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An AB modified KdV (AB-mKdV) system which can be used to describe two-place event is studied in this manuscript.
Because the AB-mKdV system is considered as a special reduction of the famous AKNS system, the properties of the AKNS
system are first revealed by using symmetry analysis. The nonlocal symmetries related to truncated Painlevé expansion, the
finite transformation, and the symmetry reduction solutions of the AKNS system are presented. The corresponding Bäcklund
transformations and the interaction solutions of the AB-mKdV system are constructed based on the special reduction. The
results demonstrate that the AB-mKdV system possesses many kinds of interaction solutions, such as the interactions between
kink and soliton and kink and cnoidal waves. The soliton can be changed from bright to dark during propagation.

1. Introduction

The study of symmetry is one of the most important and
powerful methods in physics and mathematics because
knowledge of symmetries can enhance our understanding
of complicated physical phenomena, to simplify and solve
problems and to deepen our standing of nature. It is particu-
larly fundamental to find the symmetries of the integrable
systems because symmetries can help to find infinitely con-
servation laws, generate new integrable systems, etc. Recent
studies show that the nonlocal symmetry is not only related
to Painlevé property, Darboux transformations, and Bäck-
lund transformations but can also be used to find some types
of interaction solutions among different types of nonlinear
excitations, such as solitons, cnoidal waves, Airy waves, and
Bessel waves [1–3].

In 2013, a nonlinear nonlocal Schrödinger equation is
introduced which possesses Lax pair and an infinite number
of conservation laws [4] with the help of PT symmetry where
x→ −x and t→ −t. Later, the AB systems, possessing shifted-
parity (Ps) and delayed time reversal (Td) symmetries, were
introduced by Li et al. [5] which are extensions of PT symme-
try to describe two-place physical events. A special AB-KdV
system is established to qualitatively describe two real events,

the atmospheric blocking which happened in November
2007 and January 2008, respectively, while the atmospheric
blockings are responsible for the heavy snow disaster in
Southern China in the winter 2007/2008 [6]. Another special
AB-KdV system is constructed in [7], and the exact PsTd
invariant and PsTd symmetric breaking solutions are found.
Recent studies show that reverse space and reverse time non-
local nonlinear integrable equations can be introduced from
the remarkably simple symmetry reductions of general
AKNS scattering problems [8]. Many nonlinear systems,
such as KdV equation [9], mKdV equation, NLS equation
and Sine-Gordon equation, b-family equation, and Novikov
equation [10], can be extended to shifted-parity and delayed
time reversal AB systems.

A special AB-mKdV system is

At + Axxx + 6ABAx = 0,
B = f̂ A = ±P̂sT̂dA = ±A −x + x0, −t + t0ð Þ,

(
ð1Þ

with x0 and t0 being arbitrary constants which can be consid-
ered as a special reduction of the famous AKNS system
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at + axxx + 6abax = 0,
bt + bxxx + 6abbx = 0,

(
ð2Þ

where a ≡ aðx, tÞ and b ≡ bðx, tÞ. It is easy to see with the spe-
cial reduction a = Aðx, tÞ, b = B = ±Að−x + x0,−t + t0Þ, the
AKNS system (equation (2)) is reduced to the AB-mKdV sys-
tem (equation (1)). Like the nonlocal modified KdV equation
derived from the nonlinear inviscid dissipative and equiva-
lent barotropic vorticity equation in a β-plane [11], we
believe that the AB-mKdV system (equation (1)) can also
be derived from the two-layer fluid system and has a physical
application to describe various two-place and time-delayed
correlated events.

A complex reverse space-time nonlocal complex mKdV
equation and a nonlocal real reverse space-time mKdV
equation are introduced in [8] from the remarkably simple
symmetry reductions of general AKNS scattering problems.
Though the AB-mKdV (equation (1)) is also generated
from the AKNS system, the system is a shifted-parity and
delayed time reversal system. And we believe that the AB-
mKdV system (equation (1)) can be considered a more
general form of the nonlocal nonlinear complex and real
mKdV equation.

In [12], a special case of the AB-mKdV system with
x0 = t0 = 0 is generated from the AKNS system. The exact
soliton and breather solutions are constructed through
inverse scattering transform that demonstrates the special
PT symmetric AB-mKdV system which has some new prop-
erties, which are different from the ones of the mKdV equa-
tion. Furthermore, in [5], abundant new localized structures,
such as the bell-ring shape soliton (bright soliton), the kink
soliton (dark soliton), and the rogue wave solutions for the
AB-mKdV system (equation (1)) where B = −Að−x + x0,
−t + t0Þ, are revealed.

However, though many kinds of exact solutions and
interesting structures for the AB-mKdV system have been
found, there are still lots of problems left. For example, is it
possible to find the interaction structures the AB-mKdV sys-
tem possesses? How to construct the interaction solutions of
the AB-mKdV system? Does the AB-mKdV system possess
new interaction properties?

In [7], an AB-KdV system is studied with the help of a
coupled KdV system which supplies an effective method to
study the AB system. Motivated by this method, we start
from the AKNS system (equation (2)) to reveal the properties
of the AB-mKdV system (equation (1)). Here, we will use
symmetry analysis that is considered as one of the most
important and powerful methods.

