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In this paper, we are concerned with the following coupled Schrödinger equations

−λ2Δu + a1ðxÞu = cðxÞv + a2ðxÞjujp−2u + a3ðxÞjuj2
∗−2u, x ∈ℝN ,

−λ2Δv + b1ðxÞv = cðxÞu + b2ðxÞjvjp−2v + b3ðxÞjvj2
∗−2v, x ∈ℝN ,

(
where 2 < p < 2∗,2 < q < 2∗,2∗ = 2N/ðN − 2Þ, andN ≥ 3; λ > 0

is a parameter; and a1, a2, a3, b1, b2, b3, c ∈ CðℝN ,ℝÞ and u, v ∈H1ðℝNÞ. Under some suitable conditions that a01 = inf a1 = 0 or
b01 = inf b1 = 0 and jcðxÞj2 ≤ ϑa1ðxÞb1ðxÞ with ϑ ∈ ð0, 1Þ, the above coupled Schrödinger system possesses nontrivial solutions if λ
∈ ð0, λ0Þ, where λ0 is related to a1, a2, a3, b1, b2, b3, and N .

1. Introduction

We consider the following coupled Schrödinger equations in
this paper:

−λ2Δu + a1 xð Þu = c xð Þv + a2 xð Þ uj jp−2u + a3 xð Þ uj j2∗−2u, x ∈ℝN ,

−λ2Δv + b1 xð Þv = c xð Þu + b2 xð Þ vj jp−2v + b3 xð Þ vj j2∗−2v, x ∈ℝN ,

(

ð1Þ

where 2 < p < 2∗, 2 < q < 2∗, N ≥ 3, and 2∗ = 2N/ðN − 2Þ are
the Sobolev critical exponent;λ > 0 is a parameter; and a1,
a2, a3, b1, b2, b3, c ∈ CðℝN ,ℝÞ and u, v ∈H1ðℝNÞ.

As it is known in [1], this type of systems arises in nonlin-
ear optics. In the past years, under different kinds of assump-
tions on the potentialV and the nonlinearity f , many authors
[2–8] focus on the following kind of Schrödinger equation:

−λ2Δu +V xð Þu = f x, uð Þ, x ∈ℝN : ð2Þ

As one knows, single-mode optical fibers are not really
“single mode” but actually bimodal because of the presence

of birefringence. So recently, the coupled Schrödinger sys-
tems are investigated by the authors [9–12]. For more related
results and physical background on Schrödinger systems,
please see [13–23] and references therein.

In [11], the authors investigated standing waves for the
following kind of coupled Schrödinger equations:

−λ2Δu + a1 xð Þu = cv + uj jp−2u, x ∈ℝN ,

−λ2Δv + b1 xð Þv = cu + vj j2∗−2v, x ∈ℝN ,

(
ð3Þ

where a1, b1 ∈ CðℝN ,ℝÞ, N ≥ 3, u, v > 0, u, v ∈H1ðℝNÞ, and
uðxÞ, vðxÞ→ 0 as ∣x ∣→∞. Under the following conditions,

(A0) there exist positive constants a01 > 0 and b01 > 0 such
that a1ðxÞ ≥ a01, b1ðxÞ ≥ a01, and 0 < c ≤

ffiffiffiffiffiffiffiffiffi
a01b

0
1

q
; they obtained

the existence of a positive solution for (3) if λ is sufficiently

small. But, if a01 = inf a1 = 0 or b01 = inf b1 = 0, then 0 < c ≤ffiffiffiffiffiffiffiffiffi
a01b

0
1

q
cannot hold. So in the very recent paper [12], Peng

et al. investigated the following coupled Schrödinger
equations and generalize the result in [11]:
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−λ2Δu + a1 xð Þu = c xð Þv + uj jp−2u, x ∈ℝN ,
−λ2Δv + b1 xð Þv = c xð Þu + vj jq−2v, x ∈ℝN ,

