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In this study, we attain some existence characterizations for warped product pointwise semi slant submanifolds in the setting of
Sasakian space forms. Moreover, we investigate the estimation for the squared norm of the second fundamental form and
further discuss the case of equality. By the application of attained estimation, we obtain some classifications of these warped
product submanifolds in terms of Ricci soliton and Ricci curvature. Further, the formula for Dirichlet energy of involved
warping function is derived. A nontrivial example of such warped product submanifolds is also constructed. Throughout the
paper, we will use the following acronyms: “WP” for warped product, “WF” for warping function, “AC” for almost contact, and
“WP-PSS” for the warped product pointwise semi slant.

1. Introduction

In the field of geometry, an increased interest is observed for
the exploration of the warped product manifolds due to its
applicability in the theory of relativity and physics [1]. Earlier
researchers have shown that warped products facilitate the
computation of the Einstein field equations [1]. In addition,
the concept of warped product manifolds is used in the
notion of modelling of space-time near black holes [2], such
as Schwarzschild space-time P × rS

2, where r > 0, the base is a
half plane P = R × R+, and the unit sphere S2 is the fibre. At
some instances, Schwarzschild space-time also acts similar
to the black hole. The Robertson-Walker model is an exam-
ple of a warped product which is considered as a cosmologi-
cal model adopted for the space-time modelling of the
universe [3].

Identifying Dirichlet energy of smooth functions is con-
sidered as an integral part in the field of physics and engi-
neering. Moreover, Dirichlet energy is found to be an
analog of kinetic energy. Let τ be any real valued smooth

function on a compact manifoldM, then the Dirichlet energy
of τ is defined by

E τð Þ = 1
2

ð
M

∇τk k2dV , ð1Þ

where∇τ is the gradient of τ and dV is the volume element. It
is clear that EðτÞ ≥ 0. It is well recognized that a product
manifold cannot be used for the representation of nonzero
(constant) curvature manifolds. Therefore, the concept of
the warped product manifold emerged due to the nonexis-
tence of negative curvature for the Riemannian product of
manifolds. Therefore, Bishop and O’Neill [4] initiated the
concept of warped product manifolds for devising the class
of manifolds for the negative or nonpositive curvature. A
warped product manifold (see definition in Section 2) is a
generality of a product manifold. As the warping function
of warped product manifolds is a positive valued smooth
function, the focus of the present study is on examining the
Dirichlet energy of such functions.
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The study of Bishop and O’Neill [4] has enlightened a
few intrinsic properties of the warped product manifolds.
Initial extrinsic studies of the warped product manifold
in the almost complex setting were performed by Chen
[5, 6] while obtaining some results of existence for CR-
submanifold as CR-warped product submanifold in Kaeh-
ler manifolds. Furthermore, contact CR-warped product
submanifolds were investigated in the study of Hasegawa
and Mihai [7] in the almost contact settings. Warped
product manifolds are also investigated in the contact set-
ting by many other geometers which have attained various
existence results [8–11].

Warped product pointwise semi slant submanifold is
another generalized class of warped product semi slant sub-
manifolds and contact CR-warped product submanifolds.
In [12], Park studied such warped product submanifolds.
After that, Mihai and Uddin extended this study in Sasakian
manifolds and acquired some optimal inequalities related to
warping function and second fundamental form. Warped
product pointwise semi slant submanifolds for almost con-
tact and almost complex manifolds were explored in [13–15].

On the other hand, the gradient Ricci soliton is exten-
sively investigated in physics, theory of relativity, and differ-
ential geometry. The classification results related to Ricci
soliton and gradient Ricci solitons with the warped product
structure have been established in [16–19]. Moreover, the
Ricci curvature has a significant nature in Riemannian geom-
etry; for example, Ricci flat is used to solve the Einstein field
equation on a Riemannian manifold in which the cosmolog-
ical constant vanishes. More clearly, in the general relativity
theory, the Ricci tensor is correlated with Einstein’s field
equation to study the material contents of the universe. So,
in comparison with Riemannian curvature, the Ricci curva-
ture is more significant in the theory of relativity and physics.

In this study, warped product pointwise semi slant sub-
manifolds are studied in the setting of Sasakian space forms
and some associated inequalities are attained. The study also
provides estimates for the squared norm of the second funda-
mental form concerning the slant function and warping
function and then addresses the case of equality. Some appli-
cations of the case of equality and the derived inequality are
explored. More precisely, Dirichlet energy of the warping
functions is computed via the obtained inequality. Finally, a
classification of theWP-PSS submanifolds admitting the gra-
dient Ricci soliton, in respect of Ricci curvature and second
fundamental form, is obtained, and some existence results
are also established.

The study consists of five sections in which the second
section is dedicated to pave the way for the other sections
by providing the fundamental definition, formulas, and
preliminary outcomes needed for the study. Section 3
investigates the WP-PSS submanifold existence in Sasakian
space forms and provides the proof of the main findings
of the study. In addition, it gives a nontrivial example
for the WP-PSS submanifolds in the setting of a Sasakian
manifold. The formulas for Dirichlet energy of warping
function is attained in Section 4 by using the derived
inequality. The paper is concluded in Section 5, followed
by its bibliography.

2. Preliminaries

A C∞ −manifold �M of dimension ð2m + 1Þ is said to admit
anAC structure if on �M ∃ a tensor fieldΨ of type ð1, 1Þ, a vec-
tor field η, and a 1-form ζ fulfilling [20]

Ψ2 = −I + ζ ⊗ η, Ψη = 0, ζ ∘Ψ = 0, ζ ηð Þ = 1: ð2Þ

The manifold �M with the structure ðΨ, η, ζÞ is called AC
metric manifold. On an ACmetric manifold �M, ∃ a Riemann-
ian metric g satisfying

ζ Yð Þ = g Y , ηð Þ, g ΨY ,ΨVð Þ = g Y , Vð Þ − ζ Yð Þζ Vð Þ, ð3Þ

for all Y , V ∈ T �M, where T �M is the tangent bundle of �M.
An AC metric structure ðΨ, η, ζ, gÞ is referred to as Sasa-

kian manifold if it fulfills the following relation [20]:

�∇YΨ
� �

V = g Y ,Vð Þη − ζ Vð ÞY , ð4Þ

for any Y ,V ∈ T �M, where �∇ denotes the Riemannian con-
nection of the metric g. Then, we have

�∇Yη = −ΨY : ð5Þ

A Sasakian space form �MðcÞ [20] is a Sasakian manifold
with constant Ψ-holomorphic sectional curvature c. More-
over, the following formula gives the curvature tensor �R of
Sasakian space form, �MðcÞ:

