + l +m + k0ð Þyg:
ð21Þ

Proceeding as above, by (17) we rewrite (21) as

u u − vð Þ ∂
�F1

∂u
= mu + s u − vð Þð Þ �F1 + a0v

l−1us v − uð Þm bs + blðf
+m + k0Þu + bs + l +m + k0ð Þ v − uð Þg:

ð22Þ

x
y

z
q

p

Figure 1: Phase portrait at infinity on the Poincaré ball of system
(1). Note that system (1) has two closed curves of equilibria fx = 0,
y2 + z2 = 1g ∪ fy = 0, x2 + z2 = 1g and two nodes q, p.
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Integrating the above equation with respect to u, we
obtain

F1 = �F1 = a0u
s v − uð Þmvl−1 bs + bl +m + k0ð Þ ln u − vj jf

+ bs + l +m + k0ð Þ ln w
u

��� ��� +G1 v,wð Þg
= a0x

sym x + yð Þl−1 bs + bl +m + k0ð Þ ln yj jf
+ bs + l +m + k0ð Þz +G1 x + y, x exp zð Þð Þg,

ð23Þ

with G1 being an arbitrary smooth function. In order for F1
to be a weight-homogeneous polynomial of weight degree
n − 1, we must have G1 = c1 ∈ℝ which is a constant, k0 =
−bs − bl −m, and

F1 = a0x
sym x + yð Þl−1 l 1 − bð Þz + c1ð Þ: ð24Þ

Equating the terms with αj in (14) for j = 2, 3,⋯, n, we
have

L Fj

� �
= mx − syð ÞFj + bx∂xF j−1 + y∂yF j−1

+ bz∂z F j−1 + k0Fj−1 − a∂xF j−2:
ð25Þ

In particular, for j = 2 we substitute F0, F1 into (25) and
obtain

L F2½ � = mx − syð ÞF2 + a0x
sym x + yð Þl−2 l 1 − bð Þzð

(

+ c1Þ −bl x + yð Þ + b l − 1ð Þx + l − 1ð Þyð Þ

+ bl 1 − bð Þ x + yð Þz − as x + yð Þ2
x

− al x + yð Þ
)

ð26Þ

or equivalently

u u − vð Þ ∂
�F2

∂u
= mu + s u − vð Þð Þ �F2

+ a0u
s v − uð Þmvl−2 −ln w

u
1 − bð Þ2l lð

�
− 1Þ u − vð Þ − bc1 + alð Þu + c1bl + c1ð

− c1l + alÞ u − vð Þ − asv2

u

	
:

ð27Þ

E

P0

P1

E′

(a) R0 < 1

E′

E

P0=P1

(b) R0 = 1

E′

E

P0

P1

(c) R0 > 1, Δ ≥ 0

E′

E

P0

P1

(d) R0 > 1, Δ < 0

Figure 2: Phase portraits of system (1) on the invariant planes F1 = 0.
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Solving the above linear differential equation, we get

F2 = �F2 = a0x
sym x + yð Þl−2 l l − 1ð Þ 1 − bð Þ2z2

2

(

− bc1 + al + asð Þ ln ∣ y∣− c1bl + c1 − c1l + al + asð Þz

−
as x + yð Þ

x
+G1 x + y, x exp zð Þð Þ

)
:

ð28Þ

In order for F2 to be a weight-homogeneous polyno-
mial of weight degree n − 1, we have bc1 + al + as = 0,
G2 = c2 ∈ℝ which implies

F1 = a0x
sym x + yð Þl−1

l

1

 !
1 − bð Þz −

l

1

 !
a
b
−
as
b

 !
,

F2 = a0x
sym x + yð Þl−2

l

2

 !
1 − bð Þ2z2 −

l

2

 !
2a 1 − bð Þz

b

 

+ as
l − 1ð Þ b − 1ð Þz

b
−
x + y
x


 �
+ c2

�
:

ð29Þ

Proceeding as above, from (25) with j = 3 and (29),
we get

L F3½ � = mx − syð ÞF3 + a0x
sym x + yð Þl−3 bz x + yð Þ l l − 1ð Þ 1ððf

− bÞ2z − a l + sð Þ l − 1ð Þ 1 − bð Þ
b

Þ + l l − 1ð Þ 1 − bð Þ2z2
2

 

+ a l + sð Þ l − 1ð Þ b − 1ð Þz
b

+ c2

!
−2bx − bl + 2 − lð Þyð Þ

+ as 2b + 2m + a l + sð Þ
b

+ l − 1

 �

x + yð Þ2
x

+ a2 l − 1ð Þ l + sð Þ
b

− as l − 1ð Þ

 �

x + yð Þ

−
as x + yð Þ2l 1 − bð Þz

x
− al l − 1ð Þ x + yð Þ 1 − bð Þzg:

ð30Þ

Working in a similar way to solve F2, we can prove
that

F3 = a0x
sym x + yð Þl−3 M1z

3 +M2z
2 + M3 +M4x +M4yð Þz

�

+ M5 +M6zð Þ ln yj j +M7dilog −
y
x

� 

+M8

x + y
x

+ G3 x + y, x exp zð Þð Þ
	
,

ð31Þ

where dilogð·Þ is the dilogarithm function defined by

dilog xð Þ =
ðx
1

ln tð Þ
1 − t

dt, ð32Þ

and the coefficients Mi, i = 1,⋯, 8 are given by

M1 =
l

3

 !
1 − bð Þ3,

M2 = −
l

3

 !
3a 1 − bð Þ2

b
− as 1 − bð Þ 2l − 1ð Þ,

M3 = as 2b + 2m + a 2l − 1 + sð Þ
b


 �
− c2bl + 2c2 − c2l −

a2l l − 1ð Þ
b


 �
,

M4 = as 1 − bð Þl,

M5 =
a2l l − 1ð Þ

b
− 2bc2 + as

a 2l + s − 1ð Þ
b

+ 2b + 2m

 �

,

M6 = −as 1 − bð Þ 2l − 1ð Þ,
M7 = −as 1 − bð Þ 2l − 1ð Þ,

M8 = as 2b + 2m + a l + sð Þ
b

+ 2l − 1 − bl

 �

:

ð33Þ

In order for F3 to be a weight-homogeneous polyno-
mial of weight degree n − 3, we have M5 =M6 =M7 = 0
and the function G3 is a constant, which implies

s = 0,

c2 =
l

2

 !
a2

b2
,

F1 = a0y
m x + yð Þl−1

l

1

 !
1 − bð Þz − a

b

� 

,

F2 = a0y
m x + yð Þl−2

l

2

 !
1 − bð Þz − a

b

� 
2
,

F3 = a0y
m x + yð Þl−3

l

3

 !
1 − bð Þ3z3 − 3a 1 − bð Þ2z2

b

 

+ 3a2 1 − bð Þz
b2

+ c3

!
,

ð34Þ

with c3 being a constant. Using the same argument sim-
ilar to that above, we solve F4 and get

c3 = −
a
b

� 
3
,
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F4 = a0y
m x + yð Þl−4

l

4

 !
1 − bð Þ4z4 − 4a 1 − bð Þ3z3

b

 

+ 6a2 1 − bð Þ2z2
b2

−
4a3 1 − bð Þz

b3
+ c4

!
,

ð35Þ

with c4 ∈ℝ. Furthermore, by recursive calculations, we
can prove that

Fj = a0y
m x + yð Þl−j

l

j

 !
1 − bð Þz − a

b

� 
j
, j = 0,⋯, n:

ð36Þ

Therefore, the Darboux polynomial of system (10)

f = Fjα=1 = 〠
n

j=0
a0

l

j

 !
ym x + yð Þl−j 1 − bð Þz − a

b

� 
j

= a0y
m 1 − bð Þz − a

b

� 
l
,

ð37Þ

and the cofactor k = Kjα=1 =mx − ðb +mÞ, which com-
pletes the proof.

2.2. Proof of Corollary 2

2.2.1. Proof of Statement (1) of Corollary 2. It follows from
Theorem 1 and the fact that a function f is a polynomial first
integral if and only if it is a Darboux polynomial with the zero
cofactor.

2.2.2. Proof of Statement (2) of Corollary 2. Assume system
(1) has a proper rational first integral f = P/Q with P,Q being
relative prime; then, P,Q are two different Darboux polyno-
mials with the same nonzero cofactor; see [16] for instance,
which contradicts Theorem 1.

2.2.3. Proof of Statement (3) of Corollary 2. It follows from
statements (1) and (2) and a well-known result that a polyno-
mial vector field inℝn is algebraically integrable if and only if
it has n − 1 functionally independent rational first integrals.

3. Proof of Theorem 3

3.1. Proof of Statement (a) of Theorem 3. According to Theo-
rem 1, system (1) has a Darboux polynomial F1 = S + I +
R −N with the cofactor −μ < 0, which implies that IðS, I,
R, tÞ = ðS + I + R −NÞ exp ðμtÞ is a time-dependent first
integral of system (1), that is, dI/dt = 0 along the flow of
(1). Let ϕðtÞ = ðSðtÞ, IðtÞ, RðtÞÞ be an arbitrary orbit of sys-
tem (1) with the initial value ϕð0Þ = ðS0, I0, R0Þ satisfying
F1ðS0, I0, R0Þ ≠ 0. By

S tð Þ + I tð Þ + R tð Þ −Nð Þ exp μtð Þ = S0 + I0 + R0−N ∈ℝ/ 0f g,
ð38Þ

we see that ϕðtÞ will approach the invariant surface F1 = 0

as t⟶ +∞, whereas it goes to infinity as t⟶ −∞.
Statement (a) follows.