The paper is organized as follows. In Section 2, we first
present the truncated Painlevé expansion of the AKNS sys-
tem, then find out the nonlocal symmetry or the residual
symmetry related to the obtained truncated Painlevé expan-
sion. To localize the nonlocal symmetry, the AKNS system
is prolonged to an enlarged system. Furthermore, the sym-
metry reductions related to the nonlocal symmetry are stud-
ied. By using the special reduction, all the solutions of the
AKNS system can be changed to those of the AB-mKdV sys-
tem. In Section 3, a special Bäcklund transformation theorem

of the AB-mKdV system is written down according to the
results of the AKNS system. It is found that the AB-mKdV
system possesses many kinds of interaction solutions, such
as the interaction between kink and soliton and kink and
cnoidal waves.

2. Nonlocal Symmetry of the AKNS System

Symmetry study plays an important role in natural sci-
ence, especially in physics and mathematics. Recent studies
show nonlocal symmetry related to Painlevé expansion has
been successfully used to find the interaction solutions of
nonlinear integrable systems [13–15]. In this section, we
will start from the truncated Painlevé expansion of the
AKNS system.

2.1. The Truncated Painlevé Expansion. The first step to
search for nonlocal symmetry of a nonlinear system is to find
the truncated Painlevé expansion. By balancing the nonlinear
and leading dispersive terms, it is easy to write down the
truncated Painlevé expansion of the AKNS system (equation
(2)) as

a = a0
f
+ a1,

b = b0
f
+ b1,

ð3Þ

where ai, bi, i = 1, 2, and f are functions of fx, tg. Substituting
the expansion (equation (3)) into the AKNS system (equa-
tion (2)), we have

a1t + a1xxx + 6a1b1a1x
+ f −1 a0t + a0xxx + 6b1 a0a1ð Þx + 6a1b0a1x

� �
− f −2

�
a0 f t + a0 f xxx + 3 a0x f xð Þx + 6a0a1b1 f x

− 6a0x a0b1 + a1b0ð Þ − 6a0b0a1x
�
+ 6f −3

�
a0 f

2
x

� �
x

+ a0xa0b0 − a0 f x a0b1 + a1b0ð Þ�
− 6a0 f −4 f x a0b0 + f 2x

� �
= 0,

ð4Þ

b1t + b1xxx + 6a1b1b1x + f −1
�
b0t + b0xxx

+ 6a1 b0b1ð Þx + 6a0b1b1x
�
− f −2

�
b0 f t

+ b0 f xxx + 3 b0 f xð Þx + 6b0a1b1 f x
− 6b0x a0b1 + a1b0ð Þ − 6a0b0b1x

�
+ 6f −3 b0 f

2
x

� �
x
+ a0b0b0x − b0 f x a1b0 + a0b1ð Þ� �

− 6b0 f −4 f x a0b0 + f 2x
� �

= 0:

ð5Þ

Vanishing the coefficients of all the powers of f in equa-
tions (4) and (5), we can obtain the determining equations
for ai, bi, i = 1, 2, and f .

To vanish the coefficients of f −4 in equations (4) and (5)
and link the AKNS system to the AB-mKdV system, there are
only two possible cases
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a0 = f x,
b0 = −f x,
a0 = if x ,
b0 = if x:

ð6Þ

Case 1. For a0 = f x, b0 = −f x , vanishing all the coefficients
of f gives

a1 = −
f xx
2f x

,

b1 =
f xx
2f x

,
ð7Þ

with a constraint condition

f t =
3f 2xx
2f x

− f xxx, ð8Þ

which can be considered as a Schwarzian equation [16].

Thus, if f is a solution of the Schwarzian equation
(equation (8)), the truncated Painlevé expansion of the
AKNS system is

a = f x
f
−

f xx
2f x

,

b = −
f x
f
+ f xx
2f x

:

ð9Þ

Case 2. If a0 = if x, b0 = if x, one can find that

a1 = −i
f xx
2f x

,

b1 = −i
f xx
2f x

,
ð10Þ

by vanishing all the coefficients of f in equations (4) and (5)
with f satisfying equation (8).

In this case, the truncated Painlevé expansion of the
AKNS system becomes

a = i
f x
f
− i

f xx
2f x

,

b = i
f x
f
− i

f xx
2f x

,
ð11Þ

where f satisfies the constraint Schwarzian equation (equa-
tion (8)).

Now the truncated Painlevé expansion of the AKNS sys-
tem (equation (2)) is obtained with two cases. The results
show that the system may be a complex one or a real one
which will lead to a complex AB-mKdV system or a real

AB-mKdV system. Next, we will present the nonlocal sym-
metry of the AKNS system (equation (2)) related to the trun-
cated Painlevé expansion.

2.2. Nonlocal Symmetry. The symmetry

σ =
σa

σb

 !
ð12Þ

means under the infinitesimal transformation

a

b

 !
→

a

b

 !
+ ε

σa

σb

 !
, ð13Þ

the AKNS system (equation (2)) is form invariant, where
fσa, σbg is a solution of the linearized equation of the origi-
nal AKNS system:

σat + σaxxx + 6ax σab + aσb
� �

+ 6abσax = 0, ð14Þ

σbt + σbxxx + 6bx σab + aσb
� �

+ 6abσb = 0: ð15Þ

It is not difficult to find that fa0, b0g in the truncated
Painlevé expansion (equation (3)) is a symmetry with respect
to the solution fa1, b1g of the AKNS system (equation (2))
which can be proved by substituting fσa = a0, σb = b0g into
the symmetry equation (equations (14) and (15)) with the
solution fa = a1, b = b1g.

