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In this paper, a complete Lie symmetry analysis is performed for a nonlinear Fokker-Planck equation for growing cell
populations. Moreover, an optimal system of one-dimensional subalgebras is constructed and used to find similarity
reductions and invariant solutions. A new power series solution is constructed via the reduced equation, and its
convergence is proved.

1. Introduction

During the last few decades, Lie symmetry group theory has
been developed considerably and plays an increasingly
important role in many scientific fields such as constructing
similarity solutions, conservation laws, and symmetry-
preserving difference schemes [1–5]. For the partial differen-
tial equations (PDEs), the Lie symmetry analysis method
provides similar variables which are used to construct new
differential equations with lower dimension, then group-
invariant solutions of the studied PDEs is constructed via
the reduced differential equations. With the benefit of the
Lie symmetry analysis method, many differential equations
were studied successfully [6–15].

To construct inequivalent invariant solutions which
means that it is impossible to connect them with some
group transformation, one needs to seek a minimal list
of group generators in the simplest form that span these
inequivalent group-invariant solutions. Such a scenario
motivates emergence of the definition of an optimal sys-
tem of subalgebra. From an algorithmic perspective of an
optimal system, we need to simplify a general element of
the infinitesimal operators to several simple and inequiva-
lent forms by using adjoint transformations; refer to [1, 3]
for details.

In this paper, we use the Lie symmetry method to study a
nonlinear diffusion-type PDE describing cell population
growth:

∂f
∂t

+ v
∂f
∂μ

= epv f n
∂2 f
∂v2

, ð1Þ

where p and n are nonzero constants. This model describes
the changes of cell population density f = f ðμ, v, tÞ with the
maturation of the cell populations μ ∈ ð0, 1Þ, the maturation
velocity v ∈ ð0,∞Þ, and time t ∈ ð0,∞Þ. Equation (1) incorpo-
rates an exponential function in v and power function in f in
the diffusion coefficient and extends the model proposed by
Rotenberg [16]:

∂f
∂t

+ v
∂f
∂μ

=D
∂2 f
∂v2

, ð2Þ

where D is a diffusion constant. This equation is analyzed
numerically in [17] and closed-form solutions under differ-
ent reproduction rules of it are constructed. Equation (2)
without a diffusion term is considered in [18]. A stationary
modified version of Rotenberg’s model with a nonlinear tran-
sition rate is studied in [19].

Hindawi
Advances in Mathematical Physics
Volume 2020, Article ID 4975943, 7 pages
https://doi.org/10.1155/2020/4975943

https://orcid.org/0000-0002-5757-7113
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/4975943


The remainder of this article is organized as follows. In
Section 2, we first determine the symmetry group of
equation (1) and derive an optimal system of one-
dimensional subalgebras. Consequently, similarity reduc-
tions for equation (1) are performed and an explicit power
series solution of equation (1) is presented. Finally, the last
section summarizes our work.

2. Main Results

2.1. Determination of Lie Symmetry. Consider a local one-
parameter Lie group of point transformation:

μ∗ = μ + εξ μ, v, t, fð Þ +O ε2
� �

,

v∗ = v + εζ μ, v, t, fð Þ +O ε2
� �

,

t∗ = t + ετ μ, v, t, fð Þ +O ε2
� �

,

f ∗ = f + εη μ, v, t, fð Þ +O ε2
� �

,

ð3Þ

where ε ∈ℝ is the group parameter.
In Lie’s framework, the following infinitesimal operator

characterises the one-parameter Lie group (3) completely [2]:

X = ξ μ, v, t, fð Þ ∂
∂μ

+ ζ μ, v, t, fð Þ ∂
∂v

+ τ μ, v, t, fð Þ ∂
∂t

+ η μ, v, t, fð Þ ∂
∂f

:

ð4Þ

Thus, if Lie group (3) leaves equation (1) invariant, then
on the solution space of equation (1), operator (4) must sat-
isfy the infinitesimal invariance criterion below:

Pr 2ð ÞX
∂f
∂t

+ v
∂f
∂μ

− epv f n
∂2 f
∂v2

" #
= 0, ð5Þ

where the second prolongation Prð2ÞX is given by

Pr 2ð ÞX = X + η
1ð Þ
t

∂
∂f t

+ η 1ð Þ
μ

∂
∂f μ

+ η 2ð Þ
vv

∂
∂f vv

, ð6Þ

in which ηð1Þμ and ηð2Þvv are determined by classical formulae
[1–3].

