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In this paper, we are concerned with the following coupled Schrodinger equations

{ NAu+ a, (x)u = c(x)v + ay ()| ul’u+ a5 (x)|u]* *u, xeRN

_AZAV + bl (x)v = C(x)u + bz(X)|V|p_2V + b3(x)|1/|2*_21’,

" where 2 <p<2*2<q<2*2* =2N/(N-2),andN >3; 1 >0

xeRN,

is a parameter; and a,, a,, a3, by, by, by, c € C(RY, R) and u, v € H'(RY). Under some suitable conditions that a =inf a, =0 or
b9 =inf b, = 0 and |c(x)|* < 9a, (x)b, (x) with 9 € (0, 1), the above coupled Schrodinger system possesses nontrivial solutions if A
€ (0, 1,), where A, is related to a,, a,, a3, by, b,, b;, and N.

1. Introduction

We consider the following coupled Schrodinger equations in
this paper:

{ M Au+ a, (x)u=c(x)v + ay(x)|ulP2u + ay (x)|u)* u, xeRY,

N Av+ by (x)v = c(x)u+ by (x) [V 2y + by (x) v Py, xeRY,

(1)

where 2 < p<2*,2<q<2* N=>3,and 2* =2N/(N - 2) are
the Sobolev critical exponent;A > 0 is a parameter; and a4,
a,,as, by, by, by, c € C(RY,R) and u, v € H'(RY).

Asitis known in [1], this type of systems arises in nonlin-
ear optics. In the past years, under different kinds of assump-
tions on the potential V and the nonlinearity f, many authors
[2-8] focus on the following kind of Schrodinger equation:

“VAu+ V(x)u=f(x,u), xeRV. (2)

As one knows, single-mode optical fibers are not really

“single mode” but actually bimodal because of the presence

of birefringence. So recently, the coupled Schrodinger sys-
tems are investigated by the authors [9-12]. For more related
results and physical background on Schrodinger systems,
please see [13-23] and references therein.

In [11], the authors investigated standing waves for the
following kind of coupled Schrodinger equations:

xe]RN,

“NAu + a,(x)u=cv+ |u|P_2u,
(3)

“AMAv+ by (x)v=cu+ v v, xeRY,

where a,, b, € C(RY,R), N>3, u,v>0, u,ve H' (RY), and
u(x), v(x) — 0 as |x | = co. Under the following conditions,
(A0) there exist positive constants a? > 0 and b(l) > 0 such

that a, (x) > a¢, b,(x) = a?, and 0 < c < /adb?; they obtained
the existence of a positive solution for (3) if A is sufficiently
small. But, if a‘l) =inf a; =0 or b? =inf b, =0, then 0<c<

\/adb? cannot hold. So in the very recent paper [12], Peng

et al. investigated the following coupled Schrédinger
equations and generalize the result in [11]:
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xeRY,

{—/\ZAu+a1(x)u=c(x)v+ luff~u, @

A+ by (x)v=c(x)u+ \v|q_2v, xeRY,
where a,, b, are the same as in (3), N >3. Under the fol-
lowing conditions,

(A1) a;(x) = a,(0) =0 and b, (x) > 0, and there exist con-
stants a) >0 and b >0 such that the measure of the sets
Agp={x:a,(x)< a%} and By ={x:b(x) < b0} are finite

(A2) there exists a constant 9 € (0, 1) such that |c(x)|* <
9a, (x)b, (x) for all x € RN; Peng et al. proved that system
(4) has at least one nontrivial solution. An interesting ques-
tion is what will happen if the nonlinearity is also critical
growth in system (4)? Motivated mainly by the above-
mentioned results, we will answer this question and prove
that system (1), under conditions (Al) and (A2), and

(A3) there exist constants a9, al, a3, a, b3, by, b3, b} >0
such that

s(x) < a, b) < by(x) < b,
Vx e RY,

a)<ay(x)<apaj<a

bS < by(x) < b, ®
possesses nontrivial solutions if A€ (0,1,), where A, is
related to a,, a,, a;, by, b,, by, and N. As far as we know, sim-
ilar results for system (1) with a critical exponent have not
been investigated by variational methods in the literature.
The following condition is similar to condition (A1):

(AT’) b, (x) = b,(0) = 0and a, (x) > 0, and there exist con-
stants a? >0 and b) >0 such that the measure of the sets
Ay ={xeR" :a)(x) <al} and By = {x € RY : b, (x) < b}
are finite.

