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The aim of this paper is to establish the existence of solutions for singular double-phase problems depending on one parameter.
This work improves and complements the existing ones in the literature. There seems to be no results on the existence of
solutions for singular double-phase problems.

1. Introduction and Main Results

The study of various mathematical problems involving the
double-phase operator has become very attractive in recent
decades. The existence and multiplicity of solutions of
double-phase Dirichlet problems has been studied by sev-
eral authors (see, e.g., [1–8]); in particular, for the eigen-
values of the double-phase operator, see [7]. For other
double-phase problems with variable exponents, there are
the works of Zhang and Radulescu [9], Shi et al. [10], and
Cencelj et al. [11].

But up to now, to the best of our knowledge, no paper dis-
cussing the existence of solutions for singular double-phase
problems via critical point theory can be found in the existing
literature. In order to fill in this gap, we study double-phase
problems from a more extensive viewpoint. More precisely,
we are going to prove that problem ðPλÞ has at least one solu-
tion. To the best of our knowledge, this is one of the first
works which combines a singular term and indefinite term
in one problem.

This paper is concerned with the existence of solutions to
the following singular double-phase problem:

whereΩ is a smooth bounded domain inℝN ,N ≥ 2, 0 < θ < 1,
λ ∈ℝ, a : �Ω↦ ½0, +∞Þ is Lipschitz continuous, and b is a
given measurable function. The precise conditions on the data
will be presented later.

Problems of the above type arise for instance in nonlinear
elasticity. The main reasons are to describe the behavior of
Lavrentiev’s phenomenon; we refer to [12–14]. In fact, Zhi-
kov intended to provide models for strongly anisotropic

materials in the context of homogenization. In particular,
he considered the following functional:

ð
Ω

∇uj jp + a xð Þ ∇uj jq� �
dx, 0 ≤ a xð Þ ≤ L, 1 < p < q, ð2Þ

where the modulating coefficient aðxÞ dictates the geometry
of the composite made of two differential materials, with

−div ∇uj jp−2∇u + a xð Þ ∇uj jq−2∇u� �
= b xð Þ uj j−θ−1u + λf x, uð Þ, inΩ,

u = 0, on ∂Ω,

(
  Pλð Þ, ð1Þ
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hardening exponents p and q, respectively. Recently, there
is a wide literature on the regularity theory for minimizers
of variational problems and solutions of differential equa-
tions with the double-phase operator; far from being com-
plete, we refer the readers to [15–21], respectively, and
references therein.

In the entire paper, we suppose the following
assumptions:

HðaÞ: a : �Ω↦ ½0, +∞Þ is Lipschitz continuous and 1 <
p < q <N are chosen such that ðq/pÞ < 1 + ð1/NÞ.

HðbÞ: b ∈ Lp/ðp+θ−1ÞðΩÞ such that bðxÞ > 0 in Ω.
Hð f Þ1: f : Ω ×ℝ⟶ℝ is a continuous function such

that for a.a. x ∈Ω, f ðx, 0Þ = 0, and

(i) there exists positive measurable subsets Ω1 ⊂Ω and
c ∈ Ls1ðΩÞ such that cðxÞ ≥ 0 on Ω1, and

lim
t→0

f x, tð Þ
c xð Þ tj jr1−2t = 0 uniformly for a:a:x ∈Ω, ð3Þ

where 1 < r1 < p <N < s1;

(ii) there exists d ∈ Ls2ðΩÞ such that dðxÞ > 0 on Ω, and

lim
t→+∞

f x, tð Þ
d xð Þ tj jr2−2t = 0 uniformly for a:a:x ∈Ω,

ð4Þ

where 1 < r2 < p <N < s2;

(iii) there exists M > 0 such thatð
Ω

F x, tð Þdx > 0, ∀∣t∣ >M, ð5Þ

where Fðx, tÞ = Ð t0 f ðx, sÞds.
Example 1. The following function satisfies hypothesesHð f Þ1:

f x, tð Þ =
c xð Þ tj jp−2t − tj jq−2t� �

, if ∣t∣ ≤ 1,

d xð Þ tj jα−2t − t
∣t ∣

� �
, if ∣t∣ ≥ 1,

8><
>: ð6Þ

with 1 < α < r2.