(
ð4Þ

where a1, b1 are the same as in (3), N ≥ 3. Under the fol-
lowing conditions,

(A1) a1ðxÞ ≥ a1ð0Þ = 0 and b1ðxÞ ≥ 0, and there exist con-
stants a01 > 0 and b01 > 0 such that the measure of the sets
Aa01

≔ fx : a1ðxÞ < a01g and Bb01
≔ fx : b1ðxÞ < b01g are finite

(A2) there exists a constant ϑ ∈ ð0, 1Þ such that jcðxÞj2 ≤
ϑa1ðxÞb1ðxÞ for all x ∈ℝN ; Peng et al. proved that system
(4) has at least one nontrivial solution. An interesting ques-
tion is what will happen if the nonlinearity is also critical
growth in system (4)? Motivated mainly by the above-
mentioned results, we will answer this question and prove
that system (1), under conditions (A1) and (A2), and

(A3) there exist constants a02, a
1
2, a

0
3, a

1
3, b

0
2, b

1
2, b

0
3, b

1
3 > 0

such that

a02 ≤ a2 xð Þ ≤ a12, a03 ≤ a3 xð Þ ≤ a13, b02 ≤ b2 xð Þ ≤ b12,
b03 ≤ b3 xð Þ ≤ b13, ∀x ∈ℝN ,

ð5Þ

possesses nontrivial solutions if λ ∈ ð0, λ0Þ, where λ0 is
related to a1, a2, a3, b1, b2, b3, and N . As far as we know, sim-
ilar results for system (1) with a critical exponent have not
been investigated by variational methods in the literature.
The following condition is similar to condition (A1):

(A1’) b1ðxÞ ≥ b1ð0Þ = 0 and a1ðxÞ ≥ 0, and there exist con-
stants a01 > 0 and b01 > 0 such that the measure of the sets
Aa01

≔ fx ∈ℝN : a1ðxÞ < a01g and Bb01
≔ fx ∈ℝN : b1ðxÞ < b01g

are finite.
Since ðq − 2ÞN − 2q < 0 and ðp − 2ÞN − 2p < 0, one can

choose d0 ≥ 1 such that

C1a
1
2α

p−2ð Þ/p + C2b
1
2β

q−2ð Þ/q + C3a
1
3α

2/N + C4b
1
3β

2/N ≤
1
2 1 − ϑð Þ,

ð6Þ

where

α = ωNa
0
2 p − 2ð Þ
2Np

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )p/ p−2ð Þ

d p−2ð ÞN−2p½ �/ p−2ð Þ
0 ,

β = ωNb
0
2 q − 2ð Þ
2Nq

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )q/ q−2ð Þ

d q−2ð ÞN−2q½ �/ q−2ð Þ
0 ,

C1 =
2p η0η2∗ð ÞN
p − 2ð Þa02

" # p−2ð Þ/p
a01
� � p N−2ð Þ−2N½ �/2p,

C2 =
2q η0η2∗ð ÞN
q − 2ð Þb02

" # q−2ð Þ/q
b01
� � q N−2ð Þ−2NÞ½ �/2q,

C3 =
22∗ η0η2∗ð ÞN
2∗ − 2ð Þa03

" #2/N
,

C4 =
22∗ η0η2∗ð ÞN
2∗ − 2ð Þb03

" #2/N
,

ð7Þ

η0 and η2∗ are embedding constants and ωN is the volume
of the unit ball in ℝN . From (A1’) and (A1), using b1ð0Þ = 0
and a1ð0Þ = 0, one can let μ0 > 1 such that

sup
μ1/2∣x∣≤2d0

b1 xð Þj j ≤ d−20 , sup
μ1/2∣x∣≤2d0

a1 xð Þj j ≤ d−20 , ∀μ ≥ μ0: ð8Þ

Let w = ðu, vÞ and λ−2 = μ, then system (1) can be rewrit-
ten as

−Δu + μa1 xð Þu = μc xð Þv + μa2 xð Þ uj jp−2u + μa3 xð Þ uj j2∗−2u, x ∈ℝN ,

−Δv + μb1 xð Þv = μc xð Þu + μb2 xð Þ vj jp−2v + μb3 xð Þ vj j2∗−2v, x ∈ℝN ,

8>><
>>:

ð9Þ

and the functional of (9) is given by

Sμ wð Þ = 1
2

ð
ℝN

Δuj j2 + Δvj j2 + μa1 xð Þ uj j2 + μb1 xð Þ vj j2� �
dx

−
μ

p

ð
ℝN

a2 xð Þ uj jpdx − μ

q

ð
ℝN

b2 xð Þ vj jqdx

−
μ

2∗
ð
ℝN

a3 xð Þ uj j2∗dx − μ

2∗
ð
ℝN

b3 xð Þ vj j2∗dx

− μ
ð
ℝN

c xð Þuvdx:

ð10Þ

As is known, the solutions of (1) are the critical points of
Sλ−1/2ðwÞ. The main results are the following.

Theorem 1. Suppose that (A1)–(A3) or (A1’)–(A3) hold. Then,
(9) possesses at least one nontrivial solution wμ = ðuμ, vμÞ such
that 0 < SμðwμÞ ≤ βμ1−N/2 for μ ≥ μ0.

Theorem 2. Suppose that (A1)–(A3) or (A1’)–(A3) hold. Then,
(1) possesses at least one nontrivial solution wλ = ðuλ, vλÞ such
that 0 < Sλ−1/2ðwλÞ ≤ βλN−2 for 0 < λ < μ−1/20 .

Remark 3. Since the presence of the terms a2ðxÞjujp−2u, a3
ðxÞjuj2∗−2u, b2ðxÞjvjp−2v, and b3ðxÞjvj2

∗−2v, system (1) is
more general than (4), and it is more difficult to deal with
the nontrivial solutions. In order to prove that system (1)
has nontrivial solutions, we need to find some conditions
to restrict a2ðxÞ, a3ðxÞ, b2ðxÞ, and b3ðxÞ. It seems that there
is no literature considering system (1).

2. Preliminaries

Let

E = u, vð Þ:
ð
ℝN

a1 xð Þ uj j2 + b1 xð Þ vj j2� �
dx<∞,u, v ∈H1 ℝN� �� �

,

ð11Þ
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wk kμ† =
ð
ℝN

Δuj j2 + Δvj j2 + μa1 xð Þ uj j2 + μb1 xð Þ vj j2� �
dx

� �1/2
,

 ∀ w = u, vð Þ ∈ E:
ð12Þ

From Lemma 1 of [17], by (A1) or (A1’) and the Sobolev
inequality, there exists a positive constant η0 > 0 independent
of μ such that

wk kH1 ≔
ð
ℝN

Δuj j2 + Δvj j2 + uj j2 + vj j2� �
dx

� �1/2
≤ η0 wk kμ† ,

 ∀w = u, vð Þ ∈ E, μ ≥ 1,
ð13Þ

where H1 ≔H1ðℝNÞ. Then, ðE, k·kμ†Þ is a Banach space for
μ ≥ 1 equipped with the norm given by (12). Moreover, for
s ∈ ½2, 2∗�, one has

wk ks ≤ ηs wk kH1 ≤ ηsη0 wk kμ† , ∀w ∈ E, μ ≥ 1, ð14Þ

where kwks is the usual norm in space LsðℝNÞ. From (12), we
rewrite Sμ as

Sμ wð Þ = 1
2 wk k2μ† −

μ

p

ð
ℝN

a2 xð Þ uj jpdx − μ

q

ð
ℝN

b2 xð Þ vj jqdx

−
μ

2∗
ð
ℝN

a3 xð Þ uj j2∗dx − μ

2∗
ð
ℝN

b3 xð Þ vj j2∗dx

− μ
ð
ℝN

c xð Þuvdx, ∀w ∈ E:

ð15Þ

It is not difficult to see that Sμ ∈ C1ðE,ℝÞ and

S′μ wð Þ, �w
D E

=
ð
ℝN

Δu · �u + Δv · �v + μa1 xð Þu�u + μb1 xð Þv�v½ �dx

− μ
ð
ℝN

c xð Þ u�v + v�uð Þdx − μ
ð
ℝN

a2 xð Þ uj jp−2u�udx

− μ
ð
ℝN

b2 xð Þ vj jq−2v�vdx − μ
ð
ℝN

a3 xð Þ uj j2∗−2u�udx

− μ
ð
ℝN

b3 xð Þ vj j2∗−2v�vdx, ∀w = u, vð Þ, �w = �u, �vð Þ ∈ E:

ð16Þ

As in [12, 22], let

θ xð Þ =

1
d0

, ∣x∣ ≤ d0,

dN−1
0

1 − 2−N xj j−N − 2d0ð Þ−N
h i

, d0 < ∣x∣ ≤ 2d0,

0, ∣x∣ > 2d0:

8>>>>><
>>>>>:

ð17Þ

Then, θ ∈H1ðℝNÞ; moreover,

∇θk k22 =
ð
ℝN

∇θ xð Þj j2dx ≤ NωNd
N−4
0

N + 2ð Þ 1 − 2−N
� �2 , ð18Þ

θk k22 =
ð
ℝN

θ xð Þj j2dx ≤ 2ωNd
N−2
0

N 1 − 2−N
� �2 : ð19Þ

In the next section, we will prove the main results.

3. Proof of the Main Results

Proof of Theorem 1. The proof of Theorem 1 is divided into
four steps.

Step 1. We first prove that for any μ ≥ μ0 > 1, one has

sup Sμ 0, teμ
� �

: t ≥ 0
	 


≤ βμ1−N/2,
  sup Sμ teμ, 0

� �
: t ≥ 0

	 

≤ αμ1−N/2,

ð20Þ

where eμðxÞ = θðμ1/2xÞ. From (8), (9), (17), (18), (19), and
(A3), we have

Sμ 0, teμ
� �

= t2

2

ð
ℝN

∇eμ
�� ��2 + μb1 xð Þ eμ

�� ��2h i
dx −

μ

q

ð
ℝN

b2 xð Þ teμ
�� ��qdx

−
μ

2∗
ð
ℝN

b3 xð Þ teμ
�� ��2∗dx = μ1−N/2 t2

2

ð
ℝN

∇θj j2 + b1 μ−1/2x
� �

θj j2� �
dx

�

−
1
q

ð
ℝN

b2 μ−1/2x
� �

tθj jqdx − 1
2∗
ð
ℝN

b3 μ−1/2x
� �

tθj j2∗dx



≤ μ1−N/2 t2

2 ∇θk k22 + θk k22 sup
∣x∣≤2d0

b1 μ−1/2x
� ���� �� !"

−
1
q

ð
∣x∣≤d0

b2 μ−1/2x
� � t

d0

����
����
q

dx −
1
2∗
ð
∣x∣≤d0

b3 μ−1/2x
� � t

d0

����
����
2∗

dx

#

≤ μ1−N/2 t2

2 ∇θk k22 + d−20 θk k22
� �

−
ωNb

0
2

qN
tqdN−q

0 −
ωNb

0
3

2∗N t2
∗
dN−2∗
0

" #

≤ μ1−N/2 t2

2 ∇θk k22 + d−20 θk k22
� �

−
ωNb

0
2

qN
tqdN−q

0

" #

≤ μ1−N/2 q − 2ð Þ ∇θk k22 + d−20 θk k22
� �q/ q−2ð Þ 2qð Þ−1 ωNb

0
2d

N−q
0

N

 !−2/ q−2ð Þ

≤ μ1−N/2 ωNb
0
2 q − 2ð Þ
2Nq

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )q/ q−2ð Þ

� d q−2ð ÞN−2q½ �/ q−2ð Þ
0 ≔ βμ1−N/2:

ð21Þ

Similarly, from (8), (9), (17), (18), (19), and (A3), we have

Sμ teμ, 0
� �

≤ μ1−N/2 ωNa
0
2 p − 2ð Þ
2Np

N2 + 2 N + 2ð Þ
N + 2ð Þ 1 − 2−N

� �2
( )p/ p−2ð Þ

� d p−2ð ÞN−2p½ �/ p−2ð Þ
0 ≔ αμ1−N/2,

ð22Þ

which together with (21) implies that (20) holds.
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Step 2. Let c∗μ =min fSμðteμ, 0Þ, Sμð0, teμÞg, we should prove
that there exists a constant cμ ∈ ð0, c∗μ� and a sequence fwng
⊂ E satisfying

Sμ wnð Þ→ cμ, S′μ wnð Þ�� ��
E∗ 1 + wnk kμ†
� �

, as n→∞:

ð23Þ

By a standard argument, one can obtain (23) by employ-
ing the mountain-pass lemma without the (PS) condition, so
we omit the details here.

Step 3. We prove that any sequence fwng ⊂ E satisfying (23)
is bounded in E. From (A2) and Young’s inequality, we have

μ
ð
ℝ3

c xð Þunvnj jdx ≤ μϑ
ð
ℝ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 xð Þb1 xð Þ

p
unvnj jdx

≤
ϑ

2

ð
ℝ3

μa1 xð Þu2n + μb1 xð Þv2n
� �

dx

≤
ϑ

2 wnk k2μ† :

ð24Þ

For 2 < p ≤ q < 2∗, from (15), (16), (23), and (24), we have

cμ + o 1ð Þ = Sμ wnð Þ − 1
p

S′μ wnð Þ,wn

D E
= 1

2 −
1
p

� �
wnk k2μ†

+ 1
p
−
1
q

� �
μ
ð
ℝN

b2 xð Þ vnj jqdx

+ 1
p
−

1
2∗

� �
μ
ð
ℝN

a3 xð Þ unj j2∗dx

− 1 − 2
p

� �
μ
ð
ℝN

c xð Þunvndx

+ 1
p
−

1
2∗

� �
μ
ð
ℝN

b3 xð Þ vnj j2∗dx

≥
1
2 −

1
p

� �
1 − ϑð Þ wnk k2μ† :

ð25Þ

For 2 < q ≤ p < 2∗, from (15), (16), (23), and (24), we
obtain

cμ + o 1ð Þ = Sμ wnð Þ − 1
q

S′μ wnð Þ,wn

D E
= 1

2 −
1
q

� �
wnk k2μ†

+ 1
q
−
1
p

� �
μ
ð
ℝN

a2 xð Þ vnj jpdx + 1
q
−

1
2∗

� �

� μ
ð
ℝN

a3 xð Þ unj j2∗dx − 1 − 2
q

� �
μ
ð
ℝN

c xð Þunvndx

+ 1
q
−

1
2∗

� �
μ
ð
ℝN

b3 xð Þ vnj j2∗dx

≥
1
2 −

1
q

� �
1 − ϑð Þ wnk k2μ† :

ð26Þ

It follows from (25) and (26) that fwng is bounded in E.