�R Y1, Y2ð ÞV = c − 3
4 g Y2, Vð ÞY1 − g Y1, Vð ÞY2f g

+ c − 1
4 g Y1,ΨVð ÞΨY2 − g Y2,ΨVð ÞΨY1f

+ 2g Y1,ΨY2ð ÞΨV + ζ Y1ð Þζ Vð ÞY2
− ζ Y2ð Þζ Vð ÞY1 + g Y1, Vð Þζ Y2ð Þη
− g Y2, Vð Þζ Y1ð Þηg,

ð6Þ

∀ vector fields Y1, Y2, V on �M.
Let M be a submanifold of an AC-metric manifold �M

with induced metric g, and the vector field η is tangential
to M: The Riemannian connection �∇ of �M induces canoni-
cally the connections ∇⊥ and ∇ on the normal bundle T⊥M
and the tangent bundle TM ofM, resp. Then, theWeingarten
and Gauss formulas are as follows:

�∇Y1
N = −ANY1 + ∇⊥

Y1
N , ð7Þ

�∇Y1
Y2 = ∇Y1

Y2 + σ Y1, Y2ð Þ, ð8Þ
∀ Y1, Y2 ∈ TM and N ∈ T⊥M, where AN and σ are the shape
operator and the second fundamental form, resp. For the
immersion of M into �M, AN and σ verify the relation

g σ Y1, Y2ð Þ,Nð Þ = g ANY1, Y2ð Þ: ð9Þ
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IfM is a submanifold of a Riemmanian manifold �M, then
the equation of Codazzi is as follows:

�R Y1, Y2ð ÞV� �⊥ = ∇⊥
Y1
σ Y2, Vð Þ − ∇⊥

Y2
σ Y1, Vð Þ

+ σ ∇Y2
Y1, V

� �
− σ ∇Y1

Y2, V
� �

+ σ Y1, ∇Y2
V

� �
− σ Y2, ∇Y1

V
� �

,
ð10Þ

where ð�RðY1, Y2ÞVÞ⊥ denotes the normal component of the
curvature tensor �RðY1, Y2ÞV :

If PY and FY denote the tangential and normal compo-
nent of ΨY , respectively, then

ΨY = PY + FY , ð11Þ

∀ Y ∈ TM. Similarly, for any normal vector field N ∈ T⊥M,

ΨN = tN + f N: ð12Þ

Thus, F (resp., t) is a normal (resp., tangential) valued 1-
form on TM (resp. T⊥M) and P (resp., f ) is 1-1 tensor field
on TM (resp., T⊥M). The covariant derivatives of Ψ, F,
and P are given by

�∇Y1
Ψ

� �
Y2 = ∇Y1

ΨY2 −Ψ∇Y1
Y2, ð13Þ

�∇Y1
F

� �
Y2 = ∇⊥

Y1
FY2 − F∇Y1

Y2, ð14Þ
�∇Y1

P
� �

Y2 = ∇Y1
PY2 − P∇Y1

Y2: ð15Þ
From equations (4), (8), (7), (11), and (12), we have

�∇Y1
P

� �
Y2 = AFY2

Y1 + tσ Y1, Y2ð Þ − g Y1, PY2ð Þη − ζ Y2ð ÞPY1,
ð16Þ

�∇Y1
F

� �
Y2 = fσ Y1, Y2ð Þ − σ Y1, PY2ð Þ − ζ Y2ð ÞFY1: ð17Þ

Let fe1, e2,⋯, emg be a local orthonormal basis of vector
fields on m-dimensional submanifold M: Hence, the mean
curvature vector H of M is obtained from the formula

H = 1
m
〠
m

s=1
σ es, esð Þ, ð18Þ

and the squared norm of the second fundamental form σ is
given by

σk k2 = 〠
m

r,s=1
g σ er , esð Þ, σ er , esð Þð Þ: ð19Þ

A submanifold M of �M is called totally umbilical if σ
ðY1, Y2Þ = gðY1, Y2ÞH, and M is defined as totally geodesic
if σðY1, Y2Þ = 0, ∀Y1, Y2 ∈ TM.

Definition 1 (see [21]). A submanifold M of an AC metric
manifold �M is slant if the angle between Y and ΨY is con-

stant for any y ∈M and Y ∈ TyM − hηi. Then the constant
angle θ s.t. 0 ≤ θ ≤ π/2 is called slant angle of M in �M:

Definition 2 (see [21]). If θ = 0, the submanifold M is invari-
ant submanifold and is anti-invariant submanifold if θ = π/2.
If θ is neither 0 nor π/2, M is proper slant submanifold.

Etayo [22] introduced the concept of pointwise slant sub-
manifolds as a natural generality of the slant submanifolds of
almost Hermitian manifolds. Later, Chen and Garay [23]
investigated pointwise slant submanifolds in the setting of
almost Hermitian manifolds and attained some primary
results. A step forward, Park [12] extended the notion of
pointwise slant submanifolds in the setting of AC-metric
manifolds. Recently, Uddin and Al-Khalidi [24] modified
the definition of pointwise slant submanifolds for AC-
metric manifolds. More precisely, a submanifold M of an
AC-metric manifold �M is referred to as poinwise slant sub-
manifold if ∀Y ∈ TyM such that η ∈ TM the angle θðYÞ
between ΨY and TyM − f0g is independent of the choice of
nonzero vector field Y ∈ TpM − f0g. Hence, θ is dealt with
as the function on M, which is known as a slant function of
the pointwise slant function. Now, we attain the following
characterizing theorem.

Theorem 3 (see [24]). Suppose thatM is a submanifold of an
AC-metric manifold �M such that η ∈ TM. Then, M is point-
wise slant if and only if

P2 = cos2θ −I + ζ ⊗ ηð Þ, ð20Þ

where θ : TM⟶ R:

Consequently, we have

g PY1, PY2ð Þ = cos2θ g Y1, Y2ð Þ − ζ Y1ð Þζ Y2ð Þ½ �, ð21Þ

g FY1, FY2ð Þ = sin2θ g Y1, Y2ð Þ − ζ Y1ð Þζ Y2ð Þ½ �, ð22Þ

∀Y1, Y2 ∈ TM: ð23Þ
Recently, Mihai and Uddin [15] defined and studied point-
wise semi slant submanifold of Sasakian manifolds.