Since (q—-2)N-2q<0 and (p-—
choose d;, > 1 such that

2)N -2p <0, one can

Cyaba® P 4 C,bY B2 + Cyala®™N + Cby N < —(1-9),

(6)

N =

where

Pl(p=2)
wo ONa(p=2) | N'+2(N+2) JP-2ON-2(p-2)
Np | (N+2)(1-27Y) ’

+2(N +2)
_ Z—N)Z

B= wag(q_z){ N?
(

9/(q4-2)
Jla-2N-24)/(q-2)
0 >
2Nq N+2)(1

B (p-2)lp
¢, = [PRLw )T oy 22N
-4 1 ’

r (4-2)/q
¢, = [Pl )| a2y
0 ,
| (@-2)b)

r 2/N
C. = 227 (o)™
Tl er-2)a |

. N 2N
c 22" (1)
4 P 0

(2 -2)b;
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1, and #,. are embedding constants and wy is the volume
of the unit ball in RY. From (A1’) and (A1), using b,(0) =0

and a,(0) = 0, one can let 44, > 1 such that
-2 -2
sup |by(x)[<dy”, sup ay(x)| <dS, Vpuzpg. (8)
u'?|x|<2d, u'?|x|<2d,
Let w = (1, v) and A~? = y, then system (1) can be rewrit-
ten as
—Au+ pay (x)u = pc(x)v + pay (x)[uff >u + /m3(x)|u\2*’2u x€RY,
—Av + ub, (x)v = pc(x)u + pb, (x)|VIP 2y + pby (x)|v]* 2y, xeRY,

©)

and the functional of (9) is given by

1
8, (w) = EJ 1A+ AV + () + by () v

_H () |ulP dx — EJ )|v|9dx
P Jry q
[ [
Z—J x)|ul* dx——J by (x)|v]? “dx
—yJ c(x)uvdx.
]RN

(10)

As is known, the solutions of (1) are the critical points of
S)-12(w). The main results are the following.

Theorem 1. Suppose that (A1)-(A3) or (A1’)-(A3) hold. Then,
(9) possesses at least one nontrivial solution w such

that 0< S, (w,) < fu'™N"? for u>u,

Theorem 2. Suppose that (A1)-(A3) or (A1')-(A3) hold. Then,
(1) possesses at least one nontrivial solution w) = (uy, v, ) such
that 0 < Sy-12(w,) < BAN? for 0 < A < py 2.

= (U V)

Remark 3. Since the presence of the terms a,(x)[ul’u, a,
() |ul* u, by(x)[v]P v, and by (x)|v]* v, system (1) is
more general than (4), and it is more difficult to deal with
the nontrivial solutions. In order to prove that system (1)
has nontrivial solutions, we need to find some conditions
to restrict a,(x), a5(x), b,(x), and b;(x). It seems that there
is no literature considering system (1).

2. Preliminaries

Let

E= {(u, v): J]RN [a, (x)|u|* + by (x)|v]*]dx<co,u, v € H' (RY)

(11)
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ol = {J [14u? + | V] + aay () + (x>IV|2]dx} :
]RN

V w=(uv)€eE.

(12)

From Lemma 1 of [17], by (A1) or (A1’) and the Sobolev
inequality, there exists a positive constant 77, > 0 independent
of p such that

12
|w]| g = {JRN [|Au|2 + AV + |uf* + |v2]dx} < 110||w||w,
Yw=(u,v)€E,ux1,

(13)

where H' = H'(R"). Then, (E, [|-||,+) is a Banach space for
u =1 equipped with the norm given by (12). Moreover, for
s €[2,2*], one has

[wlls <mllwll <ngtollwlle, VweEp=1, (14)

where ||w||, is the usual norm in space L*(RY). From (12), we
rewrite S, as

_l _H u
)=l - & | apoupde ] o
o PR A
RY RY

- yJ c(x)uvdx, VYweE.
IRN

It is not difficult to see that S, € C'(E,R) and

<S'M(w),ﬂ)>:[ [Au -1+ Av -V + pa, (X)uti + ub, (x)vv]dx

(uv + vi)dx — y[

-y a, (x)|ufP~*undx
N

]R\

,uj by (x)|v|*vvdx - MJ a; (x)|ul* Pundx
RN N

R’

by (x)|v]* vidyx,
]R\

Yw = (u,v),w=(u,v) €E.