Step 4. We show that there exists a nontrivial solution. By
Steps 1–3, we know that there exists a bounded sequence
fwng ⊂ E satisfying (23) with

cμ ≤ c∗μ , ∀μ ≥ μ0: ð27Þ

Passing to a subsequence, one can suppose that wn =
ðun, vnÞ⇀wμ = ðuμ, vμÞ in ðE, k·kμ†Þ and S′μðwnÞ→ 0, as
n→∞. Now, we verify that wμ ≠ ð0, 0Þ. Arguing by con-
tradiction, assume that wμ = ð0, 0Þ, that is, wn ⇀ ð0, 0Þ in

E, so by [24], we have wn → ð0, 0Þ in LslocðℝNÞ, s ∈ ½2, 2∗�,
and wn → ð0, 0Þ a.e. on ℝN . Since Aa01

and Bb01
are sets

with finite measure, we have

∥un∥
2
2 =
ð
ℝN \Aa01

unj j2dx +
ð
Aa01

unj j2dx =
ð
ℝN \Aa01

unj j2dx

+
ð
Aa01

unj j2dx ≤
ð
ℝN\Aa01

1
μa01

μa1 xð Þ unj j2dx

+
ð
Aa01

unj j2dx ≤ 1
μa01

wnk k2μ† + o 1ð Þ,

ð28Þ

vnk k22 =
ð
ℝN\Bb01

vnj j2dx +
ð
Bb01

vnj j2dx =
ð
ℝN \Bb01

vnj j2dx

+
ð
Bb01

vnj j2dx ≤
ð
ℝN\Bb01

1
μb01

μb1 xð Þ vnj j2dx

+
ð
Bb01

vnj j2dx ≤ 1
μb01

wnk k2μ† + o 1ð Þ:

ð29Þ

Similar to [12], from (14), (28), (29), and the Hölder
inequality, we obtain

unk kss =
ð
ℝN

unj jsdx ≤
ð
ℝN

unj j2 2∗−sð Þ/ 2∗−2ð Þdx
� �

�
ð
ℝN

unj j2∗ s−2ð Þ/ 2∗−2ð Þdx
� �

≤ η0η2∗ð Þ2∗ s−2ð Þ/ 2∗−2ð Þ

� μa01
� �− 2∗−sð Þ/ 2∗−2ð Þ wnk ksμ† + o 1ð Þ, s ∈ 2, 2∗ð Þ

ð30Þ

vnk kss =
ð
ℝN

vnj jsdx ≤
ð
ℝN

vnj j2 2∗−sð Þ/ 2∗−2ð Þdx
� �

�
ð
ℝN

vnj j2∗ s−2ð Þ/ 2∗−2ð Þdx
� �

≤ η0η2∗ð Þ2∗ s−2ð Þ/ 2∗−2ð Þ

� μb01
� �− 2∗−sð Þ/ 2∗−2ð Þ

wnk ksμ† + o 1ð Þ, s ∈ 2, 2∗ð Þ:
ð31Þ
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It follows from (15), (16), (23), and (A3) that

cμ + o 1ð Þ = Sμ wnð Þ − 1
2 S′μ wnð Þ,wn

D E
= 1

2 −
1
p

� �
μ
ð
ℝN

a2 xð Þ unj jpdx + 1
2 −

1
q

� �
μ
ð
ℝN

b2 xð Þ vnj jqdx

+ 1
2 −

1
2∗

� �
μ
ð
ℝN

a3 xð Þ unj j2∗dx + 1
2 −

1
2∗

� �

� μ
ð
ℝN

b3 xð Þ vnj j2∗dx ≥ p − 2ð Þμa02
2p unk kpp +

q − 2ð Þμb02
2q vnk kqq

+ 2∗ − 2ð Þμa03
22∗ unk k2∗2∗ +

2∗ − 2ð Þμb03
22∗ vnk k2∗2∗ :

