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We investigate an electromagnetic Dirichlet type problem for the 2D quaternionic time-harmonic Maxwell system over a great 
generality of fractal closed type curves, which bound Jordan domains in R2. �e study deals with a novel approach of ℎ-summability 
condition for the curves, which would be extremely irregular and deserve to be considered fractals. Our technique of proofs is 
based on the intimate relations between solutions of time-harmonic Maxwell system and those of the Dirac equation through some 
nonlinear equations, when both cases are reformulated in quaternionic forms.

1. Introduction

A theory of hyperholomorphic functions of two real variables 
is the most natural and close generalization of complex  
analysis that preserves many of its important features. Some 
integral representation type formulas in closed Jordan recti-
fiable curves are proved in [1, 2] and [3, Appendix 4]. 
Applications in physical problems with elliptic geometries and 
potential theory can be found in [4–6].

�e Maxwell equations govern the behavior of the elec-
tromagnetic field. Despite the fact that these equations are 
more than hundred years old, they still are subject to changes 
in content, notation, and frameworks.

�e quaternionic analysis gives us a tool of wider applica-
bility for the study of electromagnetic boundary value prob-
lems. In particular, a quaternionic hyperholomorphic 
approach to time-harmonic solutions of the Maxwell system 
is established in [3, 7–9] and the references given there.

�ese studies confine attention to Lipschitz domains in 
the worst case scenario. For pure and applied mathematical 
interest, in [10] some boundary value problems for time-har-
monic electromagnetic fields on the more challenging case of 
domains with fractal boundaries are discussed. Results con-
cerning boundary value problems for the time-harmonic 

Maxwell system along classical lines can be found in [11]. An 
overview of different methods that are useful in the analysis 
of the time-harmonic Maxwell equations was given in [12].

�e main goal of this work is the study of an electromag-
netic Dirichlet type problem for a domain with fractal bound-
ary in R2. For a deeper discussion of some electromagnetic 
problems in two dimensions, we refer the reader to [13–16].

Our main motivation for the introduction of quaternionic 
analysis in electromagnetics is the difficulty in solving the 
Maxwell equations in fractal domains involving boundary 
condition on fractal boundaries, which requires the use of very 
advanced mathematical techniques.

�e outline of the paper is as follows: In Section 2 we pro-
vide an outlook to the basics of quaternionic analysis and 
elements of fractals geometry; a new hyperholomorphic Cauchy 
type integral for a domain with ℎ−summable boundary in R2 is 
described in Section 3, where we also state theoretical results 
on integral representation formulas in domains bounded by 
such curves. Results on jump boundary value problems across 
an ℎ-summable boundaries of domains in R2, as well as certain 
Dirichlet type problems for hyperholomorphic solutions of two 
dimensional Helmholtz equation are presented and discussed 
in Section 4. Finally, Section 5 analyzes some Dirichlet type 
problems involving electromagnetism in the form of 2D 
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quaternionic time-harmonic Maxwell system on a domain with 
ℎ-summable boundary in R2.

2. Preliminaries

�e noncommutative and associative algebra with zero divi-
sors of the complex quaternions is denoted by H(C). For each 
complex quaternion �, one has �푎 = ∑3

�푘=0 �푎�푘�푒�푘 where {�푎�} ⊂ C, 
�0 is the multiplicative unit and {�푒�|�푘 = 1, 2, 3 } are standard 
quaternionic imaginary units. By definition, the complex 
imaginary unit � satisfies

Let �푎 = �푎0 + �㨀→�푎 = ∑3
�푘=0 �푎�푘�푒�푘, where �푎0 =: �푆�푐(�푎) is called scalar 

part and �㨀→�푎 =: �푉�푒�푐(�푎) is called vector part of the quaternion �.  
�e module of � coincides with its Euclidean norm: |�푎| = ‖�푎‖

R
8 

and the quaternionic conjugate is defined by 
−�푎 = �푎0 − �㨀→�푎 . If 

�푆�푐(�푎) = 0 then �푎 = �㨀→�푎  is called a purely vector quaternion.
�e multiplication of two quaternions �푎, �푏 can be rewritten 

in vector terms:

where �㨀→�푎 ⋅ �㨀→�푏  and �㨀→� × �㨀→�  are the scalar and the usual cross 
product in R2 respectively. We shall frequently write �푧 := (�푥, �푦) 
for a typical point of R2.

Let a domain Ω ⊂ R
2, we will consider H(C)-valued 

functions:

Properties of continuity, differentiability and integrability of 
� have to be understood component-wise. �e set of � times 
continuously differentiable functions is denoted by 
�퐶�(Ω;H(C)), �푘 ∈ N ∪ {0}.

Given �휆 ∈ C\{0}, let �훼 ∈ H(C) such that �2 = �. �is � 
generates the (le� and right) 2D Helmholtz operator, which 
acting on �퐶2(Ω;H(C)) are given by �Δ := Δ

R
2 + ��푀 and 

Δ � := Δ
R

2 +�푀� respectively. Here and subsequently, 
Δ
R

2 := �휕21 + �휕22, �휕� := �휕\�휕�푥� and for �휆 ∈ H(C), �푀�[�푓] := �푓�휆 
and ��푀[�푓] := �휆�푓.