Definition 4. A submanifoldM of an AC-metric manifold �M
is referred to as a pointwise semi slant submanifold if ∃ two
orthogonal complementary distributions D and Dθ on M
such that

(i) TM =D ⊕Dθ ⊕ hηi
(ii) D is invariant

(iii) Dθ is pointwise slant with a slant function θ

The WP manifolds are the generalized form of the prod-
uct manifolds and are defined as follows.
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Let ðC1, gC1
Þ and ðC2, gC2

Þ be two Riemannian manifolds
with the Riemannian metrics gC1

and gC2
, resp., and Φ be a

positive differentiable map on C1. Let πC1
: C1 × C2 ⟶ C1,

πC2
: C1 × C2 ⟶ C2 be the projection maps given by πC1

ðc1, c2Þ = c1 and πC2
ðc1, c2Þ = c2, ∀ ðc1, c2Þ ∈ C1 × C2: The

WP M = C1 × ΦC2 [4] is the manifold C1 × C2 endowed
with the Riemannian structure s.t.

g Y1, Y2ð Þ = gC1
πC1

� �
∗
Y1, πC1

� �
∗
Y2

� �
+ Φ ∘ πC1

� �2gC2
πC2

� �
∗
Y1, πC2

� �
∗
Y2

� �
,
ð24Þ

for all Y1, Y2 ∈ TM, where ∗ denotes the tangential map
(the differential on the tangent bundle). Here, Φ is known
as the WF of the WP manifold. M is a trivial WP if the
WF is constant.

Let Y1 be a vector field on C1 and Y2 be a vector field on
C2, then we induce from Lemma 7.3 of [3]:

∇Y1
Y2 = ∇Y2

Y1 =
Y1Φ

Φ

� �
Y2, ð25Þ

where ∇ is the Levi-Civita connection on M. For
M = C1 × ΦC2, it can be seen that

∇Y1
Y2 = ∇Y2

Y1 = Y1 ln Φð ÞY2, ð26Þ

for Y1 ∈ TC1 and Y2 ∈ TC2:The gradient of Φ is
denoted by ∇Φ and is defined as

g ∇Φ, Yð Þ = YΦ, ∀Y ∈ TM: ð27Þ

Let M be a Riemannian manifold M of dimen-
sion m with fe1,⋯, emg as an orthogonal basis of
TM and g a Riemannian metric of M. Then, as a
result of (27), we get

∇Φk k2 = 〠
m

s=1
es Φð Þð Þ2: ð28Þ

The Laplacian of a smooth function Φ on a Rie-
mannian manifold is defined by the following equa-
tion:

ΔΦ = 〠
m

s=1
∇es

es
� �

Φ − esesΦ
� 	

= −〠
m

i=1
g ∇ei

grad Φ, ei
� �

: ð29Þ

For a smooth function Φ on M, the Hessian of
Φ is defined as

HΦ U ,Vð Þ =UVΦ − ∇UVð ÞΦ = g ∇U grad Φ, Vð Þ, ð30Þ

for any U , V ∈ TM:

The Hessian tensor for a differential function Φ is a sym-
metric covariant tensor of rank 2 and is defined as

ΔΦ = −traceHΦ: ð31Þ

Throughout the study, we used the following relation
between the Hessian tensor and the Laplacian of a smooth
function Φ on a Riemannian manifold:

HessΦ = −ΔΦ: ð32Þ

Hopf’s Lemma [25]. IfM is anm-dimensional connected
compact Riemannian manifold and Φ is a differentiable
function on M s.t. ΔΦ ≤ 0 everywhere on M (or ΔΦ ≥ 0
everywhere on M), then Φ is a constant function.

For a compact orientable Riemannian manifold M with
or without boundary and as a consequence of the integration
theory on manifolds, we have [26]

ð
M
ΔΦdV = 0, ð33Þ

where Φ is a function on M and dV is the volume ele-
ment of M.

The Ricci soliton idea was given by Hamilton [26]. It is
regarded as the natural generality of Einstein metrics, and it
is the self-similar solution of the Ricci flow ð∂/∂tÞgðtÞ = −2
RicðtÞ: If ∃ a smooth vector field Y such that the Ricci tensor
meets the following condition:

Ric + 1
2LYg = α, ð34Þ

for any constant α, where LY is the Lie derivative, then the
metric g on a complete Riemannian manifold �M is named
as Ricci soliton. If α < 0, α = 0, and α > 0, then the Ricci soli-
ton is called expanding, steady, and shrinking, respectively. If
we specify Y = ∇Φ for a smooth function Φ on �M, then g
admits gradient Ricci soliton with the potential function Φ.
For this case, (34) takes the form

Ric + ∇2Φ = αg: ð35Þ

Since the Laplacian Δ and the gradient ∇2 are related as
Δ = ∇2, in terms of Hessian, (35) can be expressed as

Ric = αg + Hessψ: ð36Þ

Note 1. ðM, g,∇Φ, αÞ is an Einstein manifold if the potential
function Φ is constant on a gradient Ricci soliton.

3. Warped Product Pointwise Semi
Slant Submanifolds

In [12], Park proved that the WP-PSS submanifolds of the
type NT × ΦNθ of the contact metric manifolds exist and
achieved the result of the following lemma.
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Lemma 5. Suppose that M =NT × ΦNθ is a WP-PSS of a
Sasakian manifold �M such that η ∈ TNT , where NT and Nθ

are invariant and pointwise slant submanifolds of �M, respec-
tively. Then, we have

g σ Y ,Wð Þ, FPZð Þ = cos2θY ln Φg W, Zð Þ
−ΨY ln Φg W, PZð Þ − ζ Yð Þg W, PZð Þ,

ð37Þ

∀ Y ∈ TNT and W, Z ∈ TNθ.

In particular, if we replace Z by PW in the above equa-
tion, then one can conclude the following:

g σ Y ,Wð Þ, FWð Þ = −ΨY ln Φ Wk k2 − ζ Yð Þ Wk k2: ð38Þ

Now, letM =NT × ΦNθ be a WP-PSS of a Sasakian man-
ifold �M and we consider η ∈ TNT . If D is invariant distribu-
tion and Dθ is proper pointwise slant distribution with θ as
a slant function, then TM and T⊥M are decomposed (resp.)
as follows:

TM =D ⊕Dθ ⊕ ηh i,
T⊥M = FDθ ⊕ μ,

ð39Þ

where μ is the orthogonal complementary distribution of
FDθ in T⊥M. One can easily check that μ is an invariant
subbundle of T⊥M regarding Ψ.