For the sake of determining Lie group (3) admitted by
equation (1), inserting (6) into condition (5) and making
the coefficients of different order derivatives of f equal
to zero, we obtain a linear overdetermined system of PDEs
about ξ = ξðμ, v, t, f Þ, ζ = ζðμ, v, t, f Þ, τ = τðμ, v, t, f Þ, and
η = ηðμ, v, t, f Þ:

∂ζ
∂μ

= ∂ζ
∂v

= ∂ζ
∂t

= ∂ζ
∂f

= 0, ∂η
∂μ

= ∂η
∂v

= ∂η
∂t

= 0,

∂ξ
∂f

= ∂ξ
∂v

= 0, ∂τ
∂μ

= ∂τ
∂v

= ∂τ
∂f

= 0,

η − f
∂η
∂f

= 0, ζ − ∂ξ
∂t

= 0,

pf ζ + nη + f
∂ξ
∂μ

= 0, pf ζ + nη + f
∂τ
∂t

= 0:

ð7Þ

By solving equation (7), we have

ξ = c2 −pμ + tð Þ − c1nμ + c4, ζ = c2,
τ = −c1nt − c2pt + c3, η = c1 f ,

ð8Þ

where c1, c2, c3, and c4 are arbitrary constants.
Consequently, the infinitesimal generators admitted by

equation (1) are given by

X1 = −pμ + tð Þ ∂
∂μ

+ ∂
∂v

− pt
∂
∂t

,

X2 = −nμ
∂
∂μ

− nt
∂
∂t

+ f
∂
∂f

,

X3 =
∂
∂t

,

X4 =
∂
∂μ

:

ð9Þ

In the wake of these infinitesimal generators Xi ði = 1, 2,
3, 4Þ, we obtain four Lie groups of point transformation
admitted by equation (1):

G1 : μ, v, t, fð Þ⟶ e−pε μ + tεð Þ, v + ε, e−pεt, fð Þ,
G2 : μ, v, t, fð Þ⟶ e−nεμ, v, e−nεt, eε fð Þ,
G3 : μ, v, t, fð Þ⟶ μ, v, t + ε, fð Þ,
G4 : μ, v, t, fð Þ⟶ μ + ε, v, t, fð Þ:

ð10Þ

where ε ∈ℝ is the group parameter.
That is to say, if f = θðμ, v, tÞ satisfies equation (1), then

f i ði = 1, 2, 3, 4Þ are also solutions of equation (1):

f1 = θ epε μ − tεð Þ, v − ε, epεtð Þ,
f2 = eεθ e−nεμ, v, e−nεtð Þ,
f3 = θ μ, v, t − εð Þ,
f4 = θ μ − ε, v, tð Þ:

ð11Þ

2.2. Optimal System of One-Dimensional Subalgebras. In this
subsection, we will find a one-dimensional optimal system of
Lie subalgebras admitted by equation (1) up to adjoint repre-
sentation. First of all, the commutator table of Xi ði = 1,⋯, 4Þ
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is shown in Table 1 where the ði, jÞ entry means ½Xi, Xj� =
XiXj − XjXi.

Each Xi generates an adjoint representation AdðeεXiÞXj

defined by [3]

Ad eεXi
� �

Xj = Xj − ε Xi, Xj

� �
+ ε2

2! Xi, Xi, Xj

� �� �
−⋯: ð12Þ

Using (12) in conjunction with Table 1, we get Table 2
where the ði, jÞ-th entry represents AdðeεXiÞXj.

Proposition 1. An optimal system of one-dimensional subal-
gebras spanned by X1, X2, X3, and X4 admitted by equation
(1) is

X1 + aX2, X2, X3 + X4, X3, X4f g, ð13Þ

where a is an arbitrary constant.

Proof. Consider an arbitrary element spanned by X1~X4:

X = a1X1 + a2X2 + a3X3 + a4X4, ð14Þ

where, hereinafter, ai ði = 1,⋯, 4Þ are arbitrary constants.
Our target is to simplify as many of the coefficient ai as pos-
sible through the adjoint maps to X. We start with the coef-
ficient of X1 and consider two cases about a1.

Case 1. a1 ≠ 0.
Without loss of generality, we assume that a1 = 1.

According to Table 2, we act X by Adðea3/ða2n+pÞX3Þ:

X ′ = Ad e−a3/
a2n+pX3

� �
X = X1 + a2X2 + a4′X3, ð15Þ

where a4′ = a4 + a3/ða2n + pÞ. With the adopted adjoint
action, the coefficient of X4 disappears.