Additionally, the following partial differential operators 
will be considered

It follows easily that,

Set ��휕 := �휕�� + ��푀; �휕� := ���휕 +�푀�. �erefore, the Helmholtz 
operator can be factorized as follows:

Definition 1.  A function �푓 ∈ �퐶1(Ω,H(C)) is called 
hyperholomorphic if it satisfies �휕�[�푓] ≡ 0 on Ω.

(1)�푖�푒� = �푒��푖, �푘 = 0, 1, 2, 3.

(2)�푎�푏 = �푎0�푏0 − �㨀→�푎 ⋅ �㨀→�푏 + �푎0�㨀→�푏 + �푏0�㨀→�푎 + �㨀→�푎 × �㨀→�푏 ,

(3)�푓 : Ω → H(C).

(4)
�푠�푡�휕 := �푒1�휕1 + �푒2�휕2;
�푠�푡 �휕 := �푒1 �휕1 + �푒2 �휕2;

(5)
�휕�푠�푡 := �휕1 ∘ �푀�푒1 + �휕2 ∘ �푀�푒2 ;
�휕�푠�푡 := �휕1 ∘ �푀�푒1 + �휕2 ∘ �푀�푒2 .

(6)�푠�푡�휕2 = �휕2�푠�푡 = −Δ
R

2 .

(7)Δ �휆 = −�휕�훼 ∘ �휕−�훼 = −�휕−�훼 ∘ �휕�훼.

If we write �푓 = ∑3
�푘=0 �푓�푘�푒�푘 = �푓0 + �㨀→�푓 , then we obtain by 

straightforward calculation

From [17], if � = �2 ∈ C, a fundamental solution �� of Δ � is 
given by

where

and �(�푠)
�푛  is the Hankel function of the kind � and of order 

�푛 ∈ {0, 1, 2} (see [18]).
If �훼 ̸= 0, Im(�훼) = 0 the functions −(�푖/4)�퐻(1)

0 (�훼|�푧|) and 
(�푖/4)�퐻(2)

0 (�훼|�푧|) are fundamental solutions of the Helmholtz 
operator Δ �2.

By (7), the fundamental solution of the operator ��, i.e., 
the quaternionic Cauchy kernel, is defined as

Hence

Remark 2.1.  In what follows we suppose that �훼 = �훼0 ∈ C.

Let us now take a quick look at the notion of majorant, 
with the purpose of considering the generalized Hölder spaces, 
see [19, 20]. Let � be a continuous increasing function on 
[0,∞) such that �휙(0) = 0 and �휙(�푡)/�푡 is nonincreasing. One 
such function � said to be a majorant. Note that �휙(�푡) = �푡�, 
0 < �휈 < 1, are majorants.

In what follows � will denote a positive constant, not 
necessarily the same at different occurrences.

Suppose E ⊂ R
2 be a bounded set. �e generalized Hölder 

space, denoted by �퐶0,�휙(E,H(C)), is defined to be the family of 
all H(C)-valued functions � on E such that

where � is a given majorant. For �휙(�푡) = �푡�, 0 < �휈 < 1, we write 
�퐶0,�휈(E,H(C)) instead of �퐶0,�휙(E,H(C)).

We recall that a nonnegative and almost increasing (or 
almost decreasing) function � means that there exists �푐 ≥ 1 
such that �휙(�푥) ≤ �푐�휙(�푦) for all � ≤ � (� ≤ �), respectively.

Following [21, Definition 1.1], we say that a majorant � 
has order �� if there exists a �� (0 < �휈� < 1) and a positive real 
number �0 such that

(8)�푠�푡�휕[�푓] = −div�㨀→�푓 + grad�푓0 + rot
�㨀→�푓 .

(9)�휃�훼(�푧) :=
{
{
{

(−1)�푠 �푖4�퐻
(�푠)
0 (�훼|�푧|), if �훼 ̸= 0,

1
2�휋 log |�푧|, if �훼 = 0,

(10)�푠 := { 1, if Im (�훼) > 0 or�훼 > 0,
2, if Im (�훼) < 0 or�훼 < 0,

(11)K�푠�푡,�훼(�푧) := −�휕−�훼�휃�훼(�푧), �푧 ∈ R
2\{0}.

(12)

K�푠�푡,�훼(�푧) =
{{
{{
{

(−1)�푆 �푖�훼4 (�퐻(�푠)
1 (�훼|�푧|) �푧|�푧| + �퐻(�푠)

0 (�훼|�푧|)), if �훼 ̸= 0,

− �푧
2�휋|�푧|2

, if �훼 = 0.