We are now in the position to state our main results.
Firstly, problem ðPλÞ has a solution when λ ≤ 0.

Theorem 1. Assume that HðaÞ, HðbÞ, and Hð f Þ1 hold. Then
for all λ ≤ 0, problem ðPλÞ has at least one nontrivial weak
solution with negative energy.

Moreover, we also show that problem ðPλÞ has a solution
when λ > 0. In order to do this task, the following conditions
are needed:

Hð f Þ2: f : Ω ×ℝ⟶ℝ is a Carathéodory function such
that for a.a. x ∈Ω, f ðx, 0Þ = 0, and

(i) there exists C > 0 and d ∈ Ls2ðΩÞ such that

f x, tð Þ ≤ Cd xð Þ tj jr2−2t, ∀ x, tð Þ ∈Ω ×ℝ, ð7Þ

where 1 < r2 < p < s2;

(ii) there exists a positive measurable subsetΩ1 ⊂Ω such
that

f x, tð Þ, d xð Þ > 0,∀x ∈Ω1,∀t > 0: ð8Þ

Example 2. The following functions satisfy hypothesesHð f Þ2:

f1 x, tð Þ = Cd xð Þ tj jr2−2t,

f2 x, tð Þ =

Cd xð Þtp−1, if t ∈ 0, 1½ �,
Cd xð Þtr2−1, if t ∈ 1,+∞½ Þ,
−Cd xð Þ −tð Þr2−1, if t ∈ −1, 0½ �,
−Cd xð Þ −tð Þp−1, if t∈ −∞,−1ð �:

8>>>>><
>>>>>:

ð9Þ

Theorem 2. Assume that HðaÞ, HðbÞ, and Hð f Þ2 hold. Then
for all λ ≥ 0, problem ðPλÞ has at least one nontrivial weak
solution with negative energy.

The rest of this paper is organized as follows. In Section 2,
we present some necessary preliminary knowledge on space
W1,H

0 ðΩÞ. In Section 3, the proof of the main results is given.

2. Preliminaries

In order to discuss problem ðPÞ, we need some facts on space
W1,H

0 ðΩÞ which are called Musielak-Orlicz-Sobolev spaces.
For this reason, we will recall some properties involving the
Musielak-Orlicz spaces, which can be found in [7, 22–24]
and references therein.

Denote byNðΩÞ the set of all generalizedN-function. For
1 < p < q and 0 ≤ að·Þ ∈ L1ðΩÞ, we define Hðx, tÞ = tp + aðxÞ
tq, ∀ðx, tÞ ∈Ω × ½0, +∞Þ: It is clear that H ∈NðΩÞ is a locally
integrable function and Hðx, 2tÞ ≤ 2qHðx, tÞ, ∀ðx, tÞ ∈Ω × ½0,
+∞Þ which is called condition ðΔ2Þ.

The Musielak-Orlicz space LHðΩÞ is defined by

LH Ωð Þ = u : Ω⟶ℝmeasurable :
ð
Ω

H x, uj jð Þdx < +∞
� �

,

ð10Þ

endowed with the Luxemburg norm jujH = inf fλ > 0 :
Ð
Ω

Hðx, ju/λjÞdx ≤ 1g: The Musielak-Orlicz-Sobolev space
W1,HðΩÞ is defined by

W1,H Ωð Þ = u ∈ LH Ωð Þ: ∇uj j ∈ LH Ωð Þ� 	
, ð11Þ

and it is equipped with the norm kuk = jujH + j∇ujH : We
denote by W1,H

0 ðΩÞ the completion of C∞
0 ðΩÞ in W1,HðΩÞ.

With these norms, the spaces LHðΩÞ, W1,H
0 ðΩÞ, and W1,H
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ðΩÞ are separable reflexive Banach spaces (see [7] for the
details).