In order to cancel coefficient a4′, we further act on X ′
by Adðe−a′4/ða′2n+pÞX4Þ, then we get X ′′ = Adðe−a′4/ða′2n+pÞX4Þ
X ′ = X1 + a2X2,

To summarize, X with a1 ≠ 0 is equivalent to X1 + aX2,
where a is an arbitrary constant.

Case 2. a1 = 0.
Consider a2 ≠ 0. Following the above procedure, we act

on X by Adðea3/nX3Þ and Adðea′4/nX4Þ successively to make
the coefficient a3 and a4 zero. Thus, every one-dimensional
subalgebra generated by X with a1 = 0 and a2 ≠ 0 is equiva-
lent to the subalgebra spanned by X2.

For a1 = 0, a2 = 0, and a3 ≠ 0, acting AdðeεX1Þ on X, we
obtain

X ′ = Ad eεX1
� �

X = e−nε X3 + a4X4ð Þ, ð16Þ

which depends on the sign of a4. In fact, we can simplify the
coefficient of X4 to either +1, −1, or 0. Moreover, we adopt
the discrete symmetry ðμ, v, t, f Þ⟶ ð−μ, v, t, f Þ, which
maps X3 − X4 to X3 + X4. Thus, the one-dimensional subal-
gebra spanned by X3 + a4X4 is equivalent to one spanned
by either X3 + X4 or X3.

Therefore, an optimal system of one-dimensional subal-
gebras admitted by equation (1) is determined by

X1 + aX2, X2, X3 + X4, X3, X4f g, ð17Þ

where a is an arbitrary constant. It completes the proof.

2.3. Similarity Reductions. In this subsection, we perform
similarity reductions and construct invariant solutions for
equation (1) based on the optimal system calculated in the
preceding subsection.

Case 3. Reduction by X1 + aX2.
For a ≠ 0, the characteristic equation for the generator a

X1 + X2, is

dμ
−anμ − pμ + t

= dv
1 = dt

−an − pð Þt =
df
af

, ð18Þ

which gives the similarity variables x = eðan+pÞvt, y = v − μ/t,
and Fðx, yÞ = eav f ðμ, v, tÞ. Substituting them into equation
(1), we obtain

an + pð Þ2x3Fn ∂
2F
∂x2

+ an + pð Þx2Fn an + 2a + pð Þ ∂F∂x + 2 ∂2F
∂x∂y

" #

+ xFn a2F + 2a ∂F
∂y

+ ∂2F
∂y2

 !
− x

∂F
∂x

+ y
∂F
∂y

= 0:

ð19Þ

For a = 0, repeating the above procedure, the reduced
equation corresponds to equation (19) with a = 0.

Case 4. Reduction by X2.

Table 1: Commutator table.

X1 X2 X3 X4
X1 0 0 pX3 − X4 pX4

X2 0 0 nX3 nX4

X3 −pX3 + X4 −nX3 0 0

X4 −pX4 −nX4 0 0

Table 2: The adjoint representation of X1, X2, X3, and X4.

Ad X1 X2 X3 X4

X1 X1 X2 e−pε X3 + εX4ð Þ e−pεX4

X2 X1 X2 e−nεX3 e−nεX4

X3 X1 − ε X4 − pX3ð Þ X2 + nX3 X3 X4

X4 X1 + pεX4 X2 + nX4 X3 X4
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Similarly, the similarity variables for X2 are y = μ/t and
Fðv, yÞ = μ1/n f ðμ, v, tÞ. Then, the corresponding reduced
equation is

v
n
F + y2 − vy
� � ∂F

∂y
+ epvFn ∂

2F
∂v2

= 0: ð20Þ

Next, we use its symmetry to perform further symmetry
reductions for equation (20). The infinitesimal operator of
symmetry admitted by equation (20) is

Y = ∂
∂v

+ ∂
∂y

+ F
ny

1 − pyð Þ ∂
∂F

, ð21Þ

whose similarity variables are x = y − v and Fðv, yÞ = gðxÞ
y1/nepy/n. In fact, we can transform X1 to Y via y = μ/t and
Fðv, yÞ = μ1/n f ðμ, v, tÞ, that is to say, Y inherited symmetries
of equation (1). Substituting the similarity variables into
equation (20) leads to g = gðxÞ, satisfying the following
reduced ordinary differential equation (ODE):

2npgn dgdx + n2gn d2g
dx2 + p2gn+1 + n2x

dg
dx + ng = 0: ð22Þ

Obviously, it is difficult to directly solve equation (22) by
integration; thus, in the next subsection, we will construct
power series solutions.