(13)�儨�儨�儨�儨�푓(�푥) − �푓(�푦)�儨�儨�儨�儨 ≤ �푐�휙(�儨�儨�儨�儨�푥 − �푦�儨�儨�儨�儨), �푥, �푦 ∈ E,

(14)
�휈�휙 = sup{�휈 : �휙(�푡)�푡�휈 is almost increasing, 0 < �푡 < �푡0}

= inf{�휈 : �휙(�푡)�푡�휈 is almost decreasing, 0 < �푡 < �푡0}.
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�is guarantees that �푐−1�푡�휈� ≤ �휙(�푡) ≤ �푐�푡�휈� , 0 < �푡 < �푡0.
If a majorant � has order ��, then we let � = �� and we will 

use the symbol �퐶0,�휙�(E,H(C)) instead �퐶0,�휙(E,H(C)).
�e Whitney extension theorem (see [22]) in the quater-

nionic analysis context is stated as follows.

Theorem 1.  Suppose E ⊂ R
2 be a compact set and let 

�푓 ∈ �퐶0,�휑�(E,H(C)). �ere exists a compactly supported 
function �̃such that

(i)	� �푓�儨�儨�儨�儨�儨E = �푓;
(ii)	� �푓 ∈ �퐶∞(R2\E);
(iii)	�

�e function �̃  is called a Whitney type extension of �. With 
the notation �푑�푖�푠�푡(�퐴, �퐵) we stand for the distance between the 
subsets � and � of R2.

2.1. Elements of Fractal Geometry.  Let ℎ : (0,∞) → (0,∞) be 
a gauge function, i.e., a continuous and nondecreasing interval 
function with lim�푡→0+ℎ(�푡) = 0.

In [23] a variation of the geometric concept of  
�-summability, which is due to Harrison and Norton in [24] 
is introduced.

Definition 2  [23, Definition 1]. Let ℎ be a gauge function. 
�e set E is called ℎ-summable if there exists δ > 0 such that

where �푁
E
(�푡) stands for the least number of open balls of radius 

� needed to cover E. When ℎ(�푡) = �푡� with �푑 ∈ (1, 2), we recover 
the d-summability of E.

Definition 2 is unchanged if �푁
E
(�푡) with 2−�푘 ≤ �푡 < 2−�푘+1 is 

replaced by the number of �-squares intersecting E. By a �
-square we mean one of the form

where �푘, �푙1, �푙2 are integers.
We follow [22] considering the Whitney decomposition 

of Ω

�e squares � in W have disjoint interiors and satisfy

Here and subsequently, |E| stands for the diameter of a 
bounded set E ⊂ R

2.

3. Hyperholomorphic Cauchy Type Integral for 
Fractal Curves

�e Cauchy type integral associated to quaternionic analysis 
has been involved recently with fractional metric dimensions 

�儨�儨�儨�儨�儨���휕[�푓](�푥, �푦)
�儨�儨�儨�儨�儨 ≤ �푐(�휑�(�푑�푖�푠�푡(�푧,E))/(�푑�푖�푠�푡(�푧,E))), �푧 =

(�푥, �푦) ∈ R
2\E.

(15)∫�훿

0
�푁

E
(�푡)ℎ(�푡)�푡 �푑�푡 < +∞,

(16)[�푙12−�푘, (�푙1 + 1)2−�푘] × [�푙22−�푘, (�푙2 + 1)2−�푘],

(17)Ω = +∞⋃
�푘=1

W
�푘 =: W = +∞⋃

�푘=1
⋃

�푄∈W�

�푄 ≡ ⋃
�푄∈W

�푄.

(18)�푑�푖�푠�푡(�푧, Γ) ≥ 1
√2|�푄| = 2−�푘+1, �푧 ∈ �푄,�푄 ∈ W

�푘.

and fractals, see [9, 10, 25]. In this section, we define and 
characterize the hyperholomorphic Cauchy type integral on 
fractal type curves. Before giving the definition, we will state 
some preliminary results.

Let �퐿�(Ω,H(C)), �푝 > 1, the set of �-integrable functions, 
the Teodorescu transform ��0

[�] for �푓 ∈ �퐿�(Ω,H(C)), is  
given by

Looking at the kernel function K�푠�푡,�훼0
(�푧) we can decompose it 

in the following way

where K1
�푠�푡,�훼0

(�푧) := (�훼0/(2�휋)) ln|�푧| and the continuous function 
K

2
�푠�푡,0(�푧) = 0.

Remark 3.1.  It is to be expected that ��0
 shares many of the 

properties of �0. For example, �푇�훼0
[�푓] ∈ �퐶0,(�푝−2)/�푝(R2,H(C)), 

if �푓 ∈ �퐿�(Ω,H(C)) for �푝 > 2, by analogy with [7, Subsection 
8.1].

In what follows, given �� a majorant and �푑 ∈ (1, 2), we will 
take Ω ⊂ R

2 to be a Jordan domain with ℎ-summable bound-
ary Γ, for ℎ(�푡) = �푡�푑−1�휑�휈(�푡) and �푡 ∈ (0, |Γ|].
Definition 3.  We define the hyperholomorphic Cauchy type 
integral of �푓 ∈ �퐶0,�휑�(Γ,H(C)) by the formula

where �Ω is the indicator function of Ω.