Proposition 3. ([1], Proposition 2.1).
Set ρHðuÞ =

Ð
Ω
ðjujp + aðxÞjujqÞdx: For u ∈ LHðΩÞ, we

have

(i) For u ≠ 0, jujH = λ⇔ ρHðu/λÞ = 1

(ii) jujH < 1ð= 1;>1Þ⇔ ρHðuÞ < 1ð= 1;>1Þ
(iii) If jujH ≥ 1, then jujpH ≤ ρHðuÞ ≤ jujqH
(iv) If jujH ≤ 1, then jujqH ≤ ρHðuÞ ≤ jujpH

Proposition 4. ([7], Proposition 2.15, Proposition 2.18).

(1) If 1 ≤ s ≤Np/ðN − pÞ, then the embedding from W1,H
0

ðΩÞ to LsðΩÞ is continuous. In particular, if s ∈ ½1,N
p/ðN − pÞÞ, then the embedding W1,H

0 ðΩÞ↪LsðΩÞ is
compact

(2) Assume that HðaÞ holds. Then, Poincare’s inequality
holds; that is, there exists a positive constant C0 such
that jujH ≤ C0kuk, ∀u ∈W1,H

0 ðΩÞ

By the above Proposition, there exists cτ > 0 such that
jujτ ≤ cτkuk, ∀u ∈WH

0 ðΩÞ, where jujτ denotes the usual
norm in LτðΩÞ for all 1 ≤ τ <Np/ðN − pÞ. It follows from
(2) of Proposition 4 that j∇ujH is an equivalent norm in
W1,H

0 ðΩÞ. We will use the equivalent norm in the following
discussion and write kuk = j∇ujH for simplicity.

In order to discuss the problem ðPÞ, we need to define a
functional in W1,H

0 ðΩÞ:

J uð Þ =
ð
Ω

1
p
∇uj jp + a xð Þ

q
∇uj jq

� �
dx: ð12Þ

We know that (see [25], P63, example) J ∈ C1ðW1,H
0 ðΩÞ,

ℝÞ and the double-phase operator

−div ∇uj jp−2∇u + a xð Þ ∇uj jq−2∇u� �
, ð13Þ

is the derivative operator of J in the weak sense. More-
over, similar to the proof of Theorem 3.1 in [25], we
know that the energy functional J is sequentially weakly
lower semicontinuous.

3. Variational Setting and Proof of the
Main Results

For any λ ∈ℝ and each u ∈ E, we define

φλ uð Þ = J uð Þ −
ð
Ω

b xð Þ
1 − θ

uj j1−θdx − λ
ð
Ω

F x, uð Þdx, ð14Þ

where JðuÞ = Ð
Ω
ðð1/pÞj∇ujp + ðaðxÞ/qÞj∇ujqÞdx. By using

Hð f Þ1, we get r1 < s1r1/ðs1 − 1Þ <Np/ðN − pÞ and r2 < s2r2/
ðs2 − 1Þ <Np/ðN − pÞ. Also, by Proposition 4 (1) we deduce
that embeddings E↪Ls1r1/ðs1−1ÞðΩÞ and E↪Ls2r2/ðs2−1ÞðΩÞ are
compact and continuous. Furthermore, there exists a con-
stant C0 > 0 such that

max uj js1r1/ s1−1ð Þ, uj jp, uj js2r2/ s2−1ð Þ
n o

≤ C0 uk k, ∀u ∈ E:

ð15Þ

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. To complete the proof of the main result,
we need to consider the following three steps.

Step 1.We first show that for every λ ≤ 0, the functional φλ is
coercive on E.