On the other hand, the functions f , f x, and f xx are linked
with fa, bg nonlocally via equations (9) and (11), the symme-
try fσa = a0, σb = b0g is nonlocal. The nonlocal symmetry the-
orem related to truncated Painlevé expansion is written down.

Theorem 1. Nonlocal symmetry theorem. If f is a solution of
the Schwarzian equation (equation (8)), then

σ1 =
σa

σb

 !
=

f x

−f x

 !
ð16Þ

is a nonlocal symmetry of the AKNS system (equation (2)) for
the solution

a = −
f xx
2f x

,

b = f xx
2f x

,
ð17Þ

so is

σ2 =
σa

σb

 !
=

if x

if x

 !
, ð18Þ

for the solution
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σa = −
if xx
2f x

,

σb = −
if xx
2f x

:

ð19Þ

The theorem can be verified by directly substituting the
results into the symmetry definition equation (equations
(14) and (15)).

2.3. Localize the Nonlocal Symmetry. It is known that nonlo-
cal symmetries are related to many kinds of nontrivial trans-
formations such as the Darboux transformations (DTs),
Bäcklund transformations (BTs), and Möbious transforma-
tions by localizing the nonlocal symmetries. In order to local-
ize the nonlocal symmetry, the AKNS system (equation (2))
is prolonged to an enlarged system

at + axxx + 6abax = 0, ð20Þ

bt + bxxx + 6abbx = 0, ð21Þ

f t = −f xxx +
3
2
f 2xx
f x

, ð22Þ

g = f x, ð23Þ

by introducing a new dependent variable g = f x with the con-
straint condition.

It is known that the symmetry of the enlarged system is
the solution of the linearized system of equations (20), (21),
(22), and (23) reading as

σat + σaxxx + 6ax σab + aσb
� �

+ 6abσax = 0, ð24Þ

σbt + σbxxx + 6bx σab + aσb
� �

+ 6abσb
x = 0, ð25Þ

σf
t f x + σf

xxx f x − 3σf
xx f xx + f xxxσ

f
x + f tσ

f
x = 0, ð26Þ

σg − σf
x = 0: ð27Þ

For the enlarged system (equations (20), (21), (22), and
(23)), it is easy to verify the Schwarzian equation (equation
(22)) possesses a famous symmetry σf = −f 2 + c1 f + c0 satis-
fying equation (26), so we can directly derive that the sym-
metry of the prolonged system (equations (20), (21), (22),
and (23)) has the form of

σa

σb

σf

σg

0
BBBBB@

1
CCCCCA =

g

−g

−f 2 + c1 f + c0

−2f g + c1g

0
BBBBB@

1
CCCCCA, ð28Þ

σa

σb

σf

σg

0
BBBBB@

1
CCCCCA =

ig

ig

−f 2 + c1 f + c0

−2f g + c1g

0
BBBBB@

1
CCCCCA, ð29Þ

where c0 and c1 are arbitrary constants.
Thus, the nonlocal symmetries (equations (16) and (18))

are localized and become Lie point symmetries (equations
(28) and (29)) for the prolonged system (equations (20),
(21), (22), and (23)) by introducing the function g.

2.4. Initial Problem of the Prolonged System. The last step of
the standard symmetry analysis method is solving the initial
problem. Using the initial problem and localized symmetry,
we can find finite transformation and the related symmetry
reductions of the prolonged system.

The initial value problem is

da′ εð Þ
dε

= g′ εð Þ, a′ 0ð Þ = a,

db′ εð Þ
dε

= −g′ εð Þ, b′ 0ð Þ = b,

df ′ εð Þ
dε

= −f ′ εð Þ2 + c1 f ′ εð Þ + c0, f ′ 0ð Þ = f ,

dg′ εð Þ
dε

= −2f ′ εð Þg′ εð Þ + c1g′ εð Þ, g′ 0ð Þ = g,

ð30Þ

for the first kind of symmetry (equation (28)) and

da′ εð Þ
dε

= ig′ εð Þ, a′ 0ð Þ = a,

db′ εð Þ
dε

= ig′ εð Þ,  b′ 0ð Þ = b,

df ′ εð Þ
dε

= −f ′ εð Þ2 + c1 f ′ εð Þ + c0,  f ′ 0ð Þ = f ,

dg′ εð Þ
dε

= −2f ′ εð Þg′ εð Þ + c1g′ εð Þ, g′ 0ð Þ = g,

ð31Þ

for the second kind of symmetry (equation (29)). Solving the
initial value problems, one can directly derive the finite trans-
formation theorems.

Theorem 2. Finite transformation theorem for the symmetry
(equation (28)). If fa, b, f , gg is a solution of the enlarged sys-
tem (equations (20), (21), (22), and (23)), so is fa′, b′, f ′, g′g
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a′ = a + g 2f − c1ð Þ
2 f 2 − c1 f − c0
� � − αg

2 f 2 − c1 f − c0
� � tanh

� arctanh 2f − c1
α

� 	
+ εα

2


 �
,

b′ = b −
g 2f − c1ð Þ

2 f 2 − c1 f − c0
� � + αg

2 f 2 − c1 f − c0
� � tanh

� arctanh 2f − c1
α

� 	
+ εα

2


 �
,

f ′ = α

2
tanh arctanh 2f − c1

α

� 	
+ εα

2


 �
+ c1

2
,

g′ = −
α2g

4 f 2 − c1 f − c0
� � sech2

� arctanh 2f − c1
α

� 	
+ εα

2


 �
,

ð32Þ

for α ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 + 4c0

p
≠ 0, and fa″, b″, f ″, g″g

a″ = a + 2εg
2εf − c1ε + 2

,

b″ = b −
2εg

2εf − c1ε + 2
,

f ″ = 2c1εf − c21ε + 4f
2 2εf − c1ε + 2ð Þ ,

g″ = 4g

2εf − c1ε + 2ð Þ2
,

ð33Þ

for α = 0 with c0 and c1 being two arbitrary constants.