�e following proposition makes Definition 3 
legitimate.

Proposition 1.  �e integral (21) is independent of the choice 
of �̃푓.

Proof.  By definition, �휕�0
[�푓] = ���휕[�푓] +�푀�0[�푓]. As 

�푓 ∈ �퐶0,�휑�(Ω ∪ Γ,H(C)) we have �푀�0[�푓] ∈ �퐿�(Ω,H(C)) 
for any �푝 > 0. �e proof is completed by showing that 
�푠�푡�휕[�푓] ∈ �퐿1(Ω,H(C)).

We have

which is a consequence of �eorem 1 (iii).
According to (18) and taking account that �휑�(�푡)/�푡 does not 

increase, we have

(19)
�푇�훼0

[�푓](�푥, �푦) := ∫
Ω
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�푓(�푢, v)�푑�푢 ∧ �푑v, (�푥, �푦) ∈ R
2.

(20)K�푠�푡,�훼0
(�푧) = K�푠�푡,0(�푧) +K

1
�푠�푡,�훼0

(�푧) +K
2
�푠�푡,�훼0

(�푧),

(21)
�퐾∗

�훼0
[�푓](�푥, �푦) = �휒Ω�푓(�푥, �푦) − �푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦), (�푥, �푦) ∈ R

2\Γ,

(22)

∫
Ω

�儨�儨�儨�儨�儨�푠�푡�휕[�푓](�푥, �푦)�儨�儨�儨�儨�儨�푑�푥 ∧ �푑�푦 = ∑
�푄∈W

∫
�푄

�儨�儨�儨�儨�儨�푠�푡�휕[�푓](�푥, �푦)�儨�儨�儨�儨�儨v�푑�푥 ∧ �푑�푦 ≤ �푐

⋅ ∑
�푄∈W

∫
�푄

�휑�휈(�푑�푖�푠�푡(�푧, Γ))
�푑�푖�푠�푡(�푧, Γ) �푑�푥 ∧ �푑�푦,

(23)
�휑�(�푑�푖�푠�푡(�푧, Γ))
�푑�푖�푠�푡(�푧, Γ) ≤ �휑�(�푑�푖�푠�푡(�푄, Γ))

�푑�푖�푠�푡(�푄, Γ) ≤ �휑�(|�푄|)
|�푄| , �푧 ∈ �푄.
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Because each side of Γ� belongs to some �푄 ∈ W
�, we have for 

�푘 > �푘0,

�e conclusion of [23, Lemma 1], implies that

Combining (28) with (29) yields (26) for w ∈ Ω. �e case 
w ∈ R

2\{Ω ∪ Γ} can be handled in the same way; the difference 
is in the fact that now �푑�푖�푠�푡(w, Γ�) ≥ �푑�푖�푠�푡(w, Γ).� ☐

In the rest of this paper we assume Ω+ := Ω and 
Ω− := R

2\{Ω+ ∪ Γ}.
3.1. Integral Representation Formulae.  �e following formulas 
represent extensions to those given in [25] for the case of a 
Jordan domain with a d-summable boundary.

Theorem 2 (Borel–Pompeiu formula).  Suppose 
�푓 ∈ �퐶1(Ω+ ∪ Γ,H(C)), then

(i)	�

(ii)	� �휕�훼0
∘ �푇�훼0

[�푓](�푥, �푦) = �푓(�푥, �푦), (�푥, �푦) ∈ Ω+

hold.

Let us mention two important consequences of �eorem 2.

Theorem 3 (Koppelman formula).  Let �satisfy the hypotheses 
of above theorem, then the following equality holds

 

Theorem 4  (Cauchy formula). Let �푓 ∈ �퐶1(Ω+ ∪ Γ,H(C)) 
such that be hyperholomorphic in Ω+, then

Let us now establish and prove the following auxiliary 
lemma.

Lemma 1.  Let �푓 ∈ �퐶0,�휑�(Γ,H(C)), then �휕�훼0
[�푓] ∈ �퐿�푝(Ω+, H(C)) 

for all

Proof.  �e proof will be divided into two steps. First 
�푀�훼0[�푓] ∈ �퐿�푝(Ω+,H(�퐶)) for any �푝 > 0, which follows from 
the fact that �푓 ∈ �퐶0,�휑�(Ω+ ∪ Γ, H(�퐶)) with Ω+ bounded. 
�e next step is to prove that �푠�푡�휕[�푓] ∈ �퐿�푝(Ω+,H(C)) for 
�푝 < (3 − �휈� − �푑)/(1 − �휈�). Indeed, application of �eorem 1 
(iii) enables us to write

(32)

�儨�儨�儨�儨�儨�儨�儨�儨�儨∫Γ�푘
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�푛�푘(�푢, v)̃�푙(�푢, v) �푑Γ(�푢,v)
�儨�儨�儨�儨�儨�儨�儨�儨�儨

≤ �푐�儨�儨�儨�儨�푄0
�儨�儨�儨�儨 ∑
�푄∈�푊�푘

|�푄|�휑�휈(|�푄|) ≤ �푐�儨�儨�儨�儨�푄0
�儨�儨�儨�儨 ∑
�푄∈�푊�푘

|�푄|�푑−1�휑�휈(|�푄|).

