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Homotopy methods are powerful tools for solving nonlinear programming. Their global convergence can be generally established
under conditions of the nonemptiness and boundness of the interior of the feasible set, the Positive Linear Independent Constraint
Qualification (PLICQ), which is equivalent to the Mangasarian-Fromovitz Constraint Qualification (MFCQ), and the normal cone
condition. This paper provides a comparison of the existing normal cone conditions used in homotopy methods for solving
inequality constrained nonlinear programming.

1. Introduction

In this paper, we consider the following inequality con-
strained nonlinear programming (ICNLP) problem:

min f xð Þ,
s:t: gi xð Þ ≤ 0, i = 1,⋯,m,

ð1Þ

where x ∈ Rn is the variable, f : Rn ⟶ R and gi : R
n ⟶ R,

i = 1,⋯,m, are three times continuously differentiable.
Over the past few decades, the theory, algorithms, and

applications of nonlinear programming have been rapidly
developed, and many numerical methods have been pro-
posed, such as augmented Lagrangian methods, sequential
quadratic programming methods, reduced gradient methods,
interior point methods, and homotopy methods. Homotopy
methods are powerful numerical methods for solving
many nonlinear problems. The primary advantage of homo-
topy methods is that their global convergence can be estab-
lished under fairly weak assumptions, and the starting
points can be chosen rather freely. A comprehensive intro-
duction of the homotopy methods can be found in, e.g., the

books [1, 2]. The first homotopy method for solving nonlin-
ear programming was proposed for general convex program-
ming in [3]. Among these available homotopy methods for
solving nonlinear programming, most of them are designed
for solving nonconvex ICNLP problems.

In 1995, the combined homotopy interior point (CHIP)
method was proposed for solving nonconvex ICNLP prob-
lems in [4, 5]. Hereafter, many modified CHIP methods have
been proposed for nonconvex ICNLP problems. The global
convergence of these homotopy methods can be generally
established under three conditions on the original problem:
the nonemptiness and boundedness of the interior of the
feasible set; the Positive Linear Independent Constraint
Qualification (PLICQ), which is equivalent to the
Mangasarian-Fromovitz Constraint Qualification (MFCQ)
(see [6]); and one type of normal cone conditions, which
guarantees the boundedness of the homotopy path near the
starting hyperplane. It is well known that the first two condi-
tions are generally used in numerical methods for solving
nonlinear programming. The normal cone conditions are
generalization of the convexity of the feasible set and extend
these homotopy methods from convex programming to
nonconvex programming. In addition, a probability-one

Hindawi
Advances in Mathematical Physics
Volume 2020, Article ID 5483587, 10 pages
https://doi.org/10.1155/2020/5483587

https://orcid.org/0000-0002-2315-0736
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5483587


homotopy method was also proposed for solving noncon-
vex ICNLP problems in [7]; its global convergence was
established under the nonemptiness and boundedness of
a parametrized feasible set, Arrow-Hurwicz-Uzawa con-
straint qualification, and that the homotopy path does
not go to infinity near the starting hyperplane. In recent
years, these homotopy methods have been extended to
fixed point problems, variational inequalities, semidefinite
programming, multiobjective programming, constrained
sequential minimax problems, and so on.

In this paper, we present the typical normal cone condi-
tions for homotopy methods for solving ICNLP problems,
along with the corresponding homotopy maps and global
convergence.We give a comparison of four normal cone con-
ditions, including the normal cone condition, the quasinor-
mal cone condition, the pseudocone condition, and the
weak normal cone condition. Their relations are discussed
in detail for the first time. Some typical nonconvex sets are
presented. The comparison can help us to identify features
of these normal cone conditions and the corresponding
homotopy methods and may motivate us to give some
improved homotopy methods for specialized nonconvex
programming.

To obtain our results, we conclude this section with some
notations. Throughout this paper, Ω = fx ∈ Rn ∣ giðxÞ ≤ 0,
i = 1,⋯,mg represents the feasible set of the ICNLP
problem (1); Ω0 = fx ∈ RnjgiðxÞ < 0, i = 1,⋯,mg denotes
the interior of Ω; ∂Ω =ΩΩ0 means the boundary of Ω.
IðxÞ = fi ∈ f1,⋯,mg ∣ giðxÞ = 0g represents the active
index set of inequality constraints at x. Rm

+ and Rm
++

denote the nonnegative and positive quadrant of Rm,
respectively. I indicates the identity matrix. k·k denotes
the Euclidean norm. For a function F : Rn ⟶ Rm, F−1ðCÞ =
fx ∈ Rn ∣ FðxÞ ∈ Cg is the inverse of the set C ∈ Rm; the
n ×m matrix ∇FðxÞ, whose ði, jÞth element is ∂FjðxÞ/∂xi, is
the transpose of the Jacobian of F.

Assumption 1. Ω0 is nonempty and bounded.

Assumption 2. The Positive Linear Independent Constraint
Qualification holds: for any x ∈ ∂Ω, yi ≥ 0, i ∈ IðxÞ,

〠
i∈I xð Þ

yi∇gi xð Þ = 0, yi ≥ 0, i ∈ I xð Þ, imply yi = 0, i ∈ I xð Þ:

ð2Þ

2. Normal Cone Conditions and Homotopy
Methods for ICNLP Problems

There exist four typical normal cone conditions in homotopy
methods for solving ICNLP problems in literatures; related
results will be introduced in this section.