Theorem 3. Finite transformation theorem for the symme-
try (equation (29)). If fa, b, f , gg is a solution of the pro-
longed system (equations (20), (21), (22), and (23)), then
fa′, b′, f ′, g′g

a′ = a + 2ig tanh εα/2ð Þ
2f − c1ð Þ tanh εα/2ð Þ − α

,

b′ = b + 2ig tanh εα/2ð Þ
2f − c1ð Þ tanh εα/2ð Þ − α

,

f ′ = α

2
tanh arctanh 2f − c1

α

� 	
+ εα

2


 �
+ c1

2
,

g′ = −
α2g

4 f 2 − c1 f − c0
� � sec h2 arctanh 2f − c1

α

� 	
+ εα

2


 �
,

ð34Þ

for α ≠ 0, and fa″, b″, f ″, g″g

a″ = a + 2iεg
ε 2f − c1ð Þ − 2

,

b″ = b + 2iεg
ε 2f − c1ð Þ − 2

,

f ″ = 2c1εf − c21ε + 4f
2 2εf − c1ε + 2ð Þ ,

g″ = 4g

2εf − c1ε + 2ð Þ2 ,

ð35Þ

are also solutions of the prolonged system.

According to these theorems, starting from any seed
solutions of the enlarged system (equations (20), (21), (22),
and (23)), infinitely many new solutions, especially interac-
tion solutions among different nonlinear excitations, can
be obtained.

2.5. Lie Point Symmetry of the Prolonged System. Now that
the nonlocal symmetry of the enlarged system is localized,
it is natural to find the classical Lie point symmetry to search
for more new reductions. The famous first fundamental
theorem of Lie [17, 18] is a standard method used widely to
find Lie point symmetry algebras. In this section, we use the
standard method to obtain the Lie point symmetry and sym-
metry reductions of the prolonged system. For simplicity, we
present the symmetry reductions related to the symmetry
(equation (28)) for the prolonged system (equations (20),
(21), (22), and (23)).

According to the classical Lie group theory [17], the
enlarged system (equations (20), (21), (22), and (23)) pos-
sesses the Lie point symmetry

σa

σb

σf

σg

0
BBBBBB@

1
CCCCCCA

= X x, t, a, b, f , gð Þ

ax

bx

f x

gx

0
BBBBBB@

1
CCCCCCA

+ T x, t, a, b, f , gð Þ

at

bt

f t

gt

0
BBBBBB@

1
CCCCCCA

−

A1 x, t, a, b, f , gð Þ
B1 x, t, a, b, f , gð Þ
F x, t, a, b, f , gð Þ
G x, t, a, b, f , gð Þ

0
BBBBBB@

1
CCCCCCA
,

ð36Þ

where fσa, σb, σf , σgg is a solution of the linearized equation
of the enlarged system which means the enlarged system is
invariant under the infinitesimal transformation
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a→ a + ε½A1 x, t, a, b, f , gð Þ − X x, t, a, b, f , gð Þax
− T x, t, a, b, f , gð Þat� ≡ a + εσa,

b→ b + ε½B1 x, t, a, b, f , gð Þ − X x, t, a, b, f , gð Þbx
− T x, t, a, b, f , gð Þbt� ≡ b + εσb,

f → f + ε½F x, t, a, b, f , gð Þ − X x, t, a, b, f , gð Þf x
− T x, t, a, b, f , gð Þf t� ≡ f + εσf ,

g→ g + ε½G x, t, a, b, f , gð Þ − X x, t, a, b, f , gð Þgx
− T x, t, a, b, f , gð Þgt� ≡ a + εσg:

ð37Þ

Substituting equation (36) into the linearized equation of
the enlarged system (equations (24), (25), (26), and (27)) and
eliminating at , bt , and f x by the original system, then collect-
ing the coefficients of a, b, f , and g and their derivatives, an
overdetermined set of equations for the unknown functions
X, T , A1, B1, F, and G are obtained with the solution

X = c1x + c2,
T = 3c1t + c3,
F = c4 f

2 − c5 f − c6,
G = 2c4 f g − c1g − c5g,
A1 = −c1a − c4g,
B1 = −c1b + c4g,

ð38Þ

where ci, i = 1,⋯, 6, are arbitrary constants.
Once the Lie point symmetry is given, we can use it to

find the symmetry reductions of the enlarged system. By
solving the characteristic equation

dx
X x, t, a, b, f , gð Þ =

dt
T x, t, a, b, f , gð Þ = da

A1 x, t, a, b, f , gð Þ
= db
B1 x, t, a, b, f , gð Þ = df

F x, t, a, b, f , gð Þ
= dg
G x, t, a, b, f , gð Þ ,

ð39Þ

the group invariants and the reduction solutions are pre-
sented in 5 cases.