In view of the above direct decomposition, σ can be writ-
ten as

σ U1,U2ð Þ = σFDϑ U1,U2ð Þ + σμ U1,U2ð Þ, ð40Þ

for U1,U2 ∈ TM, where σFDθðU1,U2Þ and σμðU1,U2Þ are
the components of σðU1,U2Þ in the normal subbundles
FDθ and μ, respectively. Moreover, if fV1, V2,⋯, Vqg is

a local orthonormal basis of vector fields of Dθ, we have

σFDθ U1,U2ð Þ = 〠
q

r=1
σr U1,U2ð ÞFVr , ð41Þ

where

σr U , Vð Þ = csc2θg σ U , Vð Þ, FVrð Þ: ð42Þ

To ensure the existence, we construct an example of a
WP-PSS of the type M =NT × ΦNθ in the Sasakian mani-
fold with η tangent to NT :

Example 1.We know that ðR2m+1,Ψ0, ζ, η, gÞ denotes a Sasa-
kian manifold with the structure as follows:

ζ = 1
2 dz − 〠

m

i=1
yidxi

 !
,

η = 2 ∂
∂z

,

g = ζ ⊗ ζ + 1
4 〠

m

i=1
dxi ⊗ dxi + dyi ⊗ dyi
� � !

,

Ψ0 〠
m

i=1
Xi

∂
∂xi

+ Yi
∂
∂yi

+ Z
∂
∂z

� � !

= 〠
m

i=1
Yi

∂
∂xi

− Xi
∂
∂yi

� �
+ 〠

m

i=1
Yiy

i ∂
∂z

,

ð43Þ

where ðxi, yi, zÞ, i = 1,⋯,m, are the Cartesian coordinates. It
is well known that f2ð∂/ð∂yiÞÞ, 2ðð∂/ð∂xiÞÞ + yið∂/∂zÞÞ, ηg is
an orthonormal basis of TR2m+1:

Now, consider the 9-dimensional Sasakian manifold ðR9,
Ψ0, ζ, η, gÞ and a submanifold isometrically immersed in R9

as follows:

M = 2 u, 0,wet , 0, v, set cos θ, set sin θ, 0, f
� �

∈ R9� 	
, ð44Þ

and consider a basis fe1, e2, e3, e4, e5g of orthogonal vector
fields onM as

e1 = 2 ∂
∂x1

+ y1
∂
∂z

� �
,

e2 = 2 ∂
∂y1

,

e3 = 2et ∂
∂x3

,

e4 = 2et cos θ ∂
∂y3

+ 2et sin θ
∂
∂y4

,

e5 = 2 ∂
∂z

= η:

ð45Þ

Hence, it can be seen that D = spanfe1, e2, e5g and Dθ =
spanfe3, e4g define the invariant and pointwise slant distribu-
tionswith θ ∈ ð0, π/2Þ as a slant function on the Sasakianman-
ifoldR9: IfNT andNθ stand for the integral manifold ofD and
Dθ, respectively, the metric g onM is defined by

g = gNT
+ e2tgNθ

: ð46Þ

Then,M =NT × ΦNθ is aWP-PSS with theΦðtÞ = et:
In this section, for convention, we denote by Y , X ∈ TNT

and V ,U ∈ TNθ as the vector fields of respective tangent
bundles of NT and Nθ. At first, some initial results need to
be proved.
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Lemma 6. Suppose that NT × ΦNθ is a WP-PSS of a Sasakian
manifold �M. Then, we have

(i) η ln Φ = 0

(ii) gðσðΨY , VÞ, FVÞ = Y ln ΦkVk2

(iii) gðσðΨY , VÞ,ΨσðY , VÞÞ = kσμðY , VÞk2 + cos2θ
ðY ln ΦÞ2kVk2

∀ Y ∈ TNT and V ∈ TNθ, where σμ is the μ component
of σ.

Proof. From (5), (8), and (26), it is easy to see that η ln Φ = 0:
Moreover, replacing Y by ΨY in (38), using (2) and part (i),
we get part (ii). To prove part (iii), on making use of (8) and
(4), we get

σ ΨY , Vð Þ = −ζ Uð ÞV +Ψσ Y , Vð Þ +Ψ∇VY − ∇VΨY : ð47Þ

By utilizing (26), the form of the above equation can be
changed to as follows:

σ ΨY , Vð Þ = −ζ Yð ÞV +Ψσ Y , Vð Þ + Y ln ΦΨV −ΨY ln ΦV :

ð48Þ

By comparing the normal parts, we get

σ ΨY , Vð Þ =Ψσμ Y ,Vð Þ + Y ln ΦFV , ð49Þ

taking the inner product with ΨσðY , VÞ, we obtain

g σ ΨY , Vð Þ,Ψσ Y , Vð Þð Þ
= σμ Y , Vð Þ

 

2 + Y ln Φg Ψσ Y , Vð Þ, FVð Þ:

ð50Þ

Calculating the last term of the above equation by using
(8), (4), and (22) as follows:

g Ψσ Y , Vð Þ, FVð Þ = g σ ΨY , Vð Þ, FVð Þ − sin2θY ln Φ Vk k2:
ð51Þ

Utilizing part (ii), we get

g Ψσ Y , Vð Þ, FVð Þ = cos2θY ln Φ Vk k2, ð52Þ

using (50), we obtain the required result.

Lemma 7. Suppose that M =NT × ΦNθ is a WP-PSS subma-
nifold of a Sasakian manifold �M. Then,

g σ Y , PVð Þ, FVð Þ = −g σ Y , Vð Þ, FPVð Þ = − cos2θY ln Φ Vk k2,
ð53Þ

for all Y ∈ TNT , V ∈ TNθ:

Proof. From part (ii) of Lemma 6, the following is attained:

g σ PY , Vð Þ, FUð Þ + g σ PY ,Uð Þ, FVð Þ = 2Y ln Φg V ,Uð Þ,
ð54Þ

∀ Y ∈ TNT and V ,U ∈ TNθ. Replacing U by PV ∈Dθ and
using the fact that V and PV are perpendicular, the following
is obtained:

g σ Y , PVð Þ, FVð Þ = −g σ Y , Vð Þ, FPVð Þ: ð55Þ

By using (15), (16), and (26), we get

PY ln ΦV − Y ln ΦPV = tσ Y , Vð Þ − ζ Yð ÞV : ð56Þ

Now, taking the inner product withU ∈ TNθ in the above
equation, we have

PY ln Φg V ,Uð Þ − Y ln Φg PV ,Uð Þ = −g σ Y , Vð Þ, FUð Þ
− ζ Xð Þg V ,Uð Þ:

ð57Þ

Interchanging V and U and subtracting the resultant
from equation (57) lead to

−g σ Y , Vð Þ, FUð Þ + g σ Y ,Uð Þ, FVð Þ = 2Y ln Φg V , PUð Þ:
ð58Þ

In particular, replacing U by PV ∈Dθ, we get

g σ Y , Vð Þ, FPVð Þ − g σ Y , PVð Þ, FVð Þ = −2 cos2θY ln Φ Vk k2:
ð59Þ

Using (55) yields

g σ Y , PVð Þ, FVð Þ = −g σ Y , Vð Þ, FPVð Þ = − cos2θY ln Φ Vk k2:
ð60Þ

Lemma 8. On a WP-PSS submanifold M =NT × ΦNθ of a
Sasakian manifold �M, we obtain

〠
q

i=1
〠
2p

j,k=1
g σ Ψei, ek

� �
, Fej

� �
g σ ei, Pek

� �
, Fej

� �"

− g σ ei, ek
� �

, Fej
� �

g σ Ψei, Pek
� �

, Fej
� �#

= −4p cos2θ ∇ln Φk k2,

ð61Þ

where fe0 = η, e1, e2,⋯, eq,Ψe1,Ψe2,⋯,Ψeqg and fe1, e2,
⋯, ep, ep+1 = sec θPe1, ep+2 = sec θPe2,⋯, e2p = sec θPepg are
the frames of the orthonormal vector fields on TNT and
TNθ, respectively.
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Proof. First, we expand the left hand term in the following
way:

〠
q

i=1
〠
2p

j,k=1
g σ Ψei, ek

� �
, Fej

� �
g σ ei, Pek

� �
, Fej

� �" #

= 〠
q

i=1
〠
2p

j=1
g σ Ψei, ej

� �
, Fej

� �
g σ ei, Pej

� �
, Fej

� �"

+ 〠
2p

j≠k=1
g σ Ψei, ek

� �
, Fej

� �
g σ ei, Pek

� �
, Fej

� �#

= 〠
q

i=1
〠
2p

j=1
g σ Ψei, ej

� �
, Fej

� �
g σ ei, Pej

� �
, Fej

� �"

+ 〠
p

j=1
g σ Ψei, ej

� �
, Fej+p

� �
g σ ei, Pej

� �
, Fej+p

� �

+ 〠
p

j=1
g σ Ψei, ej+p

� �
, Fej

� �
g σ ei, Pej+p

� �
, Fej

� �#

= 〠
q

i=1
〠
2p

j=1
g σ Ψei, ej

� �
, Fej

� �
g σ ei, Pej

� �
, Fej

� �"

+ sec2θ〠
p

j=1
g σ Ψei, ej

� �
, FPej

� �
g σ ei, Pej

� �
, FPej

� �

− 〠
p

j=1
g σ Ψei, Pej

� �
, Fej

� �
g σ ei, ej

� �
, Fej

� �#
:

ð62Þ

Using part (ii) of Lemma 6 and Lemma 7 and utilizing
(28), we get

〠
q

i=1
〠
2p

j,k=1
g σ Ψei, ek

� �
, Fej

� �
g σ ei, Pek

� �
, Fej

� �" #

= 〠
q

i=1
−2p cos2θ ei ln Φð Þ2 − 2p cos2θ Ψei ln Φð Þ2� �

= −2p cos2θ ∇ln Φk k2:

ð63Þ

Replacing ei by Ψei in the above equation, we get

〠
q

i=1
〠
2p

j,k=1
g σ ei, ek

� �
, Fej

� �
g σ Ψei, Pek

� �
, Fej

� �" #

= 2p cos2θ ∇ln Φk k2:
ð64Þ

By subtracting the above two findings, the required result
gets attained.

The next theorem provides the following
characterization.

Theorem 9. Suppose that M =NT × ψNθ is a WP-PSS
submanifold of a Sasakian space form �MðcÞ such that NT is

a compact submanifold. Then, M is a Riemannian product
submanifold if the following inequalities hold

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 ≤ qp c − 1ð Þ sin2θ

− 2p cos2θ + 2 cot2θ
� �

∇ln Φk k2,

〠
q

i=1
〠
2p

j=1
g σμ Ψei, ej

� �
, σμ ei, Pej
� �� �

≥ 0,

ð65Þ

where σμ stands for the component of σ in μ and ð2q + 1Þ and
2p are the dimensions of NT and Nθ, respectively.

Proof. Let Y ∈ TNT and V ∈ TNθ be unit vector fields. Then,
by making use of (2), (6), and (22), we have

�R Y ,ΨY , V , FVð Þ = −
c − 1
2 sin2θ Yk k2 Vk k2: ð66Þ

However, the Codazzi equation gives

�R Y ,ΨY , V , FVð Þ = g ∇⊥
Yσ ΨY , Vð Þ, FV� �

− g ∇⊥
ΨYσ Y , Vð Þ, FV� �

+ g σ Y , ∇ΨYVð Þ, FVð Þ
− g σ ΨY , ∇YVð Þ, FVð Þ
− g σ ∇YΨY , Vð Þ, FVð Þ
+ g σ ∇ΨYY , Vð Þ, FVð Þ:

ð67Þ

Now, we compute the values of the terms involved in
(67). First, we get

g ∇⊥
Yσ ΨY , Vð Þ, FV� �

= Yg σ ΨY , Vð Þ, FVð Þ
− g σ ΨY , Vð Þ, ∇⊥

Y FV
� �

:
ð68Þ

Using part (ii) of Lemma 6 leads to

g ∇⊥
Yσ ΨY , Vð Þ, FV� �

= Y2 ln Φ Vk k2 + 2 Y ln Φð Þ2 Vk k2
− g σ ΨY , Vð Þ, ∇⊥

Y FV
� �

:

ð69Þ

Now, we compute the last term of (69) using (11) as
follows:

g σ ΨY , Vð Þ, ∇⊥
Y FV

� �
= g σ ΨY , Vð Þ, �∇Y ΨV − PVð Þ� �

: ð70Þ

By the use of (8) and (13), the above equation
becomes

g σ ΨY , Vð Þ, ∇⊥
Y FV

� �
= g σ ΨY , Vð Þ, �∇YΨ

� �
V +Ψ�∇YV

� �
− g σ ΨY , Vð Þ, σ Y , PVð Þð Þ:

ð71Þ

7Advances in Mathematical Physics



Using (4), (8), (26), and parts (ii) and (iii) of Lemma
6, we get

g σ ΨY , Vð Þ, ∇⊥
Y FV

� �
= Y ln Φð Þ2 1 + cos2θ

� �
Vk k2 + σμ Y , Vð Þ

 