For the nonconvex ICNLP problem (1), the first homo-
topy method, called the combined homotopy interior point
(CHIP) method, was proposed in [4, 5]. The combined
homotopy map is constructed as

H x, y, tð Þ =
1 − tð Þ ∇f xð Þ+∇g xð Þyð Þ + t x − x0

� �
Yg xð Þ − tY0g x0

� �
 !

,

ð3Þ

where ðx, y, tÞ ∈Ω × Rm
+ × ½0, 1�, ðx0, y0Þ ∈Ω0 × Rm

++, Y and
Y0 are diagonal matrices with the ith diagonal elements yi
and y0i for i = 1,⋯,m, respectively. Under Assumption 1,
the assumption that f∇giðxÞ ∣ i ∈ IðxÞg has a full column
rank for any x ∈ ∂Ω, which can be replaced by Assumption
2, and the assumption that Ω satisfies the normal cone con-
dition (see Definition 3), for almost all ðx0, y0Þ ∈Ω0 × Rm

++,
the zero point set of (3) defines a smooth homotopy path
Γðx0,y0Þ ⊂Ω0 × Rm

++ × ð0, 1�, which starts from ðx0, y0, 1Þ and
approaches to the hyperplane t = 0. For any limit point ðx∗,
y∗, 0Þ of Γðx0,y0Þ, x

∗ is a KKT point of the problem (1), y∗ is
the corresponding Lagrange multiplier.

Definition 3. (normal cone condition (NCC), see [4, 5]). For
any x ∈ ∂Ω, if

x + 〠
i∈I xð Þ

yi∇gi xð Þ ∣ yi ≥ 0, i ∈ I xð Þ
( )\

Ω0 =∅, ð4Þ

then, Ω is said to satisfy the NCC.

According to Definition 3, the NCC means that, for any
x ∈ ∂Ω, the set fx0 − x ∣ x0 ∈Ω0g does not intersect with the
cone f∑i∈IðxÞ yi∇giðxÞ ∣ yi ≥ 0, i ∈ IðxÞg. Moreover, if gi : R

n

⟶ R, i = 1,⋯,m, are convex, then Ω satisfies the normal
cone condition; however, the reciprocal implication is not
true, a typical counterexample is Ω = fx ∈ R2∣−ðx1 − 4Þ2 −
x22 + 8 ≤ 0,−2x1 + x22 ≤ 0, x1 − 3 ≤ 0g (see Figure 1). In [8], a
modified CHIP method was presented. The homotopy map
is defined as

H x, y, tð Þ =
1 − tð Þ ∇f xð Þ+∇g xð Þy + tη xð Þy2� �

+ t x − x0
� �

Yg xð Þ − tY0g x0
� �

 !
,

ð5Þ

where ðx, y, tÞ ∈Ω × Rm
+ × ½0, 1�, ðx0, y0Þ ∈Ω0 × Rm

++, and ηðxÞ
is a positive independent map with respect to ∇gðxÞ (see
Definition 4). Under Assumption 1, the assumption that
f∇giðxÞ ∣ i ∈ IðxÞg are linear independent for any x ∈ ∂Ω,
which can be also replaced by Assumption 2, and the
assumption that Ω satisfies the quasinormal cone condi-
tion related to the positive independent map ηðxÞ (see
Definition 5), for almost all ðx0, y0Þ ∈Ω0 × Rm

++, the global
convergence of a smooth homotopy path Γðx0,y0Þ ⊂Ω0 ×
Rm
++ × ð0, 1� starting from ðx0, y0, 1Þ and approaching to

the hyperplane t = 0 can be established; then, a KKT point
x∗ with the corresponding Lagrange multiplier y∗ can be
obtained.
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Definition 4 (positive independent map, see [8]). If there exist
smooth maps ηiðxÞ: Rn ⟶ Rn for i = 1,⋯,m, such that, for
any x ∈ ∂Ω,

〠
i∈I xð Þ

yi∇gi xð Þ + αiηi xð Þð Þ = 0, yi ≥ 0, αi ≥ 0, i ∈ I xð Þ, imply yi

= 0, αi = 0, i ∈ I xð Þ,
ð6Þ

then, ηðxÞ = ðη1ðxÞ,⋯, ηmðxÞÞ is said to be a positive inde-
pendent map with respect to ∇gðxÞ.

Definition 5 (quasinormal cone condition (QNCC) [8]). If
there exists a smooth positive independent map ηðxÞ =
ðη1ðxÞ,⋯, ηmðxÞÞ with respect to ∇gðxÞ such that, for
any x ∈ ∂Ω,

x + 〠
i∈I xð Þ

αiηi xð Þ ∣ αi ≥ 0, i ∈ I xð Þ
( )\

Ω0 =∅, ð7Þ

then, Ω is said to satisfy the QNCC related to ηðxÞ.
According to Definition 5, the QNCCmeans that, for any

x ∈ ∂Ω, the set fx0 − x ∣ x0 ∈Ω0g does not intersect with the
cone f∑i∈IðxÞ αiηiðxÞ ∣ αi ≥ 0, i ∈ IðxÞg.