(33)lim
�푘→∞

∫
Γ�푘
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�푛�푘(�푢, v)̃�푙(�푢, v)�푑Γ(�푢,v) = 0.

�퐾∗
�훼0
[�푓](�푥, �푦) + �푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦) = {�푓(�푥, �푦), (�푥, �푦) ∈ Ω+0, (�푥, �푦) ∈ Ω−

(34)
�퐾∗

�훼0
[�푓](�푥, �푦) + �푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦) + �휕�훼0

∘ �푇�훼0
[�푓](�푥, �푦)

= { 2�푓(�푥, �푦), (�푥, �푦) ∈ Ω+0, (�푥, �푦) ∈ Ω−.

(35)�퐾∗
�훼0
[�푓](�푥, �푦) = {�푓(�푥, �푦), (�푥, �푦) ∈ Ω+0, (�푥, �푦) ∈ Ω−.

(36)�푝 < 3 − �휈� − �푑
1 − �휈� .

�e inequality (23) and the fact that �푑 − 1 < 1, gives

Consequently

where the last sum is finite due to [23, Lemma 1].
Now suppose that �̃  and g̃  are two different Whitney type 

extensions of �. �en �̃푙 := �푓 − g̃, is a Whitney type extension 
of the null function and hence ̃�푙|Γ = 0. It remains to prove that

To this end, let us consider the following connected domains

�e boundary of Ω�, denoted by Γ�, consists of sides of some 
squares �푄 ∈ W

�.
�us, we have

Now, take �푧 ∈ Ω and choose �0 sufficiently large such that 
�푧 ∈ Ω�0 and for � > �0, �푑�푖�푠�푡(�푧, Γ�푘) ≥ �儨�儨�儨�儨�푄0

�儨�儨�儨�儨/2√2, where �0 is a 
square of W�0. �e quaternionic Borel–Pompeiu formula, see 
[4, �eorem 4.1, �eorem 4.4], applied to Ω�, yields

where �푛�(�푢, v) is the unit normal vector on Γ� and �푑Γ(�푢,v) 
denotes the surface measure. Next, let w := (�푢 + �푖v) ∈ Γ�, � ∈ W

� a square containing w, and �푧 ∈ Γ such that 
|w − �푧| = �푑�푖�푠�푡(w, Γ). Since �̃푙|Γ = 0, it follows that

If Σ is a side of Γ� and �푄 ∈ W
� is the �-square containing Σ, we 

have for �푘 > �푘0

(24)

∑
�푄∈W

∫
�푄

�휑�휈(�푑�푖�푠�푡(�푧, Γ))
�푑�푖�푠�푡(�푧, Γ) �푑�푥 ∧ �푑�푦 ≤ ∑

�푄∈W
∫

�푄

�휑�휈(|�푄|)
|�푄| �푑�푥 ∧ �푑�푦

= ∑
�푄∈W

|�푄|�휑�휈(|�푄|)
≤ ∑

�푄∈W
|�푄|�푑−1�휑�휈(|�푄|).

(25)∫
Ω

�儨�儨�儨�儨�儨�푠�푡�휕[�푓](�푥, �푦)�儨�儨�儨�儨�儨�푑�푥 ∧ �푑�푦 ≤ �푐 ∑
�푄∈W

|�푄|�푑−1�휑�휈(|�푄|),

(26)�휒Ω �̃푙(�푥, �푦) − �푇�훼0
∘ �휕�훼0

[�̃푙](�푥, �푦) = 0, (�푥, �푦) ∈ R
2\Γ.

(27)Ω� := {�푧 ∈ �푄 |�푄 ∈ W
�, for some �푗 ≤ �푘}.

(28)
∫

Ω
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�휕�훼0
[�̃푙](�푢, v)�푑�푢 ∧ �푑v

= lim
�푘→∞

∫
Ω�푘

K�푠�푡,�훼0
(�푥 − �푢, �푦 − v)�휕�훼0

[�̃푙](�푢, v) �푑�푢 ∧ �푑v.

(29)

�̃푙(�푥, �푦) + ∫
Ω�푘

K�푠�푡,�훼0
(�푥 − �푢, �푦 − v)�휕�훼0

[�̃푙](�푢, v)�푑�푢 ∧ �푑v
= ∫

Γ�푘
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�푛�푘(�푢, v)̃�푙(�푢, v) �푑Γ(�푢,v),

(30)
�儨�儨�儨�儨�儨�푙(w)�儨�儨�儨�儨�儨 = �儨�儨�儨�儨�儨�푙(w) − �̃푙(�푧)�儨�儨�儨�儨�儨 ≤ �푐�휑�(|w − �푧|) ≤ �푐�휑�(|�푄|).