2

− g σ ΨY , Vð Þ, σ Y , PVð Þð Þ:
ð72Þ

Utilizing (72) in (69), we obtain

g ∇⊥
Yσ ΨY , Vð Þ, FV� �

= Y2 ln Φ Vk k2
+ Y ln Φð Þ2 sin2θ Vk k2
− σμ Y , Vð Þ

 

2
+ g σ ΨY , Vð Þ, σ Y , PVð Þð Þ:

ð73Þ

Similarly, we can write

g ∇⊥
ΨYσ Y ,Vð Þ, FV� �

= − ΨYð Þ2 ln Φ Vk k2
− ΨY ln Φð Þ2 sin2θ Vk k2
+ σμ ΨY , Vð Þ

 

2
+ g σ Y , Vð Þ, σ ΨY , PVð Þð Þ:

ð74Þ

From the second part of Lemma 6, we get

g AFVV ,ΨYð Þ = Y ln Φ Vk k2: ð75Þ

Replacing Y by ∇YY (using the totally geodesicness of
NT , ∇YY ∈ TNT) in the above equation, we have

g AFVV ,Ψ∇YYð Þ = ∇YY ln Φ Vk k2: ð76Þ

By using (8), we obtain

g AFVV ,Ψ�∇YY −Ψσ Y , Yð Þ� �
= ∇YY ln Φ Vk k2: ð77Þ

Since NT is totally geodesic in M, it can be ready to
verify that σðY , XÞ ∈ μ, for all Y , X ∈ TNT . Using this
and (13) in equation (77), we have

g σ ∇YΨY , Vð Þ, FVð Þ = ∇YY ln Φ Vk k2: ð78Þ

Similarly, we can write

g σ ∇ΨYY , Vð Þ, FVð Þ = −∇ΨYΨY ln Φ Vk k2: ð79Þ

By use of (26) and the second part of Lemma 6, we
attain

g σ ΨY , ∇YVð Þ, FVð Þ = Y ln Φð Þ2 Vk k2, ð80Þ

g σ Y , ∇ΨYVð Þ, FVð Þ = − ΨY ln Φð Þ2 Vk k2: ð81Þ
Substituting values from (66), (73), (74), (78), (79),

(80), and (81) in (67) yields

−
c − 1
2 sin2θ Yk k2 Vk k2 = Y2 ln Φ Vk k2 + ΨYð Þ2 ln Φ Vk k2

− Y ln Φð Þ2 cos2θ Vk k2
− ΨY ln Φð Þ2 cos2θ Vk k2
− σμ Y ,Vð Þ

 

2 − σμ ΨY , Vð Þ

 

2
− ∇YY ln Φ Vk k2 − ∇ΨYΨY ln Φ Vk k2
+ g σ ΨY , Vð Þ, σ Y , PVð Þð Þ
− g σ Y , Vð Þ, σ ΨY , PVð Þð Þ:

ð82Þ

Let fe0 = η, e1, e2,⋯, eq, eq+1 =Ψe1, eq+2 =Ψe2,⋯, e2q =
Ψeqg be the orthonormal frame on TNT and fe1, e2,⋯,
ep, sec θPe1, sec θPe2,⋯, sec θPepg be an orthonormal
frame on TNθ. By using the decomposition (40) and for-
mulas (42), (8), and (4) in the last term of the above equa-
tion using the orthonormal frame of TNθ, we get

−
c − 1
2 sin2θ Yk k2 Vk k2

= Y2 ln Φ Vk k2 + ΨYð Þ2 ln Φ Vk k2 − Y ln Φð Þ2 cos2θ Vk k2
− ΨY ln Φð Þ2 cos2θ Vk k2 − σμ Y , Vð Þ

 

2
− σμ ΨY , Vð Þ

 

2 − ∇YY ln Φ Vk k2 − ∇ΨYΨY ln Φ Vk k2

+ csc2θ〠
2p

j=1
g σ ΨY , Vð Þ, Fej� �

g σ Y , PVð Þ, Fej� ��
− g σ ΨY , Vð Þ, Fej� �

g σ ΨY , PVð Þ, Fej� �� ej


 

2

+ 2g σμ ΨY ,Vð Þ, σμ Y , PVð Þ� �
:

ð83Þ

Now, taking the sum of the above equation over i = 1,
2,⋯, q and j = 1, 2,⋯2p, using (28) and (29) and part (iii)
of Lemma 6, one can get

2pΔ ln Φð Þ = qp c − 1ð Þ sin2θ − 2p cos2θ ∇ln Φk k2

− 〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 − 4p cot2θ ∇ln Φk k2

+ 2〠
q

i=1
〠
2p

j=1
g σμ Ψei, ej

� �
, σμ ei, Pej
� �� �

:

ð84Þ

From (84), if

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2

≤ qp c + 1ð Þ sin2θ − 2p cos2θ + 2 cot2θ
� �

∇ln Φk k2,

〠
q

i=1
〠
2p

j=1
g σμ Ψei, ej

� �
, σμ ei, Pej
� �� �

≥ 0,

ð85Þ
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then Δ ln Φ ≥ 0; hence, from Hopf’s Lemma, ln Φ is constant
which means that Φ is constant, which proves the theorem.

The squared norm of σ with reference to the warping
function and slant function is obtained in the next theorem
as follows.

Theorem 10. Let �MðcÞ be a ð2m + 1Þ-dimensional Sasakian
space form and M =NT × ΦNθ be an n‐dimensional WP-
PSS submanifold such that NT is a ð2q + 1Þ-dimensional
invariant submanifold and Nθ is a 2p‐dimensional proper
pointwise slant submanifold of �MðcÞ. If

〠
q

i=1
〠
2p

j=1
g σ Ψei, ej

� �
, σ ei, Pej
� �� �

≥ 0, ð86Þ

then

ið Þ σk k2 ≥ qp c − 1ð Þ sin2θ + 2p sin2θ ∇ln Φk k2
− 2pΔ ln Φð Þ: ð87Þ

(ii) the necessary and sufficient conditions for the equality
sign of (87) to be held identically are

(a) NT is the totally geodesic invariant in �MðcÞ. Further-
more, it is a Sasakian space form

(b) Nθ is totally umbilical in �MðcÞ
(c) ∑q

i=1∑
2p
j=1gðσðΨei, ejÞ, σðei, PejÞÞ = 0

Proof. From (84), we have

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 ≥ qp c − 1ð Þ sin2θ − 2p cos2θ

�
+ 2 cot2θÞ ∇ln Φk k2 − 2pΔ ln Φð Þ:

ð88Þ

For the orthonormal frames fe0 = η, e1, e2,⋯, eq, eq+1 =
Ψe1, eq+2 =Ψe2,⋯, e2q =Ψeqg and fe1, e2,⋯, ep, sec θPe1,
sec θPe2,⋯, sec θPepg, in view of formulas (40) and (41)
and part (ii) of Lemma 6, we get