In [9], another modified CHIP method was proposed
with the homotopy map

H x, y, tð Þ =
1 − tð Þ ∇f xð Þ+∇g xð Þyð Þ + 〠

m

i=1
ηix, 1 − tð Þy2i

�
+ t x − x0
� �

Yg xð Þ − tY0g x0
� �

0
BB@

1
CCA,

ð8Þ

where ðx, y, tÞ ∈Ω × Rm
+ × ½0, 1�, ðx0, y0Þ ∈Ω0 × Rm

++, and ηðx,
ð1 − tÞy2Þ = ðη1ðx, ð1 − tÞy21Þ,⋯, ηmðx, ð1 − tÞy2mÞÞ is a consis-
tent hair map (see Definition 7). Similarly to the homotopy
methods in [1, 6], under Assumption 1, the assumption that
f∇giðxÞ ∣ i ∈ IðxÞg has a full column rank for any x ∈ ∂Ω, and
the assumption that Ω satisfies the pseudocone condition
with respect to the consistent hair map ηðx, zÞ (see Defini-
tion 8), the global convergence can be established.

Definition 6 (hair map, see [9]). For i = 1,⋯,m, the map
ηiðx, ziÞ: Rn × R+ ⟶ Rn is said to be a hair map of Ωi =
fx ∈ Rn ∣ giðxÞ ≤ 0g, if

(1) ηiðx, 0Þ = 0 and for any x ∈ ∂Ωi = ∂Ω ∩Ωi

ηi x, zið Þ = 0⇔ zi = 0, ð9Þ

(2) For any x ∈ ∂Ωi, lim
zi→∞

kηiðx, ziÞk =∞

Definition 7 (consistent hair map, see [9]). The map ηðx, zÞ
= ðη1ðx, z1Þ,⋯, ηmðx, zmÞÞ is said to be a consistent hair
map of Ω, if for any x ∈ ∂Ω,

(1) ηiðx, ziÞ is a hair map of Ωi for i = 1,⋯,m
(2) ∑i∈IðxÞ ðyi∇giðxÞ + ηiðx, ziÞÞ = 0, yi ≥ 0, zi ≥ 0 imply

yi = 0, zi = 0, i ∈ IðxÞ;
(3) kðy, zÞk⟶∞ implies k∑i∈IðxÞ ðyi∇giðxÞ + ηiðx, ziÞÞ

k⟶∞

Definition 8 (pseudocone condition (PCC), see [9]). If there
exists a consistent hair map ηðx, zÞ of Ω, such that for any
x ∈ ∂Ω,

x + 〠
i∈I xð Þ

ηi x, zið Þ ∣ zi ≥ 0, i ∈ I xð Þ
( )\

Ω0 =∅, ð10Þ

then, Ω is said to satisfy the PCC with respect to ηðx, zÞ.
According to Definition 8, the PCC means that, for any

x ∈ ∂Ω, the set fx0 − x ∣ x0 ∈Ω0g does not intersect with the
set f∑i∈IðxÞ ηiðx, ziÞ ∣ zi ≥ 0, i ∈ IðxÞg.

In [10], using the following aggregate function intro-
duced in [11, 12],

ĝθ x, tð Þ = θt ln 〠
m

i=1
exp gi xð Þ/θtð Þ, ð11Þ

where t > 0 is the smoothing parameter, the parameter
θ ∈ ð0, 1�, an aggregate constraint homotopy interior point
method was proposed. The aggregate constraint homotopy
map is defined as

2.5

2

1.5

1

0.5

–0.5

0
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–1.5

–2.5
–1.5 –0.5 0.5 1 1.5 2 2.5 3 3.50–1

–2

Figure 1: The set Ω = fx ∈ R2∣−ðx1 − 4Þ2 − x22 + 8 ≤ 0,−2x1 + x22
≤ 0, x1 − 3 ≤ 0g.
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H x, y, tð Þ =
1 − tð Þ ∇f xð Þ + y∇xĝθ x, tð Þð Þ + t x − x0

� �
yĝθ x, tð Þ − ty0ĝθ x0, 1

� �
 !

,

ð12Þ

where ðx, y, tÞ ∈Ω × R+ × ð0, 1�, ðx0, y0Þ ∈ bΩ × R++, and bΩ is
an opened subset ofΩ0. Under Assumption 1, the assumption
that f∇giðxÞ ∣ i ∈ IðxÞg has a full column rank for any x ∈ ∂Ω,
and the assumption thatΩ satisfies the weak normal cone con-
dition with respect to bΩ (see Definition 9), then, there exists a
θ ∈ ð0, 1� such that for any θ ∈ ð0, θ�, bΩ ⊂ΩθðtÞ0 = fx ∈ Rn ∣
ĝθðx, tÞ < 0g ⊂Ω0 for t ∈ ð0, 1�, for almost all ðx0, y0Þ ∈ bΩ ×
R++, the zero point set of (12) defines a smooth homotopy
path Γðx0,y0Þ, which starts from ðx0, y0, 1Þ and approaches
to the hyperplane t = 0. Moreover, let (x∗, y∗, 0) be any
limit point of Γðx0,y0Þ, and λ∗i = y∗yiðx∗, 0Þ (where yiðx∗, 0Þ
is a limit point of yiðx, tÞ = exp ðgiðxÞ/θtÞ/∑m

j=1 exp ðgjðxÞ/
θtÞ) for i = 1,⋯,m, then y∗ is finite, x∗ is a KKT point
of (1), and ðλ∗1 ,⋯, λ∗mÞ is the corresponding Lagrangian
multiplier.