(31)

�儨�儨�儨�儨�儨�儨�儨∫Σ
K�푠�푡,�훼0

(�푥 − �푢, �푦 − v)�푛�푘(�푢, v)̃�푙(�푢, v) �푑Γ(�푢,v)
�儨�儨�儨�儨�儨�儨�儨

≤ �푐�儨�儨�儨�儨�푄0
�儨�儨�儨�儨∫Σ

�儨�儨�儨�儨�儨�푙(�푢, v)�儨�儨�儨�儨�儨�푑Γ(�푢,v) ≤ �푐�儨�儨�儨�儨�푄0
�儨�儨�儨�儨 |�푄|�휑�휈(|�푄|).
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Proof.  We have 2 < (3 − �휈� − �푑)/(1 − �휈�), because �푑 − 1 < �휈�.  
�us we are at liberty to choose � such that

For any such �, we conclude that �휕�훼0
[�푓] ∈ �퐿�푝(Ω+,H(�퐶)) (see 

Lemma 1). From Remark 3.1 it follows that the integral term 
in (21), represents a continuous function in R2. By the above, 
�∗

�훼0
[�] admits a continuous extension to Ω+ ∪ Γ. �e inequal-

ity (45) implies that �� and (�푝 − 2)/�푝 are both greater than �� 
and consequently [�∗

�훼0
]+[�] belongs to �퐶0,�휓�(Γ,H(C)). �e 

rest of the proof runs as before.� ☐

�e following direct corollary is a refinement of [25, 
�eorem 6] (also see [26]). We check at once that requirement 
on � and � has been weakened.

Corollary 1.  Let �푑 − 1 < �휈 and consider �푓 ∈ �퐶0,�휈(Γ,H(C)), 
then �∗

�훼0
[�] admits continuous extensions to Ω± ∪ Γ such that 

its boundary values

belong to �퐶0,�훽(Γ,H(C)), whenever �훽 < (1 + �휈 − �푑)/(3 − �휈 − �푑).

4. Boundary Value Problems

We deal with three boundary value problems for hyperholo-
morphic solutions of the two dimensional Helmholtz equation 
in a fractal domain of R2.

Theorem 6.  Let �푓 ∈ �퐶0,�휑�(Γ,H(C)) with �푑 − 1 < �휈�, then the 
jump problem 

 has a solution explicitly given by

where the hyperholomorphic components �푓± ∈ �퐶0,�휓�(Ω±,H(C)) 
whenever �� is a majorant with order �훽� < (1 + �휈� − �푑)/
(3 − �휈� − �푑), and moreover �푓−(∞) = 0.

Proof.  It is sufficient to use �eorem 5.� ☐

Theorem 7.  Suppose that �퐺 ∈ �퐶0,�휑�(Γ,H(C))with �푑 − 1 < �휈�. 
If there exists �푓 ∈ �퐶0,�휑�(Ω+ ∪ Γ,H(C))such that 

(46)2 < �푝 < 3 − �휈� − �푑
1 − �휈� .

(47)
[�퐾∗

�훼0
]+[�푓](�푥, �푦) = �푓(�푥, �푦) − �푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦), (�푥, �푦) ∈ Γ,

(48)[�퐾∗
�훼0
]−[�푓](�푥, �푦) = −�푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦), (�푥, �푦) ∈ Γ

(49)�푓 = �푓+ − �푓−,

(50)�푓± = [�퐾∗
�훼0
]±[�푓].

(51)
�휕�훼0

[�푓] = 0, inΩ+�푓 = �퐺, on Γ

According to (18) and taking account that �휑�(�푡)/�푡 does not 
increase, we have

Consequently

which is due to the fact that �� is a majorant of order ��.
�e inequality �푝 < (3 − �휈� − �푑)/(1 − �휈�) implies that 

�푑 < �휈�(�푝 − 1) + 3 − �푝, which provides

�erefore

Combining the inequalities (37), (39), and (41) we can con-
clude that

It remains to use that �휕�0
[�푓] = ���휕[�푓] +�푀�0[�푓].� ☐

Remark 3.2.  Obviously, �∗
�훼0
[�] is a hyperholomorphic 

function in R2\Γ, which is clear from �eorem 2 (ii). �e 
question of whether �∗

�훼0
[�] admits continuous extensions 

(to be denoted by [�∗
�훼0
]±[�]) to Ω± ∪ Γ will be answered 

affirmatively in the next theorem. We see at once that 
[�퐾∗

�훼0
]−[�푓](∞) = 0.

Theorem 5.  Let �푑 − 1 < �휈� and consider �푓 ∈ �퐶0,�휑�(Γ,H(C)), 
then �∗

�훼0
[�] admits continuous extensions to Ω± ∪ Γ such that

belong to �퐶0,�휓�(Γ,H(C)), whenever

(37)

∫
Ω

�儨�儨�儨�儨�儨�푠�푡�휕[�푓](�푥, �푦)�儨�儨�儨�儨�儨�푝�푑�푥 ∧ �푑�푦 = ∑
�푄∈W

∫
�푄

�儨�儨�儨�儨�儨�푠�푡�휕[�푓](�푥, �푦)�儨�儨�儨�儨�儨�푝�푑�푥 ∧ �푑�푦

≤ �푐 ∑
�푄∈W

∫
�푄
[�휑�휈(�푑�푖�푠�푡(�푧, Γ))

�푑�푖�푠�푡(�푧, Γ) ]
�푝
�푑�푥 ∧ �푑�푦.