(16)

—H

As in [12, 22], let

1
. x| < dy,
0(x) = N-1
®) = [ - (zdo)—N], dy < x| < 2d,,
0, x| > 2d,,.

(17)

Then, 6 € H'(RY); moreover,

N-4
0= | wofars RN g
RY (N+2)(1-27N)
2wy d)
1013 = | lcoras < N (19)

In the next section, we will prove the main results.

3. Proof of the Main Results

Proof of Theorem 1. The proof of Theorem 1 is divided into
four steps.

Step 1. We first prove that for any y >y, > 1, one has
sup {S,u. (0, teM); t> 0} < ﬂ}/ll_N/z,

sup {S,(te,,0): =0} < au N2,

(20)

where eﬂ( x) =0(u'"?x). From (8), (9), (17), (18), (19), and
(A3), we have

tz - .
S.(0.te,) = EJ]RN [|Ve”|2 + by (x) e, ﬂ dx - gJRN by (x)|te, |"dx
t?
- Zﬁ[ by (x)|te,|* dx = p'~ N/Z[ [ (1901 + by (u2x) |6 dx
_EJ by (" )|t6\qu——J by () 6] dx}
qJry RY
e |? }
su 5 2t 2 S“P X
< 1-N/2 5 <||V0H2 ”9”2 |b ( 1/2 ))|>
_1[ b (Hfllz ) dx— i[ b (.‘[l/zx) iz*dx
q ) |xi<d, : do 2" x|<d, } dy
B ~ Wb N wnb
< | (19012 + di?0]2) - ;NZ a1 - O }
< 2 (013 + 7 01R) - 2 g q}

1-N/2 2, 3-2y912\%(4-2) -1 wa(z)dg]_q e
sy (a-2)(|IVO||; +do”[I]15) (29) -~

49/(4-2)
<tV wyb(q-2) [ N’ +2(N+2)
2Ng |(N+2)(1-27N)?
-2)N-2]/(q-2 -
,d([](q IN-2q]/(9-2) _ Byt N2,

(21)

Similarly, from (8), (9), (17), (18), (19), and (A3), we have

Pl(p-2)
S, (te, 0) <M1—N/2wNag(p_2) N?+2(N +2)
e 2Np | (N+2)(1-27N)
. d([)(P*Z)N*ZP]/@*Z) = a2,
(22)

which together with (21) implies that (20) holds.



Step 2. Let ¢, = min {S,(te,,0), S, (0, te,)}, we should prove
that there exists a constant ¢, € (0, ¢;] and a sequence {w, }
C E satistying

Su(wn) =

o 18"l (1+ 1w, ) asn—oo.
(23)
By a standard argument, one can obtain (23) by employ-

ing the mountain-pass lemma without the (PS) condition, so
we omit the details here.

Step 3. We prove that any sequence {w, } C E satisfying (23)
is bounded in E. From (A2) and Young’s inequality, we have

] ey, o< 0 /G ),
]R3 ]R3

9

< EJ]}@ [Hal(x)ui + ub, (X)Vi]dx (24)

N <o

2
< 2wl

For2 < p<q<2*, from (15), (16), (23), and (24), we have

1, 11 ,
6 +ol1) =)= 2 (8w = (5 = 2wl
e (5= 2)u]. moii s
q RY
1 1
e (55 Ju st s
]RN
- <1 - 2) J c(x)u,v,dx
P M ]RN n'n
e (5= 5 )u] bt s
2 JRN
11 ,
> (5-3) -9l
(25)