3.2. Proof of Statement (b) of Theorem 3. In order to under-
stand the global dynamics of system (1) at infinity, we will
use the Poincaré compactification in ℝ3 and analyze the flow
at infinity for the local charts Ui and Vi, i = 1, 2, 3. See [36]
for more details on the Poincaré compactification of a poly-
nomial vector field.

3.2.1. In the Local Chart U1 and V1. Making the change of
variables ðS, I, RÞ = ðz−13 , z1z−13 , z2z−13 Þ and the time rescaling
dτ = z−13 dt, we obtain the Poincaré compactification of sys-
tem (1) in the local chart U1

dz1
dτ

= −z1 Nμz23 − βz1 + γz3 − β
� �

,

dz2
dτ

= −Nμz2z
2
3 + βz1z2 + γz1z3,

dz3
dτ

= −z3 Nμz23 − βz1 − μz3
� �

:

ð39Þ

The plane z3 = 0 at infinity is invariant, which corre-
sponds to the points on the sphere at infinity, and so system
(1) restricted to z3 = 0 becomes

dz1
dτ

= βz1 z1 + 1ð Þ,
dz2
dτ

= βz1z2,
ð40Þ

which has a line of singular points z1 = 0 and an isolated sin-
gular point ðz1, z2Þ = ð−1, 0Þ. Moreover, system (40) has a
first integral Φ = ðz1 + 1Þ/z2. Using this first integral, the
phase portrait on the local chart U1 is described in
Figure 3. The flow on the local chart V1 is the same with
the flow of U1 by reversing the time since the compactified
vector field in V1 coincides with the vector field in U1 multi-
plied by −1 [36].

3.2.2. In the Local ChartU2 andV2. To get the Poincaré com-
pactification of system (1) in the local chart U2, we take the
change of variables ðS, I, RÞ = ðz1z−13 , z−13 , z2z−13 Þ and the time
rescaling dτ = z−13 dt and transform (1) into

dz1
dτ

=Nμz23 − βz21 + γz1z3 − βz1,

dz2
dτ

= −βz1z2 + γz2z3 + γz3,

dz3
dτ

= z3 −βz1 + γz3 + μz3ð Þ:

ð41Þ
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When z3 = 0, system (41) becomes

dz1
dτ

= −βz1 z1 + 1ð Þ,
dz2
dτ

= −βz1z2:
ð42Þ

Clearly, system (42) coincides with system (40) by revers-
ing the time. Then, the phase portrait on the local chart U1 is
described in Figure 4. Again, the flow in the local chart V2 is
the same as the flow in the local chart U2 by reversing the
time.

3.2.3. In the Local Chart U3 and V3. Proceeding as above,
making the change of variables ðS, I, RÞ = ðz1z−13 , z2z−13 , z−13 Þ
and the time rescaling dτ = z−13 dt, system (1) becomes

dz1
dτ

=Nμz23 − γz1z2z3 − βz1z2,

dz2
dτ

= −z2 γz2z3 − βz1 + γz3ð Þ,
dz3
dτ

= −z23 γz2 − μð Þ:

ð43Þ

On the invariant plane z3 = 0, system (43) is reduced to

dz1
dτ

= −βz1z2,

dz2
dτ

= βz1z2:

ð44Þ

System (44) has two lines of singular points z1 = 0 and
z2 = 0. It also has a first integral Φ = z1 + z2, which helps us
get its phase portrait as shown in Figure 5. The flow at infinity
in the local chart V3 is the same as the flow on the local chart
U3 by reversing the time.

To summarize the above analysis, one obtains a global
picture of the dynamical behavior of system (1) on sphere
S2 at infinity: it has two closed curves of equilibria fx = 0,
y2 + z2 = 1g ∪ fy = 0, x2 + z2 = 1g and two nodes (see
Figure 1).