Definition 9 (weak normal cone condition (WNCC) [10]). If
there exists an open subset bΩ ⊂Ω0 such that, for any x ∈ ∂Ω,

x + 〠
i∈I xð Þ

yi∇gi xð Þ ∣ yi ≥ 0, i ∈ I xð Þ
( )\ bΩ =∅, ð13Þ

then, Ω is said to satisfy the WNCC with respect to bΩ .
According to Definition 9, the WNCC means that there

exists an open subset bΩ ⊂Ω0 such that for any x ∈ ∂Ω,
the set fx0 − x ∣ x0 ∈ bΩg does not intersect with the cone
f∑i∈IðxÞ yi∇giðxÞ ∣ yi ≥ 0, i ∈ IðxÞg.

3. A Comparison of the Four Typical Normal
Cone Conditions

In this section, for the first time, we study the relations of the
four typical normal cone conditions introduced in Section 2,
and some typical nonconvex sets are introduced.

Proposition 10. If the PLICQ holds, the NCC implies the
QNCC and PCC.

Proof. Suppose that the PLICQ holds, then ηðxÞ = ð∇g1ðxÞ,
⋯,∇gmðxÞÞ is a positive independent map with respect to
∇gðxÞ by Definition 4, and ηðx, zÞ = ðz1∇g1ðxÞ,⋯, zm∇gm
ðxÞÞ is a consistent hair map of Ω by Definition 7. Then,
Ω satisfies the QNCC with respect to ηðxÞ by Definition 5,
and the PCC with respect to ηðx, zÞ by Definition 8.

Counterexample 3.2. The nonconvex set (see Figure 2) Ω =
fx ∈ R2 ∣ x61 − 3x41 + 3x21 + x2 − 1 ≤ 0,−x2 ≤ 0g.

The set Ω in Counterexample 3.2 satisfies the NCC.
However, for �x = ð1, 0Þ ∈ ∂Ω, we have Ið�xÞ = f1, 2g, ∇g1ð�xÞ
= ð0, 1Þ and ∇g2ð�xÞ = ð0,−1Þ, which means that the PLICQ

does not hold at ð1, 0Þ. Hence, there does not exist a positive
independent map ηðxÞ with respect to ∇gðxÞ by Definition 4,
and the consistent hair map ηðx, zÞ of Ω by the second item
of Definition 7. Therefore, the PLICQ is necessary in Propo-
sition 10.

Proposition 11. The NCC implies the WNCC.

Proof. By Definition 3 and Definition 9, if Ω satisfies the
NCC, Ω satisfies the WNCC with respect to any open subsetbΩ ⊂Ω0.

Counterexample 3.4. The nonconvex set (see Figure 3) Ω =
fx ∈ R2 ∣ giðxÞ ≤ 0, i = 1, 2, 3g, where

g1 xð Þ =
4 − x21 − x22, x1 < 0,
4 − x22, x1 ≥ 0,

(

g2 xð Þ = x21 + x22 − 16, x1 < 0,
x22 − 16, x1 ≥ 0,

(

g3 xð Þ = x1 − 4:

ð14Þ

The set Ω in Counterexample 3.4 satisfies the QNCC
with respect to the positive independent map ηðxÞ = ðð4 −
x1,−x2Þ,∇g2ðxÞ,∇g3ðxÞÞ, the PCC with respect to the consis-
tent hair map ηðx, zÞ = ðz1ð4 − x1,−x2Þ, z2∇g2ðxÞ, z3∇g3ðxÞÞ,
and the WNCC with respect to any open subset of fx ∈Ω ∣
g1ðxÞ ≤ 0, g2ðxÞ ≤ 0, x1 ≤ 0g. For �x = ð0, 2Þ ∈ ∂Ω with Ið�xÞ =
f1g and ∇g1ð�xÞ = ð0,−4Þ, we have �x + �y1∇g1ð�xÞ = ð0,−3Þ
∈Ω0 with �y1 = 5/4, which contradicts (4). Then, we know
that the NCC does not hold. Therefore, we have the fol-
lowing result.

2

1.5

0.5

–0.5

–1
–1.5 –0.5 0.5 1 1.50–1

0

1

Figure 2: The set in Counterexample 3.2.
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Remark 12. Any of the QNCC, PCC, and WNCC does not
imply the NCC.

Proposition 13. The QNCC implies the PCC.

Proof. If Ω satisfies the QNCC with respect to the positive
independent map ηðxÞ, we know that ηðx, zÞ = ðz1η1ðxÞ,⋯,
zmηmðxÞÞ is a consistent hair map ofΩ by Definition 7. Then,
Ω satisfies the PCC with respect to the consistent hair map
ηðx, zÞ by Definition 8.

Counterexample 3.7. The nonconvex set (see Figure 4) Ω =
fx ∈ R2 ∣ giðxÞ ≤ 0, i = 1,⋯, 10g, where

g1 xð Þ = −x2 + 2,  − 2 ≤ x1 ≤ 0, x2 ≥ −5,
g2 xð Þ = −x1 − x2 + 2, 0 ≤ x1 ≤ 1, x1 + x2 ≥ 0,
g3 xð Þ = −x2 + 1, 1 ≤ x1 ≤ 2, x2 ≥ −5,
g4 xð Þ = x1 − 2, 1 ≤ x2 ≤ 3,
g5 xð Þ = x2 − 3,
g6 xð Þ = −x1 − 3,
g7 xð Þ = −x2 − 6,
g8 xð Þ = x1 − 7:01,
g9 xð Þ = x2 + 5, x1 ≥ −2, x2 ≤ 1,
g10 xð Þ = x1 + 2, x1 ≤ 2,−5 ≤ x2 ≤ 2:

ð15Þ

For �x = ð0, 2Þ ∈ ∂Ω with Ið�xÞ = f1, 2g, and any positive
independent map ηðxÞ, there exists a �z ∈ R10

+ such that

�x + �z1η1ð�xÞ + �z2η2ð�xÞ ∈Ω0. Hence, the QNCC does not
hold. Define the consistent hair map ηðx, zÞ as

η1 x, z1ð Þ = �η1 x1, z1ð Þ − x, x1 ∈ −2, 0½ �, x2 = 2,

�η1 x1, z1ð Þ =
1 − z1ð Þ x1, 2ð Þ + z1 1, 1ð Þ, 0 ≤ z1 ≤ 1,
z1, ψ x1, z1ð Þð Þ, 1 < z1 < 2,
z1, 0:5ð Þ, z1 ≥ 2,

8>><
>>:

ð16Þ

where ψðu, vÞ = ðð1/u − 1Þ + 1Þv3 + ðð5/u − 1Þ − 9/2Þv2 + ðð8/
u − 1Þ + 6Þv − ð4/u − 1Þ − 3/2 satisfying

ψ u, 1ð Þ = 1,
ψ u, 2ð Þ = 0:5,

∂ψ u, 1ð Þ
∂v

= 1
u − 1 ,

∂ψ u, 2ð Þ
∂v

= 0,

ð17Þ

which means that �η1ðu, vÞ is continuously differentiable in
½−2, 0� × ½0,∞Þ. For any u ∈ ½−2, 0�, we have ð1/u − 1Þ +
1 ≥ 0, ∂ψðu, 1Þ/∂v = ð1/u − 1Þ < 0 and ∂ψðu, 2Þ/∂v = 0, and
hence

∂ψ u, vð Þ
∂v

= 3 1
u − 1 + 1
� �

v2 − 2 5
u − 1 −

9
2

� �
v + 8

u − 1
+ 6 < 0, v ∈ 1, 2ð Þ,

ð18Þ

6

5

4

3

2

1

–1

–2

–3

–4

–5

–6

–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6

0

Figure 3: The set in Counterexample 3.4.

4

2

0

–2

–4

–6

–8
–4 –2 0 2 4 6 8

Figure 4: The set in Counterexample 3.7.
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which means that ψðu, vÞ is monotone decreasing for v ∈
ð1, 2Þ. By using ψðu, vÞ, for any x ∈ ∂Ω with x1 ∈ ½0, 1�
and x2 = −x1 + 2, we define

η2 x, z2ð Þ = �η2 x, z2ð Þ − x,

�η2 x2, z2ð Þ =
1 − z1ð Þx + z2 1, 1ð Þ, 0 ≤ z1 ≤ 1,
z2, ψ 0, z2ð Þð Þ, 1 < z1 < 2,
z2, 0:5ð Þ, z1 ≥ 2,

8>><
>>:

ð19Þ

then, we know that �η2ðu, vÞ is continuously differentiable in
fðu, vÞ ∈ R2 ∣ u ∈ ½0, 1�, v = −u + 2g × ½0,∞Þ, and for any given
u ∈ ½0, 1�, �η2ðu, vÞ is monotone decreasing for v ∈ ð0, 2Þ. For
i = 3,⋯, 10,

η3 x, z3ð Þ = z3, 0ð Þ,
ηi x, zið Þ = zi∇gi xð Þ, i = 4,⋯, 8,
η9 x, z9ð Þ = z9, 0ð Þ,

η10 x, z10ð Þ = z10 10,−5 − x2ð Þ:

ð20Þ

For x ∈ ∂Ω with #ðIðxÞÞ = 1, we have that (10) holds by
the definition of ηðx, zÞ. For any x = ð2, 3Þ, ð−3, 3Þ, ð−3,−6Þ,
ð7:01,−6Þ ∈ ∂Ω, we know that (4) holds. Hence, by Proposi-
tion 10 and the definitions of ηiðx, ziÞ, i = 4,⋯, 8, we obtain
that (10) also holds.

For �x = ð0, 2Þ ∈ ∂Ω with Ið�xÞ = f1, 2g, and any z1 ≥ 0,
z2 ≥ 0, we know

η1 �x, z1ð Þ = η2 �x, z2ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 0, 1½ �, v = −u
� �[

� u, vð Þ ∈ R2 ∣ u ∈ 1,∞ð Þ, v ∈ −
3
2 ,−1

� �	 

:

ð21Þ

Then, we have

�x + η1 �x, z1ð Þ + η2 �x, z2ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 0, 2½ �, v = −u + 2
� �[

� u, vð Þ ∈ R2 ∣ u ∈ 1,∞ð Þ, v ∈ −
1
2 , 1

� �	 
[
� u, vð Þ ∈ R2 ∣ u ∈ 2,∞ð Þ, v ∈ −1, 0½ Þ� �

,
ð22Þ

and hence, �x + η1ð�x, z1Þ + η2ð�x, z2Þ∈Ω0. For �x = ð1, 1Þ ∈ ∂Ω
with Ið�xÞ = f2, 3g, and any z2 ≥ 0, z3 ≥ 0, we know

η2 �x, z2ð Þ ∈ u, vð Þ ∈ R2∣∈ 0,∞½ Þ, v ∈ −
1
2 , 0

� �	 

, η3 �x, z3ð Þ = z3, 0ð Þ:

ð23Þ

Then, we have

�x + η2 �x, z2ð Þ + η3 �x, z3ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 1,∞½ Þ, v ∈ 1
2 , 1
� �	 


,

ð24Þ

and hence, �x + η2ð�x, z2Þ + η3ð�x, z3Þ∈Ω0. For �x = ð2, 1Þ ∈ ∂Ω
with Ið�xÞ = f3, 4g, and any z3 ≥ 0, z4 ≥ 0, we know

η3 �x, z3ð Þ = z3, 0ð Þ, η4 �x, z4ð Þ = z4, 0ð Þ: ð25Þ

Then, we have

�x + η3 �x, z3ð Þ + η4 �x, z4ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 2,∞½ Þ, v = 1
� �

,
ð26Þ

and hence, �x + η3ð�x, z3Þ + η4ð�x, z4Þ∈Ω0. For �x = ð7:01,−5Þ
∈ ∂Ω with Ið�xÞ = f8, 9g, and any z8 ≥ 0, z9 ≥ 0, we know

η8 �x, z8ð Þ = z8, 0ð Þ, η9 �x, z9ð Þ = z9, 0ð Þ: ð27Þ

Then, we have

�x + η8 �x, z8ð Þ + η9 �x, z9ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 7:01,∞½ Þ, v = −5
� �

,
ð28Þ

and hence, �x + η8ð�x, z8Þ + η9ð�x, z9Þ∈Ω0. For �x = ð−2,−5Þ ∈
∂Ω with Ið�xÞ = f9, 10g, and any z8 ≥ 0, z9 ≥ 0, we know

η9 �x, z9ð Þ = z9, 0ð Þ, η10 �x, z10ð Þ = 10z10, 0ð Þ: ð29Þ

Then, we have

�x + η9 �x, z9ð Þ + η10 �x, z10ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ −2,∞½ Þ, v = −5
� �

,
ð30Þ

and hence, �x + η9ð�x, z9Þ + η10ð�x, z10Þ∈Ω0. For �x = ð−2, 2Þ ∈
∂Ω with Ið�xÞ = f1, 10g, and any z1 ≥ 0, z10 ≥ 0, we know

η1 �x, z1ð Þ ∈ u, vð Þ ∈ R2 ∣ u ∈ 0, 3½ �, v = −
1
3 u

	 
[
� u, vð Þ ∈ R2 ∣ u ∈ 3,∞ð Þ, v ∈ −

3
2 ,−1

� �	 

,

η10 �x, z10ð Þ = z10 10,−7ð Þ: ð31Þ

Then, we have

�x + η1 �x, z1ð Þ + η10 �x, z10ð Þ ∈
� u, vð Þ ∈ R2 ∣ u ∈ −2,∞½ Þ,− 7

10 u +
3
5 ≤ v≤−

1
3 u +

4
3

	 
[
� u, vð Þ ∈ R2 ∣ u ∈ 1,∞ð Þ,− 7

10 u +
6
5 < v < 1

	 

,

ð32Þ
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and hence, �x + η1ð�x, z1Þ + η10ð�x, z10Þ∈Ω0. Therefore, the PCC
holds with respect to the consistent hair map ηðx, zÞ, and
hence we have the following result.

Remark 14. The PCC does not imply the QNCC.

Counterexample 3.9. The nonconvex set (see Figure 5) Ω =
fx ∈ R2 ∣ giðxÞ ≤ 0, i = 1,⋯, 5g, where

g1 xð Þ = −x1 − 6,
g2 xð Þ = x1 − 6,
g3 xð Þ = −x2 − 10,
g4 xð Þ = x2 − 10,

g5 xð Þ =
−
x21
25 −

x22
81 + 1, x1 <

5
ffiffiffi
2

p

2 ,

ffiffiffi
2

p
−
1
5 x1

� �2
−
x22
81 , x1 ≥

5
ffiffiffi
2

p

2 :

8>>><
>>>:

ð33Þ

The set Ω in Counterexample 3.9 satisfies the QNCC
with respect to the positive independent map ηðxÞ = ð∇g1
ðxÞ,⋯,∇g4ðxÞ, ð6 − x1,−x2ÞÞ, and the PCC with respect to
the hair map ηðx, zÞ = ðz1∇g1ðxÞ,⋯, z4∇g4ðxÞ, z5ð6 − x1,−
x2Þ. For any x0 ∈Ω0, let k1ðxÞ = ð∂g5ðxÞ/∂x2Þ/ð∂g5ðxÞ/∂x1Þ
for x ∈ fx ∈ ∂Ω ∣ ð∂g5ðxÞ/∂x1Þ ≠ 0g, k2ðxÞ = x2 − x02/x1 − x01
for x ∈ fx ∈ ∂Ω ∣ x1 − x01 ≠ 0g. For convenience, we rewrite
Ω0 as Ω0 = �Ω1

S �Ω2
S �Ω3

S �Ω4
S �Ω5

S �Ω6 with �Ω1 = fðu,
vÞ ∈Ω0 ∣ u > 0, v > 0g, �Ω2 = fð0, vÞ ∈Ω0 ∣ v > 0g, �Ω3 = fðu, vÞ
∈Ω0 ∣ u < 0, v ≥ 0g, �Ω4 = fðu, vÞ ∈Ω0 ∣ u < 0, v ≤ 0g, �Ω5 =
fð0, vÞ ∈Ω0 ∣ v < 0g, �Ω6 = fðu, vÞ ∈Ω0 ∣ u > 0, v < 0g.