Case 1 (c1 = 0, c2 ≠ 0, c3 ≠ 0, c4 ≠ 0). The prolonged system
(equations (20), (21), (22), and (23)) possesses a solution

a = c23Fξξ

2c2 c3Fξ − c2
� � − α1 c3Fξ − c2

� �
2c22

tanh α1
2c2

F + xð Þ

 �

,

ð40Þ

b = −
c23Fξξ

2c2 c3Fξ − c2
� � + α1 c3Fξ − c2

� �
2c22

tanh α1
2c2

F + xð Þ

 �

,

ð41Þ

f = −
α1
2c4

tanh α1
2c2

F + xð Þ

 �

+ c5
2c4

, ð42Þ

g = α21 c3Fξ − c2
� �

2c22c4 cosh α1/c2ð Þ F + xð Þ½ � + 1f g , ð43Þ

where F satisfies the reduction equation

Fξξξ =
3c3F2

ξξ

2 c3Fξ − c2
� � + α21 c3Fξ − c2

� �3
2c22c33

+ c32 c3Fξ − c2
� �

c43
+ c42
c43
,

ð44Þ

with α1 ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4c4c6 + c25

p
, and

ξ = −
c3
c2
x + t: ð45Þ

Case 2 (c1 = 0, c2 ≠ 0, c3 ≠ 0, c4 = 0, c5 ≠ 0). In this case, if F
satisfies the reduction equation

Fξξξ =
3 c3Fξξ + c5Fξ

� �2
2c3 c3Fξ + c5F
� � + 2c32 + 3c3c25

� �
c3Fξ + c5F
� �

2c43

−
c5 c32 + c3c

2
5

� �
F

c43
,

ð46Þ

then

f = e−c5x/c2F −
c6
c5
,

g = e−c5x/c2
c5F + c3Fξ

c2
,

a = c23Fξξ + 2c3c5Fξ + c25F

2c2 c3Fξ + c5F
� � ,

b = −
c23Fξξ + 2c3c5Fξ + c25F

2c2 c3Fξ + c5F
� � ,

ð47Þ

with the invariant variable

ξ = −
c3
c2
x + t ð48Þ

is a solution of the prolonged system (equations (20), (21),
(22), and (23)).

Case 3 (c1 = 0, c2 ≠ 0, c3 ≠ 0, c4 = 0, c5 = 0). If F is a solution of
the reduction equation

Fξξξ =
3c43F2

ξξ + 2c32c3F2
ξ + 2c32c6Fξ

2c33 c3Fξ + c6
� � , ð49Þ
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where

ξ = −c3x + c2t
c2

, ð50Þ

then

f = c6x
c2

+ F,

g = −
c3Fξ + c6

c2
,

a = c23Fξξ

2c2 c3Fξ + c6
� � ,

b = −
c23Fξξ

2c2 c3Fξ + c6
� � ,

ð51Þ

is a solution of the prolonged system (equations (20), (21),
(22), and (23)).

Case 4 (c1 ≠ 0, c2 ≠ 0, c3 ≠ 0, c4 ≠ 0). In this case, the similarity
solution can be written as

f = −
α1 tanh α1F/2ð Þ + α1/2c1ð Þ ln c1x + c2ð Þ½ � − c5

2c4
,

g = α21 3c1ξFξ − 1
� �

2c4 c1x + c2ð Þ cosh α1F/2ð Þ + α1/2c1ð Þ ln c1x + c2ð Þ½ � + 1f g ,

a = 3c21ξ ξFξξ + Fξ

� �
− α1 3c1ξFξ − 1

� �2 + c1 3c1ξFξ − 1
� �

2 c1x + c2ð Þ 3c1ξFξ − 1
� �

−
α1 3c1ξFξ − 1
� �

eα1F c1x + c2ð Þα1/c1 + 1
,

b = −
3c21ξ ξFξξ + Fξ

� �
− α1 3c1ξFξ − 1

� �2 + c1 3c1ξFξ − 1
� �

2 c1x + c2ð Þ 3c1ξFξ − 1
� �

+ α1 3c1ξFξ − 1
� �

eα1F c1x + c2ð Þα1/c1 + 1
,

ð52Þ

with similarity variable

ξ = 3c1t + c3
3c1 c1x + c2ð Þ3 , ð53Þ

where the group invariant function F is determined by the
reduction equation

Fξξξ =
9c1 ξFξξ + Fξ

� �2
2ξ 3c1ξFξ − 1
� � −

3 ξFξξ + Fξ

� �
ξ2

+ α21 3c1ξFξ − 1
� �3

c31ξ
3

+ 105c31ξ + 2
� �

3c1ξFξ − 1
� �

c41ξ
4 + 54c31ξ + 1

81c41ξ4
:

ð54Þ

Case 5 (c1 ≠ 0, c2 ≠ 0, c3 ≠ 0, c4 = 0, c5 ≠ 0). If F is a solution of
the reduction equation

Fξξξ =
3c1ξFξξ + 3c1Fξ + c5Fξ

� �2
2c1ξ 3c1ξFξ + c5F

� �
−
3c1ξFξξ + 3c1Fξ + c5Fξ

c1ξ
2

+ 105c31ξ + 54c21c5ξ + 9c1c25ξ + 2
� �

Fξ

54c31ξ3

−
c5 c21 − c25
� �

F

54c31ξ3
,

ð55Þ

then

f = c1x + c2ð Þ−c5/c1F −
c6
c5
,

g = − c1x + c2ð Þ− c1+c5ð Þ/c1 c5F + 3c1ξFξ

� �
,

a = 9c21ξ2 + 6c1 2c1 + c5ð ÞξFξ + c5 c1 + c5ð ÞF
2 c1x + c2ð Þ 3c1ξFξ + c5F

� � ,

b = −
9c21ξ2 + 6c1 2c1 + c5ð ÞξFξ + c5 c1 + c5ð ÞF

2 c1x + c2ð Þ 3c1ξFξ + c5F
� � ,

ð56Þ

with the invariant

ξ = 3c1t + c3
3c1 c1x + c2ð Þ3 ð57Þ

is a solution of the prolonged system (equations (20), (21),
(22), and (23)).