Case 5. Reduction by X3 + X4.
Via the symmetry X3 + X4, we get the group-invariant

solution of the form f ðμ, v, tÞ = Fðv, yÞ in which y = μ − t
and F = Fðv, yÞ satisfy

v − 1ð Þ ∂F∂y = epvFn ∂
2F
∂v2

: ð23Þ

Again, using the symmetry Y = −nyð∂/∂yÞ + Fð∂/∂FÞ for
equation (23), which actually is the inherited symmetry of
equation (1) (X2 ⟶ Y), we obtain the group-invariant solu-
tion Fðv, yÞ = y−1/ngðvÞ, where g = gðvÞ satisfies

epvgn−1
d2g
dv2 = 1

n
1 − vð Þ: ð24Þ

In particular, for n = 1, we obtain a solution of equation
(1):

f μ, v, tð Þ = p − pv − 2
p3

e−pv + c1v + c2

� 	
μ − tð Þ−1, ð25Þ

where c1 and c2 are arbitrary constants.
The evolutionary procedure of solution (25) is shown in

Figure 1 by choosing appropriate parameters from different
perspectives.

Case 6. Reduction by X3.

For the generator X3, we have f ðμ, v, tÞ = Fðμ, vÞ, where
F = Fðμ, vÞ satisfies a ð1 + 1Þ-dimensional PDE:

v
∂F
∂μ

= epvFn ∂
2F
∂v2

: ð26Þ

Similarly, by means of the corresponding infinitesimal
operator Y = −nμð∂/∂μÞ + Fð∂/∂FÞ of equation (26), we
reduce equation (26) into an ODE:

v = epvg vð Þn−1 d
2g vð Þ
dv2 , ð27Þ

where Fðμ, vÞ = μ−1/ngðvÞ.
In particular, for n = 1, we get a solution of equation (1):

f μ, v, tð Þ = μ−1/n −
pv + 2
p3

e−pv + c1v + c2


 �
, ð28Þ

where c1 and c2 are arbitrary constants.

Case 7. Reduction by X4.
ForX4, the group-invariant solution is f ðμ, v, tÞ = Fðμ, vÞ,

where F = Fðμ, vÞ satisfies

∂F
∂t

= epvFn ∂
2F
∂v2

: ð29Þ

Equation (29) admits two Lie symmetries with infinitesi-
mal operators Y1 = −ntð∂/∂tÞ + Fð∂/∂FÞ and Y2 = ∂/∂v − pt
ð∂/∂tÞ. The symmetry Y1 produces the group-invariant solu-
tion with the form Fðv, tÞ = t−1/ngðvÞ, where g = gðvÞ satisfies

−
1
n
g = epvgn

d2g
dv2 : ð30Þ

In particular, for n = 1, equation (1) has a solution:

f μ, v, tð Þ = t1/n −
e−pv

p2
+ c1v + c2

� 	
: ð31Þ

On the other hand, the similarity variables of Y2 are x =
t exp ðpvÞ and g = F. Then, the group-invariant solution is
Fðv, tÞ = gðxÞ, where g = gðxÞ satisfies

dg
dx = p2xgn

d2g
dx : ð32Þ

2.4. Power Series Solutions via the Reduced Equation by X2. In
this subsection, we will seek a power series solution of equa-
tion (22). Suppose that equation (22) has a power series solu-
tion of the form

F xð Þ = 〠
∞

i=0
Cix

i, ð33Þ

where ci are undetermined constants.
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Observe that

F ′ xð Þ = 〠
∞

i=0
i + 1ð Þci+1xi, F″ xð Þ = 〠

∞

i=0
i + 2ð Þ i + 1ð Þci+2xi:

ð34Þ

Substituting expressions (33) and (34) into equation (22),
we have

〠
∞

i=0
cix

i

 !n

2np〠
∞

i=0
i + 1ð Þci+1xi + n2 〠

∞

i=0
i + 2ð Þ i + 1ð Þci+2xi + p2〠

∞

i=0
cix

i

" #

+ n2x〠
∞

i=0
i + 1ð Þci+1xi + n〠

∞

i=0
cixi = 0:

ð35Þ

Equating the coefficients of different powers of x gives
rise to the explicit expressions of ci. For i = 0, one has

cn0 2npc1 + 2n2c2 + p2c0
� �

+ nc0 = 0, ð36Þ

which leads to

c2 = −
p
n
c1 −

p2

2n2 c0 −
1

2ncn−10
: ð37Þ

Generally for i ≥ 1, we have

ci+2 = −
1

n2 i + 2ð Þ i + 1ð Þcn0
〠
i−1

k=0
〠

j1+j2+⋯+jn=i−k
cj1cj2 ⋯ cjn

× 2np k + 1ð Þck+1 + n2 k + 2ð Þ k + 1ð Þck+2 + p2ck
� �

−
1

n2 i + 2ð Þ i + 1ð Þcn0
n2ici + nci + cn02np i + 1ð Þci+1 + p2cic

n
0

� �
:

ð38Þ

Therefore, for the chosen constants c0 and c1, the

sequence fcig∞i=0 can be determined by equations (37) and
(38) successively.