〠
2q

i=0
〠
2p

j=1
σFDθ

ei, ej
� �

 

2 = 〠

2q

i=0
〠
2p

j,k=1
csc2θg σ ei, ej

� �
, Fek

� �2

= csc2θ〠
2q

i=0
〠
2p

j=1
g σ ei, ej

� �
, Fej

� �2"

+ 〠
2p

j≠k=1
g σ ei, ej

� �
, Fek

� �2#

= csc2θ〠
2q

i=0
2p ei ln Φð Þ2
"

+ sec2θ〠
p

j=1
g σ ei, ej

� �
, FPej

� �2n

+ g σ ei, Pej
� �

, Fej
� �2o#

:

ð89Þ

Further using Lemma 7 and (28), the above equation is
reduced to

〠
2q

i=0
〠
2p

j=1
σFDθ

ei, ej
� �

 

2 = 2p csc2θ ∇ln Φk k2 + 2p cot2θ ∇ln Φk k2:

ð90Þ

From (88) and (90), we attain the desired inequality.
To prove part (ii), suppose that σ′ is the second

fundamental form for the immersion of Nθ in M.
Then, ∀ V ,U ∈ TNθ and Y ∈ TNT , the Gauss formula
gives

g σ′ V ,Uð Þ, Y
� �

= g ∇VU , Yð Þ = −Y ln Φg V ,Uð Þ: ð91Þ

Using (27), we attain

g σ′ V ,Uð Þ, Y
� �

= −g V ,Uð Þg ∇ln Φ, Yð Þ, ð92Þ

orσ′ V ,Uð Þ = −g V ,Uð Þ∇ln Φ: ð93Þ
For the equality case of (87), we get

σ D,Dð Þ = 0, σ Dθ,Dθ
� �

= 0, ð94Þ

g σμ ΨD,Dθ
� �

, σμ D, PDθ
� �� �

= 0: ð95Þ

From the first equation of (94), we go to the con-
clusion that NT is totally geodesic in M. Furthermore,
one can readily check that gðσðY ,ΨXÞ, FVÞ = 0, ∀ Y ,
X ∈ TNT , V ∈ TNθ. It leads to the conclusion that
NT is totally geodesic in �MðcÞ and it is a Sasakian
space form as well. Moreover, the second equation of
(94) together with (93) yields that Nθ is totally umbil-
ical. This proves the theorem.

4. Some Applications

Theorem 10 motivates to compute the formula for Dirichlet
energy for the warping functionΦ. Here, the Dirichlet energy
of Φ is denoted by EðΦÞ and is calculated for a compact
orientable WP-PSS submanifold M =NT × ΦNθ in a Sasa-
kian space form �MðcÞ as follows.

Theorem 11. Suppose thatM =NT × ΦNθ is a compact orien-
table WP-PSS submanifold of a Sasakian space form �MðcÞ,
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such that NT is a ð2q + 1Þ‐dimensional invariant submani-
fold tangent to the structure vector field η and Nθ is a 2p‐
dimensional pointwise slant submanifold of �MðcÞ. Then, for
every y ∈Nθ, the necessary and sufficient conditions for the
Dirichlet energies of the warping functions to fulfil the fol-
lowing

E ln Φð Þ = 1

4p sin2θ

ð
NT× yf g

σk k2dV −
p c − 1ð Þ

4
Vol NTð Þ

ð96Þ

are the following:

(i) NT is the totally geodesic invariant in �MðcÞ, and it is a
Sasakian space form

(ii) Nθ is totally umbilical in �MðcÞ

(iii) ∑q
i=1∑

2p
j=1gðσðΨei, ejÞ, σðei, PejÞÞ = 0

Proof. By integrating the case of equality of (87) and using
the definition of Dirichlet energy and (33), we get the
desired result.

If θ = π/2, the compact orientable WP-PSS submanifolds
become contact CR-warped product submanifolds. The
above theorem can be used for deducing the following
results.

Corollary 12. Suppose that M =NT × ΦN⊥ is a compact
orientable contact CR-warped product submanifold of a
Sasakian space form �MðcÞ, such that NT is a ð2q + 1Þ‐
dimensional invariant submanifold tangent to η and N⊥
is a 2p-dimensional anti-invariant submanifold of �MðcÞ:
Then, for every x ∈N⊥, the necessary and sufficient condi-
tions for the relation

E ln Φð Þ = 1
4p

ð
NT× yf g

σk k2dV −
p c − 1ð Þ

4
Vol NTð Þ ð97Þ

to be held are the following:

(i) NT is a Sasakian space form and totally geodesic
invariant in �MðcÞ

(ii) N⊥ is a totally umbilical anti-invariant in �MðcÞ

If equality sign of (87) holds, then

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = qp c − 1ð Þ sin2θ − 2p csc2θ

�
+ 2 cot2θÞ ∇ln Φk k2 − 2pΔ ln Φ:

ð98Þ

The Laplacian of a smooth function Φ is the trace of the
Hessian of the function. In terms of Hessian, (98) can be
written as follows:

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = qp c − 1ð Þ sin2θ − 2p csc2θ

�

+ 2 cot2θÞ ∇ln Φk k2+2p〠
q

i=1
Hessln Φ ei, eið Þ
h

+Hessln Φ Ψei,Ψeið Þ
i
:

ð99Þ

Now, the study comprises the following classification the-
orem for the WP-PSS submanifolds admitting the gradient
Ricci soliton fulfilling the equality case of (87).