ð32Þ

From (14), (30), (31), and (32), we have

μ unk kpp = μ unk kp−2p unk k2p ≤ μ μa01
� �−2 2∗−pð Þ/ p 2∗−2ð Þ½ �

� η0η2∗ð Þ22∗ p−2ð Þ/ p 2∗−2ð Þ½ � 2pcμ
μa02 p − 2ð Þ
� 
 p−2ð Þ/p

wnk k2μ†

+ o 1ð Þ≔ C1 μ N−2ð Þ/2cμ
h i p−2ð Þ/p

wnk k2μ† + o 1ð Þ,
ð33Þ

μ vnk kqq = μ unk k2q vnk kq−2q ≤ μ μb01
� �−2 2∗−qð Þ/ q 2∗−2ð Þ½ �

� η0η2∗ð Þ22∗ q−2ð Þ/ q 2∗−2ð Þ½ � 2qcμ
μb02 q − 2ð Þ

" # q−2ð Þ/q
wnk k2μ†

+ o 1ð Þ≔ C2 μ N−2ð Þ/2cμ
h i q−2ð Þ/q

wnk k2μ† + o 1ð Þ:
ð34Þ

From (14) and (32), we have

μ unk k2∗2∗ = μ unk k22∗ unk k2∗−22∗ ≤ μ η0η2ð Þ2 22∗cμ
2∗ − 2ð Þμa03

� 
 2∗−2ð Þ/2∗

� wnk k2μ† + o 1ð Þ = η0η2ð Þ2 22∗cμ
2∗ − 2ð Þa03

� 
 2∗−2ð Þ/2∗

� μ N−2ð Þ/Ncμ
h i2/N

wnk k2μ† + o 1ð Þ

≔ C3 μ N−2ð Þ/Ncμ
h i2/N

wnk k2μ† + o 1ð Þ,
ð35Þ

μ vnk k2∗2∗ = μ vnk k22∗ vnk k2∗−22∗ ≤ μ η0η2ð Þ2 22∗cμ
2∗ − 2ð Þμb03

" #2∗−2
2∗

� wnk k2μ† + o 1ð Þ = η0η2ð Þ2 22∗cμ
2∗ − 2ð Þb03

" #2∗−2
2∗

� μ
N−2
N cμ

h i 2
N
wnk k2μ† + o 1ð Þ≔ C4 μ

N−2
N cμ

h i 2
N
wnk k2μ† + o 1ð Þ:

ð36Þ
It follows from (6), (16), (20), (33), (34), (35), and (36)

that

o 1ð Þ = S′μ wnð Þ,wn

D E
= wnk k2μ† − μ

ð
ℝN

a2 xð Þ unj jpdx

− μ
ð
ℝN

b2 xð Þ vnj jqdx − μ
ð
ℝN

a3 xð Þ unj j2∗dx

− μ
ð
ℝN

b3 xð Þ vnj j2∗dx − 2μ
ð
ℝN

c xð Þunvndx

≥ 1 − ϑð Þ wnk k2μ† − C1a
1
2 μ N−2ð Þ/2cμ
h i p−2ð Þ/p�

+ C2b
1
2 μ N−2ð Þ/2cμ
h i q−2ð Þ/q

+C3a
1
3 μ N−2ð Þ/Ncμ
h i2/N

+ C4b
1
3 μ N−2ð Þ/Ncμ
h i2/N�

wnk k2μ† + o 1ð Þ

≥ 1 − ϑð Þ wnk k2μ† − C1a
1
2α

p−2ð Þ/p + C2b
1
2β

q−2ð Þ/q
h

+ C3a
1
3α

2/N + C4b
1
3β

2/N
i
wnk k2μ† + o 1ð Þ

≥
1 − ϑ

2 wnk k2μ† + o 1ð Þ:
ð37Þ

Hence, we obtain

lim
n→∞

wnk k2μ† = 0: ð38Þ

From (15), (23), and (38), we have

0 < cμ = lim
n→∞

Sμ wnð Þ ≤ 1
2 wnk k2μ† = 0, ð39Þ

a contradiction, which implies that wμ ≠ ð0, 0Þ. We can

easily check that S′μðwnÞ = 0 and SμðwnÞ ≤ cμ by a stan-
dard argument. Hence, wμ is a nontrivial solution for (9).

It is easy to see that Theorem 2 is a direct consequence of
Theorem 1.
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