Let λ ≤ 0 be fixed. Put ΩM = �Ω × ½−M,M�. Clearly, from
the continuity of f , there exists KM > 0 such that

KM = max
x,tð Þ∈ΩM

f x, tð Þj j: ð16Þ

Thus, we deduce that for any x ∈Ω and ∣t ∣ ≤M,

F x, tð Þj j =
ðt
0
f x, sð Þds










 ≤
ðt
0
f x, sð Þj jds ≤MKM: ð17Þ

By virtue of assumption Hð f Þ1 (iii), (15), (17), and Prop-
osition 3, one has for any u ∈ E with kuk > 1

φλ uð Þ ≥ 1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð Þ uj j1−θ



 




p/ 1−θð Þ

− λ
ð

u xð Þj j≤M
F x, uð Þdx − λ

ð
u xð Þj j>M

F x, uð Þdx

≥
1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð Þ uj j1−θp + λMKM Ωj j

≥
1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð ÞC
1−θ
0 uk k1−θ + λMKM Ωj j:

ð18Þ

Since 0 < θ < 1 and 1 − θ < p, so this implies φλðuÞ⟶
+∞ as kuk⟶ +∞. The proof of Step 1 is now completed.

Step 2. We show that there exists ξ ∈ E with ξ > 0, φλðtξÞ < 0
for t > 0 small enough.

Let ξ ∈ C∞
0 ðΩÞ such that supp ðξÞ ⊂Ω1 ⊂Ω, ξ = 1 in a

subsetΩ0 ⊂ supp ðξÞ, and 0 ≤ ξ ≤ 1 inΩ1. Thus, by condition
Hð f Þ1 (i), it follows that there exists t0 ∈ ð0, 1Þ such that

F x, tξ xð Þð Þ ≤ c xð Þ
r1

tξ xð Þj jr1 ≤ c xð Þ tξ xð Þj jr1 , ∀t ∈ 0, t0ð Þ, x ∈Ω:

ð19Þ
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Hence, for any t ∈ ð0, t0Þ, from HðbÞ and Hð f Þ1 (i), we
deduce that

φλ tξð Þ ≤ tp

p
max ξk kp, ξk kq� 	

−
t1−θ

1 − θ

ð
Ω

b xð Þ ξj j1−θdx − λ
ð
Ω

F x, tξð Þdx

≤
tp

p
max ξk kp, ξk kq� 	

−
1

1 − θ

ð
Ω

b xð Þ tξj j1−θdx

− λ tj jr1
ð
Ω1

c xð Þ ξj jr1dx

≤ tr1 max ξk kp, ξk kq� 	
− λ
ð
Ω1

c xð Þ ξj jr1dx
" #

−
t1−θ

1 − θ

ð
Ω

b xð Þ ξj j1−θdx:

ð20Þ

Since r1 > 1 − θ, we have φλðtξÞ < 0 for t < t1 with

0 < t1 < min t0,
1/ 1 − θð Þð ÞÐΩ b xð Þ ξj j1−θdx

max ξk kp, ξk kq� 	
− λ
Ð
Ω1

c xð Þ ξj jr1dx

 !1/ r1+θ−1ð Þ8<
:

9=
;:

ð21Þ

The proof of Step 2 is now complete.

Step 3. We show that there exists uλ ∈ E such that φλðuλÞ =
inf
u∈E

φλðuÞ for any λ ≤ 0.
Let funλg ⊂ E be a minimizing sequence of φλ. Then, using

Step 1, we get that funλg is a bounded sequence. So, there
exists uλ ∈ E such that, up to a subsequence,

unλ ⇀ uλ in E,
unλ ⟶ uλ in Lp Ωð Þ,

unλ xð Þ⇀ uλ xð Þ a:e:inΩ:

ð22Þ

Recall that J is sequentially weakly lower semicontinuous,
and so we deduce that

J uλð Þ ≤ lim inf
n→+∞

J unλð Þ: ð23Þ

Now, using Hölder’s inequality, we get that, as n⟶ +∞,

ð
Ω

b xð Þ unλj j1−θdx ≤
ð
Ω

b xð Þ uλj j1−θdx +
ð
Ω

b xð Þ unλ − uλj j1−θdx

≤
ð
Ω

b xð Þ uλj j1−θdx

+ bj jp/ p+θ−1ð Þ unλ − uλj j1−θ



 




p/ 1−θð Þ

=
ð
Ω

b xð Þ uλj j1−θdx + bj jp/ p+θ−1ð Þ u
n
λ − uλj j1−θp

=
ð
Ω

b xð Þ uλj j1−θdx + on 1ð Þ:

ð24Þ

Analogously,

ð
Ω

b xð Þ uλj j1−θdx ≤
ð
Ω

b xð Þ unλj j1−θdx +
ð
Ω

b xð Þ uλ − unλj j1−θdx

≤
ð
Ω

b xð Þ unλj j1−θdx

+ bj jp/ p+θ−1ð Þ unλ − uλj j1−θ



 




p/ 1−θð Þ

=
ð
Ω

b xð Þ unλj j1−θdx + bj jp/ p+θ−1ð Þ u
n
λ − uλj j1−θp

=
ð
Ω

b xð Þ unλj j1−θdx + on 1ð Þ:

ð25Þ

Hence, by (24) and (25), one yields

lim
n→+∞

ð
Ω

b xð Þ unλj j1−θdx =
ð
Ω

b xð Þ uλj j1−θdx: ð26Þ

Moreover, using assumptions Hð f Þ1 (i) and Hð f Þ1 (ii),
for all ε > 0, there exists Cε > 0 such that

F x, uλð Þj j ≤ εc xð Þ uλj jr1 + Cεd xð Þ uλj jr2 : ð27Þ

The above information and Hölder’s inequality imply

ð
Ω

F x, uλð Þj jdx ≤ ε Cj js1 uλj jr1j js1/ s1−1ð Þ + Cε dj js2 uλj jr2j js2/ s2−1ð Þd

= ε Cj js1 uλj jr1s1r1/ s1−1ð Þ + Cε dj js2 uλj jr2s2r2/ s2−1ð Þ:

ð28Þ

Again, by Proposition 4 (1), we deduce that

E↪Ls1r1/ s1−1ð Þ Ωð Þ, unλ ⟶ u in Ls1r1/ s1−1ð Þ Ωð Þ,
E↪Ls2r2/ s2−1ð Þ Ωð Þ, unλ ⟶ u in Ls2r2/ s2−1ð Þ Ωð Þ,

unλ ⟶ u for a:a:x ∈Ω,
F x, unλ xð Þð Þ⟶ F x, uλ xð Þð Þ for a:a:x ∈Ω:

ð29Þ

Thus, using the fact that funλg is bounded in E and the
dominated convergence theorem, we can infer that

lim
n→+∞

ð
Ω

F x, unλ xð Þð Þ =
ð
Ω

F x, uλ xð Þð Þdx: ð30Þ

4 Advances in Mathematical Physics



Hence, for every λ < 0, by (26) and (30), one yields

lim inf
n→∞

φλ unλð Þ = lim inf
n→∞

�
J unλð Þ −

ð
Ω

b xð Þ
1 − θ

unλj j1−θdx

− λ
ð
Ω

F x, unλð Þdx
�

= lim inf
n→∞

J unλð Þ − lim
n→∞

ð
Ω

b xð Þ
1 − θ

unλj j1−θdx

− λ lim
n→∞

ð
Ω

F x, unλð Þdx

≥ J uλð Þ −
ð
Ω

b xð Þ
1 − θ

uλj j1−θdx − λ
ð
Ω

F x, uλð Þdx

= J uλð Þ −Φ uλð Þ − λΨ uλð Þ = φλ uλð Þ,
ð31Þ

which implies that φλ is weakly lower semicontinuous, and
consequently,

φλ uλð Þ ≤ lim inf
u∈E

φλ unλð Þ = inf
v∈E

φλ vð Þ ≤ φλ uλð Þ, ð32Þ

which implies that

φ uλð Þ = inf
u∈E

φλ unλð Þ: ð33Þ

So, we complete Step 3.

Therefore, combining the above Steps 2 and 3, we deduce
that uλ is the required nontrivial solution of problem ðPλÞ.
Therefore, we complete the Proof of Theorem 1.

Now, we are ready to prove Theorem 2.

Proof of Theorem 2. To complete the proof of the main result,
we need to consider the following three steps.

Step 1.We first show that for every λ ≥ 0, the functional φλ is
coercive on E.