For any x0 ∈ �Ω2, �y5 = 9ðx02 + 9Þ/2 > 0, and �x = ð0,−9Þ ∈ ∂Ω
with Ið�xÞ = f5g, we have

�x + �y5∇g5 �xð Þ = 0,−9ð Þ + 9 x02 + 9
� �

2 0, 29

� �
= x0: ð34Þ

For any x0 ∈ �Ω5, let �y5 = 9ð9 − x02Þ/2 > 0, �x = ð0, 9Þ ∈ ∂Ω
with Ið�xÞ = f5g, we have

�x + �y5∇g5 �xð Þ = 0, 9ð Þ + 9 9 − x02
� �

2 0,− 2
9

� �
= x0: ð35Þ

For any x0 ∈ �Ω3 and x ∈ fx ∈ ∂Ω ∣ g5ðxÞ = 0, 0 < x1 ≤ 5ffiffiffi
2

p
/2, x2≤−9

ffiffiffi
2

p
/2g, k1ðxÞ and k2ðxÞ reduce to �k1ðx1Þ = −5ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25 − x21
p

/9x1 and �k2ðx1Þ = −9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − x21

p
− 5x02/5ðx1 − x01Þ,

respectively. By the continuity of �k1ðx1Þ and �k2ðx1Þ on ð0, 5ffiffiffi
2

p
/2Þ, lim

x1→0+
ð�k1ðx1Þ − �k2ðx1ÞÞ→ −∞<0, �k1ð5

ffiffiffi
2

p
/2Þ − �k2ð5ffiffiffi

2
p

/2Þ > 0 coming from �k1ð5
ffiffiffi
2

p
/2Þ = −5/9 and �k2ð5

ffiffiffi
2

p
/2Þ

∈ ð−9/5 − 2
ffiffiffi
2

p
, −9/47ð6 ffiffiffi

2
p

− 5Þ�, there exists an �x1 ∈ ð0, 5ffiffiffi
2

p
/2Þ such that k1ð�x1Þ = k2ð�x1Þ, which means

25 �x1 − x01
� �
2�x1

= 81
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
+ 45x02

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p : ð36Þ

Then, for �x = ð�x1,−9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x21

p
/5Þ ∈ ∂Ω with Ið�xÞ = f5g,

�y5 = 25ð�x1 − x01Þ/2�x1 = ð81 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
+ 45x02Þ/ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p Þ
> 0, we have

�x + �y5∇g5 �xð Þ = �x1,−
9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
5

 !
+ �y5 −

2�x1
25 , 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
45

 !

= �x1 −
25 �x1 − x01
� �
2�x1

2�x1
25 ,− 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
5

 

+ 81
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
+ 45x02

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
45

!

= x01,−
9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
5 + 9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25 − �x12

p
+ 5x02

5

 !
= x0

ð37Þ

Analogously, for any x0 ∈ �Ω1 ⊂ fx ∈ R2 ∣ ð−x1, x2Þ ∈ �Ω3g,
�Ω4 and �Ω6 ⊂ fx ∈ R2∣−x ∈ �Ω3g, there exist an �x ∈ ∂Ω with
Ið�xÞ = f5g and a �y5 > 0 such that

�x + �y5∇g5 �xð Þ = x0: ð38Þ

Therefore, the WNCC does not hold, and hence we have
the following result.

Remark 15. The QNCC or PCC does not imply the WNCC.
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Figure 5: The set in Counterexample 3.9.
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Counterexample 3.11. The nonconvex set (see Figure 6) Ω =
fx ∈ R2 ∣ giðxÞ ≤ 0, i = 1,⋯, 9g, where

g1 xð Þ = −x1,
g2 xð Þ = x1 − 6,
g3 xð Þ = −x2,
g4 xð Þ = x2 − 4,
g5 xð Þ = −x1 − x2 + 7, 4 ≤ x1 ≤ 6, x1 + x2 ≥ 6,
g6 xð Þ = x1 + x2 − 6, x1 + x2 ≤ 7,4:5 ≤ x2 ≤ 6,
g7 xð Þ = x1 − 4, x1 ≤ 4, 1 ≤ x2 ≤ 3,
g8 xð Þ = −x1 + 4:5, x1 ≥ 4, 1 ≤ x2 ≤ 1:5,
g9 xð Þ = x2 − 1, 4 ≤ x1 ≤ 4:5, x2 ≤ 2:

ð39Þ

The set Ω in Counterexample 3.11 satisfies the WNCC
with respect to any open subset of fx ∈ R2 ∣ x1 > 0, 0 < x2 < 1,
x1 − x2 − 1 < 0g ⊂Ω0. For �x = ð4:5,1:4Þ ∈ ∂Ω with Ið�xÞ =
f8g and ∇g8ð�xÞ = ð−1, 0Þ, and any hair map ηðx, zÞ satisfy-
ing (10), we have �x + η8ð�x, 0Þ = �x and lim

z8→∞
k�x + η8ð�x, z8Þk =

∞ by Definition 6. Hence, there exists a �z8 > 0 such that
�x + η8ð�x, �z8Þ ∈ fx ∈ R2 ∣ 4:6 ≤ x1 ≤ 5:6, x2 = 1:4g. Then, we
know η8ð�x, �z8Þ ∈ fx ∈ R2 ∣ 0:1 ≤ x1 ≤ 1:1, x2 = 0g and �y8∇g8
ð�xÞ + η8ð�x, �z8Þ = 0 with �y8 = ðη8ð�x, �z8ÞÞ1 > 0, which contra-
dicts the second item of Definition 7. Therefore, there
does not exist a consistent hair map ηðx, zÞ with respect
to Ω to satisfy the PCC, and the QNCC also does not hold
by Proposition 13. Then, we obtain the following result.