Now, we show that the power series solution (33) with ci
given by (37) and (38) is convergent. As a matter of fact,

∣c2∣ ≤M 2 ∣ c0∣+∣c1 ∣ð Þ, ð39Þ

and for i ≥ 1,

ci+2j j ≤M 〠
i−1

k=0
〠

j1+⋯jn=i−k
cj1
�� �� cj2�� ��⋯ cjn

��� ��� ck+1j j + ck+2j jð
"

+ ckj jÞ + 3 cij j + ci+1j j
#
,

ð40Þ

where M =max f2p/ncn0 , 1/ncn0 , p2/n2cn0 , 2p/n, p2/n2g.
Consider another power series QðzÞ =∑∞

i=0 Qiz
i, where

Q0 = c0j j,Q1 = c1j j,Q2 =M 2 c0j j + c1j jð Þ
=M Q0 + 2Q1ð Þ,Qi+2

=M 〠
i−1

k=0
〠

j1+⋯+jn=i−k
Qj1Qj2 ⋯Qjn

Qk+1ð
"

+Qk+2 +QkÞ + 3Qi +Qi+1

#
, i ≥ 1:

ð41Þ

It is easy to find that ∣ci∣ ≤Qiði = 0, 1,⋯Þ. Thus, the series
Q =QðzÞ =∑∞

i=0 Qiz
i is the majorant series of (33). Next,

we show that the series Q =QðzÞ has positive radius of
convergence:
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Figure 1: Solution (25) of Equation (1) by choosing suitable parameters: p = 1, n = 1, and μ = 0:8. (a) Perspective view. (b) Overhead view.
(c) Propagation pattern of the wave along the t axis.
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Q zð Þ =Q0 +Q1z +Q2z
2 + 〠

∞

i=1
Qi+2z

i+2 =Q0 +Q1z +Q2z
2

+M 〠
∞

i=1
〠
i−1

k=0j1
〠

+⋯+jn=n
Qj1

⋯Qjn
Qk+1z

i+2
 

+ 〠
∞

i=1
〠
i−1

k=0j1
〠

+⋯+jn=n
Qj1

⋯Qjn
Qk+2z

i+2

+ 〠
∞

i=1
〠
i−1

k=0j1
〠

+⋯+jn=n
Qj1

⋯Qjn
Qkz

i+2 + 3〠
∞

i=1
Qiz

i+1

+ 〠
∞

i=1
Qi+1z

i+2
!
= −Q −Q2� �

Q2
0 + 4Q0

�
+Q3 +Q2Q2 − 3Q +Q1�Mz2

+ Q −Q0ð Þ Q2 −Q2
0 + 1

� �
M +Q1

� �
z +Q0:

ð42Þ

Now, we construct the implicit function with respect
to the independent variable z:

λ z, φð Þ = φ −M −Q −Q2� �
Q2

0 + 4Q0 +Q3�
+Q2Q2 − 3Q +Q1�z2
− Q −Q0ð Þ Q2 −Q2

0 + 1
� �

M +Q1
� �

z −Q0,
ð43Þ

and we verify that λðz, φÞ is analytic in the neighborhood
of ð0,Q0Þ where λð0,Q0Þ = 0 and λφ′ð0,Q0Þ = 1 ≠ 0. By the
implicit function theorem [20, 21], we see that Q =QðzÞ
is analytic in a neighborhood of the point ð0,Q0Þ and
with a positive radius. This implies that the power series
QðzÞ =∑∞

i=0 Qiz
i converges in a neighborhood of the point

ð0,Q0Þ.
Hence, an explicit power series solution of equation (1) is

given by

f μ, v, tð Þ = 〠
∞

i=0
ci −v + μ

t

� �i
t−1/nepμ/nt , ð44Þ

where the coefficients ciði ≥ 2Þ depend on (37) and (38)
completely.

3. Conclusion

In this paper, Lie symmetry analysis is employed to study a
new nonlinear equation describing the growing cell popula-
tions. An optimal system of one-dimensional subalgebra is
constructed and used to construct reduced equations and
invariant solutions. Moreover, we obtain a new power
series solution of equation (1). Such results provide positive
potential roles for analyzing cell population growth with
equation (1).
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