Firstly, due to condition Hð f Þ2 (i), one has

F x, tð Þ ≤ Cd xð Þ
r2

tj jr2 , ∀ x, tð Þ ∈Ω ×ℝ: ð34Þ

Again, using the condition Hð f Þ2 (i), Hölder’s inequality,
Proposition 3, and relation (34), we deduce that for any u ∈ E
with kuk > 1, the following inequality holds true:

φλ uð Þ ≥ 1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð Þ uj j1−θ



 




p/ 1−θð Þ

−
λC
r2

ð
Ω

d xð Þj j uj jr2dx

≥
1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð Þ uj j1−θp

−
λC
r2

dj js2 uj jr2j js2/ s2−1ð Þ

= 1
q

uk kp − 1
1 − θ

bj jp/ p+θ−1ð Þ uj j1−θp

−
λCCr2

0
r2

dj js2 uk kr2 :

ð35Þ

Since 1 − θ < 1 < r2 < p, we infer that φλðuÞ⟶ +∞ as
∥u∥⟶ +∞. The proof of Step 1 is now complete.

Step 2. We show that there exists ξ ∈ E with ξ > 0, φλðtξÞ < 0
for t > 0 small enough.

Let ξ ∈ C∞
0 ðΩÞ such that supp ðξÞ ⊂Ω1 ⊂Ω, ξ = 1 in a

subsetΩ0 ⊂ supp ðξÞ, and 0 ≤ ξ ≤ 1 inΩ1. Thus, by condition
Hð f Þ2 (ii), it follows that

F x, tξ xð Þð Þ ≥ 0, ∀t ∈ 0, 1ð Þ, x ∈Ω: ð36Þ

Hence, for any t ∈ ð0, 1Þ, from HðbÞ and Hð f Þ2 (ii), we
deduce that

φλ tξð Þ =
ð
Ω

1
p
∇uj jp + a xð Þ

q
∇uj jq

� �
dx

−
ð
Ω

b xð Þ
1 − θ

tξj j1−θdx − λ
ð
Ω

F x, tξð Þdx

≤
tp

p
max ξk kp, ξk kq� 	

−
t1−θ

1 − θ

ð
Ω1

b xð Þ ξj j1−θdx:

ð37Þ

Since p > 1 > 1 − θ, we have φλðtξÞ < 0 for t < t2 with

0 < t2 < min 1, p
Ð
Ω
b xð Þ ξj j1−θdx

1 − θð Þ max ∥ξ∥p,∥ξ∥q
� 	

 !1/ p+θ−1ð Þ8<
:

9=
;:

ð38Þ

The proof of Step 2 is now complete.

Step 3. We show that there exists uλ ∈ E such that φλðuλÞ =
inf
u∈E

φλðuÞ for any λ ≥ 0.
Let funλg ⊂ E be a minimizing sequence of φλ. Then, using

Step 1, we get that funλg is a bounded sequence. So, there
exists uλ ∈ E such that, up to a subsequence,

unλ ⇀ uλ in E,
unλ ⟶ uλ in Lp Ωð Þ,

unλ xð Þ⇀ uλ xð Þ a:e:inΩ:

ð39Þ
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Thus, as the proof of Step 3 in Theorem 1, we also obtain
that

lim
n→+∞

ð
Ω

b xð Þ unλj j1−θdx =
ð
Ω

b xð Þ uλj j1−θdx,

lim
n→+∞

ð
Ω

F x, unλ xð Þð Þ =
ð
Ω

F x, uλ xð Þð Þdx,
ð40Þ

and φλ is weakly lower semicontinuous, and consequently,

φλ uλð Þ ≤ lim inf
u∈E

φλ unλð Þ = inf
v∈E

φλ vð Þ ≤ φλ uλð Þ, ð41Þ

which implies that

φ uλð Þ = inf
u∈E

φλ unλð Þ: ð42Þ

The proof of Step 3 is complete.

Therefore, combining the above Steps 2 and 3, we deduce
that uλ is the required nontrivial solution of problem ðPλÞ.
Thus, we complete the Proof of Theorem 2.
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