(38)
�휑�(�푑�푖�푠�푡(�푧, Γ))
�푑�푖�푠�푡(�푧, Γ) ≤ �휑�(�푑�푖�푠�푡(�푄, Γ))

�푑�푖�푠�푡(�푄, Γ) ≤ �휑�(|�푄|)
|�푄| , �푧 ∈ �푄.

(39)

∑
�푄∈W

∫
�푄
[�휑�휈(�푑�푖�푠�푡(�푧, Γ))

�푑�푖�푠�푡(�푧, Γ) ]
�푝
�푑�푥 ∧ �푑�푦 ≤ ∑

�푄∈W
∫

�푄
[�휑�휈(|�푄|)

|�푄| ]
�푝
�푑�푥 ∧ �푑�푦

= ∑
�푄∈W

�휑�푝
�휈 (|�푄|)|�푄|2−�푝 ≤ �푐 ∑

�푄∈W
|�푄|�푝�휈� |�푄|2−�푝,

(40)∑
�푄∈W

|�푄|�휈�(�푝−1)+3−�푝 ≤ ∑
�푄∈W

|�푄|�푑.

(41)∑
�푄∈W

|�푄|�푝�휈�+2−�푝 ≤ ∑
�푄∈W

|�푄|�푑−1|�푄|�휈� ≤ �푐 ∑
�푄∈W

|�푄|�푑−1�휑�휈(|�푄|).

(42)∫
Ω

������푠�푡�휕[�푓](�푥, �푦)������푝�푑�푥 ∧ �푑�푦 ≤ �푐 ∑
�푄∈W

|�푄|�푑−1�휑�휈(|�푄|) < +∞.

(43)
[�퐾∗

�훼0
]+[�푓](�푥, �푦) = �푓(�푥, �푦) − �푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦), (�푥, �푦) ∈ Γ,

(44)[�퐾∗
�훼0
]−[�푓](�푥, �푦) = −�푇�훼0

∘ �휕�훼0
[�푓](�푥, �푦), (�푥, �푦) ∈ Γ

(45)�훽� < 1 + �휈� − �푑
3 − �휈� − �푑.
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5. Main Results

Between 1861 and 1862, J. C. Maxwell published the funda-
mental papers “A treatise on electricity and magnetism” and “A 
Dynamical �eory of the Electromagnetic Field”, where the 
behavior of electromagnetic fields was described and com-
pletely formulated the system of partial differential equations, 
named a�er him, which form the foundation of classical elec-
tromagnetism, radio-electronics, wave propagation theory, 
and many other branches of physics and engineering. Since 
this time, the fact that solutions of the Maxwell system (for 
time-harmonic fields) can be related to solutions of the Dirac 
equation, through some nonlinear equations. �is has fasci-
nated several generations of physicists and mathematicians in 
various branches of science, because of their general, even 
philosophical significance, see for instance [3, 5, 8–10]. To the 
best of the author’s knowledge, this deep relation was properly 
formulated and documented originally in [27].

We shall focus attention on time-harmonic electromag-
netic fields, where all fields vary sinusoidally in time with a 
single frequency of oscillations �, i.e., with the dependence 
on the time as �−�푖�휔�푡.

Here and subsequently, �㨀→�퐸  and �㨀→�퐻 denote the complex ampli-
tudes of the electric respectively magnetic field and � and � 
are, respectively, the complex-valued absolute permittivity and 
permeability of the medium. �e current density and the 
charge density are related by the equality div

�㨀→�푗 = �푖�휔�휌.
In recent decades, interest in the time-harmonic Maxwell 

system has never dropped. Works noted in [8, 28–35] are some 
examples of theses achievements in literature.

�e current research is oriented towards a quaternionic 
reformulation of the Maxwell system (59), which is adapted from 
[8], and given a more simply algebraical structure in the form

where 
�㨀→�휗 = −�푖�휔�휀�㨀→�퐸 + �훼0

�㨀→�퐻, �㨀→�휂 = �푖�휔�휀�㨀→�퐸 + �훼0
�㨀→�퐻 are purely vecto-

rial H(C)-valued functions and the wave number �훼0 = �휔√�휀�휇 
is chosen such that Im�훼0 ≥ 0.

�is equivalence is the key to obtaining in this section our 
main results concerning the solvability of an inhomogeneous 
Dirichlet type problem for 2D quaternionic time-harmonic 
Maxwell system.

Theorem 9.  Let � and 
�㨀→�푗  belong to �퐿�푝(Ω+,H(C)), with �푝 > 2. 