3.3. Proof of Statement (c) of Theorem 3. System (1) has the
invariant algebraic surface fðS, I, RÞ: S + I + R −N = 0g.

Restricted to this invariant algebraic surface, system (1)
becomes

_S = −βSI + μ N − Sð Þ≔ P S, Ið Þ,
_I = βSI − γ + μð ÞI ≔Q S, Ið Þ:

ð45Þ

We first study the finite singular points of system (45).
Clearly, system (45) has two singular points

P0 = N , 0ð Þ,

P1 =
γ + μ

β
, μ Nβ − γ − μð Þ

β γ + μð Þ

 �

:
ð46Þ

One can check that the eigenvalues of the linear part at P0
are −μ and Nβ − γ − μ. Set R0 =Nβ/ðγ + μÞ, called the basic
reproduction number. If R0 < 1, P0 is a stable node. If R0 >
1, P0 is a saddle. The eigenvalues of the linear part at P1 are

−μβN +
ffiffiffiffi
Δ

p

2 μ + γð Þ ,

−μβN −
ffiffiffiffi
Δ

p

2 μ + γð Þ ,
ð47Þ

with Δ = ðμβN − 2ðγ + μÞ2Þ2 − 4γðγ + μÞ3. If R0 < 1, P1 is a
saddle. If R0 > 1 and Δ < 0, P1 is a stable focus. If R0 > 1 and
Δ ≥ 0, P1 is a stable node. In particular, if R0 = 1, P1 coincides
with P0, which is a semihyperbolic saddle-node point.

z1

z2

Figure 4: The phase portrait in the local chart U2 at infinity.

z2

z1

Figure 5: The phase portrait in the local chart U3 at infinity.

z2

z1

Figure 3: The phase portrait in the local chart U1 at infinity.
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Next, we turn to study the infinite singularities by the
Poincaré compactification inℝ2. In the local chart U1, where
S = z−12 , I = z1z

−1
2 , and dτ = z−12 dt, we have

dz1
dτ

= z1 β − γz2 + βz1 −Nμz22
� �

,

dz2
dτ

= z2 βz1 + μz2 −Nμz22
� �

:

ð48Þ

It has two singularities ð0, 0Þ and ð−1, 0Þ on the invariant
line z2 = 0. The eigenvalues of the linear part at ð−1, 0Þ are −β
and −β, which implies this point is a stable node. By Theo-
rem 2.19 in [37], we see that ð0, 0Þ is a saddle-node point con-
sisting of two hyperbolic sectors with one parabolic sector.
Similarly, we take the change of variables S = z1z

−1
2 and I =

z−12 and the time rescaling dτ = z−12 dt to obtain the Poincaré
compactification of system (45) in the local chart U2

dz1
dτ

=Nμz22 − βz21 + γz1z2 − βz1
dz2
dτ

= z2 μz2 − βz1 + γz2ð Þ:
ð49Þ

This system has an unstable node ð−1, 0Þ and a saddle
node ð0, 0Þ.

Finally, we show that system (45) has no limit cycles in
ℝ2. Since I = 0 is an invariant manifold, limit cycles (if
exits) must be in I > 0 or I < 0. In the region fðS, IÞ: I > 0g,
observing

∂ P/Ið Þ
∂S

+ ∂ Q/Ið Þ
∂I

= −β −
μ

I
< 0, ð50Þ

it follows from the Dulac Theorem that system (45) has no
limit cycles. In the region fðS, IÞ: I < 0g, system (45) has
either no singular points or a saddle, which implies system
(45) has no limit cycles.

Summarizing the above analysis, we obtain that the
dynamics of the system (1) on F1 = 0 is topologically described
by one of Figure 2 on the Poincaré disk.

4. Conclusions

In this paper, by studying the invariant algebraic surfaces, we
show that μ = 0 is the only value of the parameters for which
the SIR epidemic model is integrable, and in this case, we
provide its general solutions by implicit functions, two Lax
formulations, and infinitely many Hamilton-Poisson realiza-
tions. When μ ≠ 0, the SIR model has no any algebraic first
integral and we cannot get its exact solutions. However,
based on the existence of the invariant algebraic surfaces,
we characterize the topological structure of orbits for the
SIR epidemic model with μ ≠ 0. Moreover, if the SIR model
has a positive death/birth rate μ, the disease will ultimately
approach either the disease-free steady state P0 on F1 = 0 or
the endemic steady state P1 on F1 = 0, depending on the basic
reproduction number R0. In case the R0 is small, saying less
than one, the SIR model has no positive equilibrium point
and the disease approaches the disease-free steady state P0

on F1 = 0, which implies the disease will always fail to spread.
In case the R0 is big, saying larger than one, the SIR model
admits a new positive equilibrium point through the transcri-
tical bifurcation and the disease approaches the endemic
steady state P1 on F1 = 0. In case R0 is equal to one, all the
solutions in ðℝ+Þ3 tend to P0 on F1 = 0, which implies the
disease is supposed to be controlled and the entire population
tends to be healthy, but is susceptible to reinfection. These
facts show that the basic reproduction number has played
an important role in the spread of disease and the topological
structure of orbits for the SIR model. The approach we used
in this work may contribute to the understanding of the
dynamics of the more general epidemic models.
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