According to the above results, many kinds of solutions
of the prolonged system (equations (20), (21), (22), and
(23)) can be found out by symmetry reductions with local-
ized symmetries. The reduction solutions exhibit the pro-
longed system (equations (20), (21), (22), and (23)) which
possesses rich structures. Here, we do not show it in detail.

3. Bäcklund Transformation and Interaction
Solutions of the AB-mKdV System

Due to the special relation between the AKNS system and
the AB-mKdV system, we can change some solutions of the
AKNS system to those of the AB-mKdV system. For exam-
ple, with the special reduction a = A, b = B = ±Að−x + x0,
−t + t0Þ, the AKNS system will be reduced to the AB-
mKdV system. Thus, we obtain some special Bäcklund trans-
formation and interaction solutions of the AB-mKdV system
according to the known results of the AKNS system.

3.1. Bäcklund Transformation Related to Nonlocal Symmetry.
From the finite transformation theorem of the AKNS system,
it is direct and easy to construct the Bäcklund transformation
theorem for the AB-mKdV system (equation (1)).
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Theorem 4. Bäcklund transformation theorem. If A is a solu-
tion of the AB-mKdV system

At + Axxx + 6ABAx = 0,
B = f̂ A = −P̂sT̂dA = −A −x + x0,−t + t0ð Þ,

(
ð58Þ

and f is a solution of the Schwarzian equation (equation (8)),
then

A′ εð Þ = A + f x 2f − c1ð Þ
2 f 2 − c1 f − c0
� �

−
αf x

2 f 2 − c1 f − c0
� � tanh arctanh 2f − c1

α

� 	
+ εα

2


 �
,

A″ εð Þ = A + 2εf x
2εf − c1ε + 2

ð59Þ

are also solutions of the AB-mKdV system (equation (58))
with α ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 + 4c0

p
≠ 0 and c1, c0 being arbitrary constants.

Theorem 5. Bäcklund transformation theorem. If f is a solu-
tion of the Schwarzian equation (equation (8)) and A satisfies
the AB-mKdV system

At + Axxx + 6ABAx = 0,
B = f̂ A = P̂sT̂dA = A −x + x0,−t + t0ð Þ,

(
ð60Þ

then

A′ = A + 2if x tanh εα/2ð Þ
2f − c1ð Þ tanh εα/2ð Þ − α

, ð61Þ

for α ≠ 0, and

A″ = A + 2iεg
ε 2f − c1ð Þ − 2

ð62Þ

are also solutions of the AB-mKdV system (equation (60)).

We can verify the theorems by directly substituting the
solutions into the AB-mKdV system with f satisfying the
Schwarzian equation (equation (8)), respectively.

3.2. Exact Solutions for the AB-mKdV System. Because the
AB-mKdV system is related to the AKNS system by the spe-
cial reduction, all the exact solutions of the AB-mKdV sys-
tem can be obtained from those of the AKNS system.
Here, we list some interaction solutions of the AB-mKdV
system that derived from the symmetry reduction solutions
of the AKNS system.

The reduction equation (equation (44)) in Case 1 is
equivalent to

F1ξξ =
3
2
F2
1ξ
F1

+ α1
2c22c23

F3
1 +

c32
c33
F1 +

c42
c33
, ð63Þ

by introducing F1

F1 = c3Fξ − c2: ð64Þ

It is known that the solution of equation (63) can be writ-
ten as the function of the Jacobi elliptic functions which is
assumed to be

F1 = β1ξ + β2Eπ m0sn β0ξ,mð Þ, n, ν½ �, ð65Þ

where β0, β1, β2,m0,m, and n are constants; snðβ0ξ,mÞ ≡ Sn,
cnðβ0ξ,mÞ ≡ Cn, and dnðβ0ξ,mÞ ≡Dn are the usual Jacobi
elliptic functions; and Eπðη, n, νÞ is the third type of incom-
plete elliptic integral defined by

Eπ η, n, νð Þ =
ðη
0

dt

1 − nt2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t2ð Þ 1 − ν2t2ð Þp : ð66Þ

Substituting equation (65) into equation (63), we can find
three cases of important solutions: (1) m0 = 1, ν =m; (2)
m0 =m, n = 0, ν = 1; (3) m0 =

ffiffiffiffi
m

p
, n = 0, ν = 1.