Theorem 13. Suppose that �MðcÞ is a 2m + 1-dimensional
Sasakian space form andM =NT × ΦNθ is a WP-PSS subma-
nifold admitting a shrinking gradient Ricci soliton. Then, if

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 + 4qp = qp c − 1ð Þ sin2θ + 2p〠

2q

i=1
Ric ei, eið Þ,

ð100Þ

one among the following is true:

(i) θ = π/2, i.e., M is a contact CR-warped product
submanifold

(ii) Φ is constant, i.e., M is trivial Riemannian product
pointwise semi slant submanifold

Proof. Suppose that the WP-PSS submanifoldM =NT × ψNθ

satisfies the basic equation of the Ricci soliton, such that the
potential function τ = ln Φ, then

Ric Y , Xð Þ = αg Y , Xð Þ + Hessτ Y , Xð Þ, ð101Þ

for all Y , X ∈ TNT : Considering that fe1, e2,⋯, eq, eq+1 =
Ψe1,⋯, e2p =Ψeqg is an orthonormal basis of the vector
fields on TNT . Now, taking summation over i = 1, 2,⋯, q
for Y = X in (101), we have

〠
q

i=1
Ric ei, eið Þ = αq + 〠

q

i=1
Hessτ ei, eið Þ: ð102Þ

Replacing ei by Ψei in the above equation, we get

〠
q

i=1
Ric Ψei,Ψeið Þ = αq + 〠

q

i=1
Hessτ Ψei,Ψeið Þ: ð103Þ
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From (102) and (103), we have

〠
2q

i=1
Ric ei, eið Þ = 2αq++〠

q

i=1
Hessτ ei, eið Þ +Hessτ Ψei,Ψeið Þð Þ:

ð104Þ

By the assumption that the equality in (87) holds, then
by (99),

1
2p〠

2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = q c − 1ð Þ

2 sin2θ

− cos2θ + 2 cot2θ
� �

∇ln Φk k2+〠
2q

i=1
Ric ei, eið Þ − 2αq,

or 〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = qp c − 1ð Þ sin2θ

− 2p cos2θ + 2 cot2θ
� �

∇ln Φk k2 + 2p〠
2q

i=1
Ric ei, eið Þ − 4qpα:

ð105Þ

By assumption (100), we get

cos2θ + 2 cot2θ
� �

∇ln Φk k2 = 0: ð106Þ

From the above equation, it is evident that θ = π/2 or
Φ is constant, which proves the theorem.

If the submanifold M =NT × ΦNθ admits the steady gra-
dient Ricci soliton, then the following can be easily concluded
from the above theorem.

Theorem 14. Suppose that �MðcÞ is a 2m + 1-dimensional
Sasakian space form and M =NT × ΦNθ is a WP-PSS sub-
manifold admitting a steady gradient Ricci soliton. If the
relation

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = qp c − 1ð Þ sin2θ + 2p〠

2q

i=1
Ric ei, eið Þ

ð107Þ

holds, then one can be true from the following:

(i) θ = π/2, i.e., M is a contact CR-warped product
submanifold

(ii) Φ is constant, i.e., M is trivial Riemannian product
pointwise semi slant submanifold

In terms of Ricci curvature, the study constitutes the
following classification.

Theorem 15. Suppose that �MðcÞ is a 2m + 1-dimensional
Sasakian space form and M =NT × ΦNθ is a WP-PSS sub-
manifold with the equality in (87) holds. If the following
holds

2p
ð
M
Ric ∇ln Φ,−ð ÞdV = qp c − 1ð Þ sin2θ − 〠

2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2,

ð108Þ

then one among the listed statements must be correct:

(i) θ = π/2, i.e., M is a contact CR-warped product
submanifold

(ii) Φ is constant, i.e., M is trivial Riemannian product
pointwise semi slant submanifold

Proof. For a connection ∇ on a smooth manifold M, there
exists a tensor R of type (1, 3) called the curvature tensor of
the connection ∇ given by

∇U∇VZ − ∇V∇UZ − ∇ V ,U½ �Z = R V ,Uð ÞZ, ð109Þ

∀ V ,U , Z ∈ TM.

For a warping function τ = ln Φ, from (109), we obtain

∇2d τð Þ U , V , Zð Þ − ∇2d τð Þ V ,U , Zð Þ = d τð ÞR V ,Uð ÞZ:
ð110Þ

By the smoothness property of Φ on NT and ∇2
VU =

∇V∇U − ∇∇VU
, then RðV ,UÞZ behaves like a derivative.

Since dτ is closed, then it is ready to check that ∇2dðτÞ
ðV ,U , ZÞ = ∇2dðτÞðU , V , ZÞ, ∀ V , V , Z ∈ TNT : Now, for
a local orthonormal basis fe1, e2,⋯, e2qg on NT and for
a fixed point t ∈NT such that ∇ei

ðejÞðtÞ = 0, for 1 ≤ i, j ≤
2q + 1. If we specify ∇ei

ðVÞðtÞ = 0, for any V ∈ TNT , and
taking trace with respect to U and Z in the following
equation:

∇2d τð Þ U , V , Zð Þ = ∇2d τð Þ V ,U , Zð Þ, ð111Þ

and utilizing (110), we have

〠
q

i=1
∇2d τð Þ� �

ei, ej, V
� �

= −d Δ τð Þð Þ Vð Þ+Ric ∇,Vð Þ: ð112Þ

Further solving the left hand side of (112), it becomes

div Hessτð Þ Vð Þ + d Δ τð Þð Þ Vð Þ = Ric ∇τ, Vð Þ, ð113Þ

the above equation can be written in the form of an
operator as follows:

div Hessτð Þ + d Δ τð Þð Þ = Ric ∇τ,⋯ð Þ: ð114Þ

Since M =NT × ΦNθ is a compact orientable WP sub-
manifold, then on integrating
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Δ τð Þ +
ð
M
div Hessτð ÞdV =

ð
M
Ric ∇τ,⋯ð ÞdV , ð115Þ

where dV is the volume element.
Since ΔΦ = − div ð∇ΦÞ [26] and

Ð
M div ðVÞdV = 0 for

any V ∈ TNT . So, it is easy to conclude that
Ð
M div ðHessτÞ

dV = 0. Then,

Δ τð Þ =
ð
M
Ric ∇τ,⋯ð ÞdV : ð116Þ

Utilizing the above equation in (98), we have

〠
2q

i=1
〠
2p

j=1
σμ ei, ej
� �

 

2 = qp c − 1ð Þ sin2θ

− 2p csc2θ + 2 cot2θ
� �

∇ln Φk k2−2p
ð
M
Ric ∇ln Φ,⋯ð ÞdV :

ð117Þ

By assumption (108), we get

cos2θ + 2 cot2θ
� �

∇ln Φk k2 = 0: ð118Þ

From the above equation, it is evident that θ = π/2 orΦ is
constant, which proves the theorem.

5. Conclusion

We obtain the inequalities characterizing the existence of
WP-PSS submanifolds of Sasakian space forms via Hopf’s
Lemma. Furthermore, we gave an estimation of the squared
norm of the second fundamental form with regard to the
slant function and warping function. To strengthen our
results, we provided an example of a WP-PSS submanifold
in a Sasakian manifold. Moreover, some applications in the
form of the Dirichlet energy of the warping function are
derived. The results obtained may be helpful in further stud-
ies on the Dirichlet energy of smooth functions.

Abbreviations

WP: Warped product
WF: Warping function
AC: Almost contact
WP-PSS: Warped product pointwise semi slant

submanifold.
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