Let �㨀→�푒  and 
�㨀→ℎ  be complex vector-valued functions in �퐶0,�휑�(Γ,H(C))

. If there exists �㨀→�퐸  and �㨀→�퐻, both in �퐶0,�휑�(Ω+ ∪ Γ,H(C)), satisfying 
in Ω+ the system (59) such that on Γ.

(59)

rot
�㨀→�퐻 = −�푖�휔�휀�㨀→�퐸 + �㨀→�푗 ,

rot
�㨀→�퐸 = �푖�휔�휇�㨀→�퐻,

div
�㨀→�퐸 = �휌

�휀 ,
div

�㨀→�퐻 = 0.

(60)
�휕−�훼0

[�㨀→�휗 ] = div
�㨀→�푗 + �훼0

�㨀→�푗

�휕�훼0
[�㨀→�휂 ] = −div�㨀→�푗 + �훼0

�㨀→�푗 ,

then 

On the contrary, if (52) holds, there exists a solution 
�푓 ∈ �퐶0,�휓�(Ω+ ∪ Γ,H(C)) of (51), whenever �� is a majorant 
with order �훽� < (1 + �휈� − �푑)/(3 − �휈� − �푑).

Proof.  Assume (51) holds, which signifies that � is a 
Whitney type extension of �. Application of �eorem 4 gives 
�푓 = �퐾∗

�훼0
[�푓], but �퐾∗

�훼0
[�푓] = �퐾∗

�훼0
[�퐺] as �푓 = �퐺 in Γ.

Now (52) follows a�er passage to the limit from inside Ω+.  
On the other hand, if (52) holds, our claim follows directly by 
taking �푓 = �퐾∗

�훼0
[�퐺]. Analysis similar to that in the proof of 

�eorem 5 shows that �푓 ∈ �퐶0,�휓�(Ω+ ∪ Γ,H(C)).� ☐

Theorem 8.  Let �퐺 ∈ �퐶0,�휑�(Γ,H(C)) with �푑 − 1 < �휈� and  
�퐹 ∈ �퐿�푝(Ω+,H(C))(�푝 > 2). If there exists 
�푓 ∈ �퐶0,�휑�(Ω+ ∪ Γ,H(C)) a solution of

then

Conversely, if (54) holds, there exists a solution 
�푓 ∈ �퐶0,�휓�(Ω+ ∪ Γ,H(C)) of (53), whenever �� is a majorant 
with order

Proof.  Take g = �푓 − �푇�0
[�퐹] and let � be a solution of (53). 

By �eorem 2 (ii), we have that g is a solution of (51) with 
� replaced by �퐺 − [�푇�훼0

[�퐹]]|Γ ∈ �퐶0,�휓�훽(Γ,H(C)). �e equality.

which is clear from �eorem 7 applied to this case, implies 
(54). Taking �푓 = �퐾∗

�훼0
[�퐺] + �푇�훼0

[�퐹], the second assertion follows 
directly.

Under the assumptions of �eorem 8 we have that the 
function �푓 = �퐾∗

�훼0
[�퐺] + �푇�훼0

[�퐹] does not depend on the �̃ . 
Consequently, the following equality holds

Remark 4.1.  For a vector-valued function � in �eorem 8, 
(57) clearly forces � and � to satisfy

(52)[�퐾∗
�훼0
]−[�퐺](�푥, �푦) = 0, (�푥, �푦) ∈ Γ.

(53)�휕�훼0
[�푓] = �퐹, �푖�푛Ω+

�푓 = �퐺, �표�푛Γ

(54)[�퐾∗
�훼0
]−[�퐺](�푥, �푦) = −�푇�훼0

[�퐹](�푥, �푦), (�푥, �푦) ∈ Γ.

(55)�훽� < min{1 + �휈� − �푑
3 − �휈� − �푑,

�푝 − 2
�푝 }.

(56)[�퐾∗
�훼0
]−[�퐺 − �푇�훼0

[�퐹]](�푥, �푦) = 0, (�푥, �푦) ∈ Γ,

(57)
�푓(�푥, �푦) = �퐺(�푥, �푦) − �푇�훼0

∘ �휕�훼0
[�퐺](�푥, �푦)

+ �푇�훼0
[�퐹](�푥, �푦), (�푥, �푦) ∈ Ω+.

(58)�푆�푐(�푇�0
∘ �휕�0

[�퐺](�푥, �푦)) = �푆�푐(�푇�0
[�퐹](�푥, �푦)).
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implies the conditions (62) and (64). Additionally, the vecto-
rial nature of the complex amplitudes and Remark 4.1 yield 
(63) and (65). If we use the identities

a trivial verification completes the proof.

6. Conclusions

�is paper established a new hyperholomorphic Cauchy type 
integral for a domain with fractal boundary in R2, which plays 
a remarkable role in the theoretical results on integral rep-
resentation formulas. �ree boundary value problems for 
hyperholomorphic solutions of a two dimensional Helmholtz 
equation in a fractal domain of R2 are studied. �ey have 
proven successful in the solution of an inhomogeneous 
Dirichlet type problem for a 2D quaternionic time-harmonic 
Maxwell system in a domain with fractal boundary in R2.
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