Case 1 (m0 = 1, ν =m). In this case, substituting equation
(65) with m0 = 1, ν =m into equation (63) leads to a long
equation related to different powers of Sn. Vanishing all the
coefficients of different powers of Sn, a unique nontrivial
solution is found

β1 = 0,

β2 =
c2 m2n − 3m2 + n
� �

aβ0m
2 ,

α1 = −
8c32m4 m2n −m2 − n2 + n

� �
c3 m2n − 3m2 + nð Þ3

,

c32 =
2β0c

3
3 m2n − 3m2 + n
� �

n
,

ð67Þ

with β0, m, n, and c3 being four arbitrary constants. Thus, a
special solution for F is found by substituting all the known
results into the F expression, say

F = c2
c3
ξ + c2 m2n − 3m2 + n

� �
2c3β0m

2 Eπ sn β0ξ,mð Þ, n,m½ �: ð68Þ

The corresponding solution a and b for the AKNS system
is constructed by equations (40), (41), (42), and (43) which is

a = α1 m2n − 3m2 + n
� �
c2m2 nS2n − 1

� � tanh

� c2 m2n − 3m2 + n
� �

Eπ Sn, n,mð Þ + 2β0m
2c2t

4c2c3β0m
2


 �

+ nc3β0SnCnDn

c2 1 − nS2n
� � ,

b = −a:

ð69Þ
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Using the special reduction, we can find that the solution
for the AB-mKdV system (equation (58)) is derived directly
from equation (69) reading as

A = α1 m2n − 3m2 + n
� �
c2m2 nS′2n − 1

� � tanh

�
c2 m2n − 3m2 + n
� �

Eπ S′n, n,m
� �

+ 2β0m
2c2 t − t0/2ð Þ

4c2c3β0m
2

2
4

3
5

+ nc3β0S′nC′nD′n
c2 1 − nS′2n
� � ,

B = −A −x + x0,−t + t0ð Þ
ð70Þ

where Sn′ ≡ snðβ0ξ′,mÞ, Cn′ ≡ cnðβ0ξ′,mÞ, Dn′ ≡ dnðβ0ξ′,mÞ,
and

ξ′ = −
c3
c2

x −
x0
2

� �
+ t −

t0
2

� 	
: ð71Þ

The solution may be singularity at some areas, but for
the special case m = 1, it exhibits the interactions between
soliton and kink. Figure 1 shows the interaction solution
between soliton and kink for m = 1 with other parameters
being selected as

t0 = 2,
x0 = −2,

β0 =
1
2 ,

c3 = −1,

n = 1
2 ,

ð72Þ

in equation (70) for A. Figure 1(a) shows the interaction
structure between soliton and kink, and Figure 1(b) shows
the corresponding density plot. It is found that the soliton
moves along the kink with the soliton remaining its shape.
The interesting thing is during the interaction between
kink and soliton, the soliton is transformed from dark to
light which may be used in nonlinear optical systems.
Similarly, in [19], it is pointed that bell-shaped and kink-
shaped waves propagate together in description of
dynamic rearrangements in biatomic lattices. But the dif-
ference is the bell-shaped localized moving defect may
arise or decay in a lattice due to the propagation of a
macrostrain wave.

Case 2 (m0 =m, n = 0, ν = 1). In this case, equation (65) is
reduced to

F1 = β1ξ1 + β2 arctanh msn β0ξ1,mð Þ½ �: ð73Þ

Substituting the expression (equation (73)) into the
equivalent equation (equation (63)) yields further constraints
of the constants

β1 =
c2 Sm2 − 5
� �
4 1 −m2ð Þ ,

β2 =
c32 m2 − 5
� �

4β0c3 1 −m2ð Þ ,

α1 =
32c22 1 −m2� �2

m2 − 5ð Þ3
,

c32 =
1
2β

2
0c

3
3 m2 − 5
� �

:

ð74Þ

Thus, the corresponding solution for the AKNS system
(equation (2)) is

−40 −20 0 20 40x

−20

−10

0

10

20

t

−0.5

0

0. 5A
 (x

,t
)

(a)

−20

−10

0

10

20

t

−20 −10 0 1 0 20
x

(b)

Figure 1: An interaction structure between soliton and kink for solution A in equations (70) and (72) is shown in (a) with the density plot in (b)
where the parameters are selected as equation (72).
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a = α1 5 −m2� �
1 +m2 + 2mCnDn − 2m2S2n
� �

8c2 1 −m2ð Þ m2S2n −mCnDn − 1
� � tanh

�


α1 m2 − 5
� �

x

8c2 m2 − 1ð Þ + α1 3m2 + 1
� �

t

8c3 m2 − 1ð Þ

−
α1 m2 − 5
� �

arctanh mSnð Þ
8β0c3 m2 − 1ð Þ

�

+ 1 −m2� �
mβ0c3Sn

2c2 m2S2n −mCnDn − 1
� � ,

b = −a,

ð75Þ

and the interaction solution of the AB-mKdV system (equa-
tion (58)) is obtained

A =
α1 5 −m2� �

1 +m2 + 2mC′nD′n − 2m2S′2n
� �

8c2 1 −m2ð Þ m2S2
n′ −mCn′Dn′ − 1

� � tanh

�
"
α1 m2 − 5
� �

8c2 m2 − 1ð Þ x −
x0
2

� �
+ α1 3m2 + 1

� �
8c3 m2 − 1ð Þ t −

t0
2

� 	

−
α1 m2 − 5
� �

arctanh mS′n
� �

8β0c3 m2 − 1ð Þ

#

+ 1 −m2� �
mβ0c3S′n

2c2 m2S′2n −mC′nD′n − 1
� � ,

B = −A −x + x0,−t + t0ð Þ:
ð76Þ

Solution in equation (76) is a special soliton-cnoidal wave
interaction solution. Figure 2 shows the special solution for

β0 =
1
2 ,

c3 = −1,

m = 1
2 ,

t0 = 2,
x0 = −2,

ð77Þ

with Figure 2(a) being the wave interaction structure and
Figure 2(b) being the density plot.