Remark 16. The WNCC does not imply the QNCC or PCC.

In conclusion, we show the relations among the four
typical normal cone conditions in Figure 7. It is noted that
there still exist many nonconvex sets satisfying none of
existing normal cone conditions, such as the nonconvex
set in Counterexample 3.13.

Counterexample 3.13. The nonconvex set (see Figure 8)
Ω = fx ∈ R2∣−x21 − x22 + 2:25 ≤ 0, x21 + x22 − 9 ≤ 0g.

4. The Global Convergence of the Homotopy
Methods for Solving ICNLP

As shown in Section 2, the global convergence of these
homotopy methods can be established under three condi-
tions. In this section, we present some comments for these
conditions.

The boundedness of Ω0 ensures that the variable x in
the homotopy path keeps bounded. For Example 4.1, Ω0 =
fx ∈ R2 ∣ x21 + x2 < 0g is unbounded, we have x⟶ ð−∞, −
∞Þ with y⟶ 0 and t→ 0 for the starting point x0 = ð0,−1Þ
with y0 = 1 in the homotopy path defined by the CHIP
method. Since the real-world ICNLP problems generally
have the optimal solutions at finity, the variable x in the
homotopy path always keeps bounded even if Ω0 is
unbounded. For Example 4.2, Ω0 = fx ∈ R2 ∣ x21 − x2 < 0g is
unbounded, but we have x⟶ ð−0:5,0:25Þ with y⟶ 1
and t⟶ 0 for the starting point x0 = ð0, 1Þ with y0 = 1
in the homotopy path defined by the CHIP method.

Example 4.1.

min
x∈R2

f xð Þ = x1 + x2,

s:t: g xð Þ = x21 + x2 ≤ 0:
ð40Þ

Example 4.2.

min
x∈R2

f xð Þ = x1 + x2,

s:t: g xð Þ = x21 − x2 ≤ 0:
ð41Þ

The PLICQ (MFCQ) is the most widely used constraint
qualification for the ICNLP problems, it ensures that the
variable y in the homotopy path keeps bounded. For
Example 4.3, the PLICQ does not hold at ð0,−1Þ ∈ ∂Ω, we
have x⟶ ð0,−1Þ that is not a KKT point, y⟶ ð0,+∞,+
∞Þ and t⟶ 0 for the starting point x0 = ð−2, 0Þ with y0 =
ð1, 1, 1Þ, and x⟶ ð2:8242,−1Þ, y⟶ ð0:1768,0, 0:6464Þ
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Figure 6: The set in Counterexample 3.11.
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Figure 7: Relations among the four typical normal cone conditions.
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and t⟶ 0 for the starting point x0 = ð2, 0Þwith y0 = ð1, 1, 1Þ
in the homotopy path defined by the CHIP method.

Example 4.3.

min
x∈R2

f xð Þ = −x1 + x2,

s:t:
g1 xð Þ = x21 + x22 − 9 ≤ 0,
g2 xð Þ = −x21 − x22 + 1 ≤ 0,
g3 xð Þ = −x2 − 1 ≤ 0:

ð42Þ

The normal cone conditions and the PLICQ ensure that
the variable y in the homotopy path keeps bounded when
the homotopy path tends to the hyperplane fðx, y, 1Þ ∣ ðx, yÞ
∈Ω × Rm

+ g. Although our numerical experiences show that
these homotopy methods always globally converge even if
the normal cone conditions do not hold, the normal cone
conditions are important to establish the global convergence
of these homotopy methods in theory. For Example 4.4, the
normal cone conditions do not hold for any x ∈ fx ∈ R2 ∣
x21 + x22 = 1g ⊂ ∂Ω, but we have x⟶ ð2,−2Þ, y⟶ ð0:25,0Þ
and t⟶ 0 for all tested starting points x0 ∈Ω0 with y0 =
ð1, 1Þ in the homotopy path defined by the CHIP method.

Example 4.4.

min
x∈R2

f xð Þ = −x1 + x2,

s:t:
g1 xð Þ = x21 + x22 − 8 ≤ 0,
g2 xð Þ = −x21 − x22 + 1 ≤ 0:

ð43Þ

5. Conclusion

In this paper, we provide a comparison of four typical normal
cone conditions used in homotopy methods for solving
inequality constrained nonlinear programming. The NCC
holds for convex sets and a class of nonconvex sets. The
WNCC, QNCC, and PCC are more weak than the NCC.
However, the NCC is more convenient to use than the
WNCC, QNCC and PCC. For the feasible set satisfying the
QNCC or PCC, some auxiliary maps should be constructed
in the homotopy maps. For the feasible set satisfying the
WNCC, the starting point for the homotopy methods should
be chosen from a special open subset of the feasible set. On
the other hand, except for few special nonconvex sets, there
does not exist a general way of checking a set to satisfy the
NCC or construct the open subset, the positive independent
map and the consistent hair map for the WNCC, QNCC,
and PCC, respectively.
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