Case 3 (m2
0 =m, n = 0, ν = 1). The constraint condition for

the constants is

β1 = −
5c2m2 + 6c2m + 5c2

4m2 − 8m + 4 ,

β2 = −
5c2 m2 + 6m + 5
� �

2β0 m3 −m2 −m + 1ð Þ ,

α1 = −
32c23 m + 1ð Þ2 m − 1ð Þ4
c3 5m2 + 6m + 5ð Þ3

,

c32 = −
1
2β

2
0c

3
3 5m2 + 6m + 5
� �

,

ð78Þ

which yields a solution of the AKNS system

a = α1 5m2 + 6m + 5
� �

8 m + 1ð Þ m − 1ð Þ2 m0Sn − 1ð Þ
� �m2 m2 + 6m + 1

� �
S4n + 4mm0 m + 1ð ÞDnCnS

2
n

− 2m 3m2 + 2m + 3
� �

S2n − 4m0 m + 1ð ÞCnDn

+m2 + 6m + 1
�
× tanh

"
α1 5m2 + 6m + 5
� �

x

8c2 m − 1ð Þ2

−
α1 m2 + 14m + 1
� �

t

8c2 m − 1ð Þ2

+ α1 5m2 + 6m + 5
� �

arctanh m0Snð Þ
4c3β0 m + 1ð Þ m − 1ð Þ2

#

+ c3β0m0 m0 − 1ð Þ2 1 +mS2n
� �

Sn
c2 mS2n − 1
� �

m2S2n +mS2n + 2m0CnDn −m − 1
� � ,

b = −a,
ð79Þ

with the corresponding solution of the AB-mKdV system
(equation (58))

A = α1 5m2 + 6m + 5
� �

8 m + 1ð Þ m − 1ð Þ2 m0S′n − 1
� � hm2 m2 + 6m + 1

� �
S′4n

+ 4mm0 m + 1ð ÞD′nC′nS′
2
n − 2m 3m2 + 2m + 3

� �
S′2n

− 4m0 m + 1ð ÞC′nD′n +m2 + 6m + 1
i

× tanh

"
α1 5m2 + 6m + 5
� �
8c2 m − 1ð Þ2 x −

x0
2

� �

−
α1 m2 + 14m + 1
� �
8c2 m − 1ð Þ2 t −

t0
2

� 	

+
α1 5m2 + 6m + 5
� �

arctanh m0S′n
� �

4c3β0 m + 1ð Þ m − 1ð Þ2

#

+
c3β0m0 m0 − 1ð Þ2 1 +mS′2n

� �
S′n

c2 mS′2n − 1
� �

m2S′2n +mS′2n + 2m0C′nD′n −m − 1
� � ,

B = −A −x + x0,−t + t0ð Þ,
ð80Þ

by using the reduction A = a, B = −að−x + x0,−t + t0Þ. The
solution (equation (80)) denotes an interaction between
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Figure 3: A special interaction solution A in equation (80) with the parameters being selected as equation (81) which exhibits the interaction
between soliton and cnoidal wave at (a) t = −20, (b) t = −10, (c) t = 0, and (d) t = 10, respectively.
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Figure 2: The interaction between kink and cnoidal wave solution for A in equation (76) is shown with the parameter selected as equation
(77). (a) is the interaction structure and (b) is the corresponding density plot.
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soliton and cnoidal wave. Figure 3 shows the interaction with
the parameters selected as

β0 = 1,
c3 = 1,

m = 99
100 ,

x0 = 1,
t0 = 2,

ð81Þ

at t = −20 (Figure 3(a)), t = −10 (Figure 3(b)), t = 0
(Figure 3(c)), and t = 10 (Figure 3(d)).

4. Summary and Discussion

In summary, starting from the AKNS system (equation (2)),
an AB-mKdV system used to describe two-place events is
studied. By using the nonlocal symmetry analysis, we find
the Lie point symmetries and symmetry reductions of the
ANKS system. Because the AB-mKdV system can be
obtained by using special reduction from the AKNS system,
all the conclusions of the AKNS system can be applied to
those of the AB-mKdV system. The Bäcklund transforma-
tion of the AB-mKdV system is constructed for two cases
from those of the AKNS system. And the exact solutions,
including PsTd symmetric and anti-PsTd symmetric of the
AB-mKdV system (equation (58)) are shown for simplicity.
The former means that the two correlated events happen
similar to each other at a different place and time, while the
latter tells that they are totally different.

Studies show that the AB-mKdV system possesses rich
and interesting structure solutions, especially the interaction
solution structures between solitons and cnoidal waves, such
as the interaction between soliton and kink and the interac-
tion between kink and cnoidal waves. Though the interaction
solution between kink and cnoidal waves has been reported
in many other manuscripts, the interaction between soliton
and kink has seldom been reported. The most interesting
thing is that during the interaction, the soliton becomes dark
from bright with the kink remaining invariant.

Though the AB-mKdV system is introduced in a mathe-
matical manner, we believe the nonlocal mKdV equation can
also be derived from two-layer fluid systems. More about the
system will be discussed in the future.
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