For 2<g<p<2* from (15), (16), (23), and (24), we

obtain
l 2
)wmf

2, |de+( )

Gt o(1) =S, (w,) - $<S’M(wn),wn> = G -

.
q P M]R“

] el (1— 7> J X)u, v, dx
# (G- 5 )] o a
2 (5-3) -9l

(26)

It follows from (25) and (26) that {w,, } is bounded in E.
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Step 4. We show that there exists a nontrivial solution. By
Steps 1-3, we know that there exists a bounded sequence
{w,} CE satisfying (23) with

V> . (27)

Passing to a subsequence, one can suppose that w, =
(U vy) = w, = (uy,v,) in (E|[,) and S’M(wn) -0, as
n — co. Now, we verify that w, # (0,0). Arguing by con-
tradiction, assume that w, = (0,0), that is, w, —(0,0) in
E, so by [24], we have w, — (0,0) in Lj (R"), s€ [2,2%],

and w, — (0,0) ae. on RY. Since A, and By are sets
with finite measure, we have

IIunII§=J |un|2dx+J |un|2dx=J |un|2dx
]RN\Au(l) Ayp RN \Aﬂ?

1
1
ﬂ)wmws[ L iy (), Palx
Ap RM\A, 0 uay
1

1
+| |u)Pdx s — |jw, |3 +o(1),
JAuo n [/la(l) n Ijr
1

(28)
IlB=] e[ nPde=| P
]RN\Bb(]) By IRN\Bb?
1
e] pPdes| s
Bbll, R \Bbll, uo,
1
+ J v, [*dx < —5 ||wn|\[zﬁ +o(1).
B(,? l"‘bl
(29)

Similar to [12], from (14), (28), (29), and the Holder
inequality, we obtain

o= |
]RN
. (J |un|2* (52)/(2*2)dx> (’10’72*) S 2)/(2*—2)
]RN

(ua) €(2.2')

(30)

[[wallye +o(1),

o= tmfies ([ )
RY RN
, <JRN |Vn|z*(s—z)/<z*—z)dx) < (ottye Y2 /22
—(2*=s)/(2*-2) s
- (uby) [[whl[s +0(1),

€(2,2%).
(31)
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It follows from (15), (16), (23), and (A3) that

G o(1)=8,(w,) = 3 (8, (w,)w,)

1 1 1 1 [
=(=-= ay(x)|u,|Pdx+ (= = = J by(x)|v,|1dx
(5 5)u],, meomrass (5= Duf_mcop
11 . 11
+ (E - 2—*);4J]RN as(x)|u,|” dx+ (5 - 2—*)
_ 0 _ 0
T A e e P
RN 2p P 2q q

(2 -2pds (2" —2)ub;
22% " 22%

+

2 2
[ Vall:-

(32)
From (14), (30), (31), and (32), we have

- —2(2"=p)/[p(2"-2)]
pllig 18 = el |52 |7 < ()

o . 2pc
< (. V22 022 [ %

(p=2)1p 5
wy ||
e

—2)/,
+0o(1)=C, [”(N—Z)/ZC } v “’||wn||fﬂ +o(1),

U
(33)

ulvallg =l Igl1val1 37 < (t?) 2 )

2qc (9-2)/q
o *)22 (-2)/[q2"-2)] |~ |w ||2T
o uby(q4-2) o
(N-2)12 . @720 2
+o(1) =G, [ 2, | w, |, + o(1).
(34)
From (14) and (32), we have

2% 2 25_2 2 22*C# e
Wl 15 = gl 13- 4372 < (g1 [(z—z);m]

, o[ 227, (2*-2)12*
Tl o) = 0 | ]|

) {M(N—z)/NC

2/N 2
u s +o(1)

2/IN
= G [N e, | w, I + (1),

2
22%¢, 7

(2" —2)ubs

2*;2

22%c ’
2 _ 2 "
“Nwplle +o(1) = (mon1,) {m}

ulvallse = pll vl 1713 < woy)? [

N-2 N-

(el +o(1) = €y 16w, + o().
(36)

It follows from (6), (16), (20), (33), (34), (35), and (36)
that

o(1) = (S () w,) = s~ 1| ax(o)l Pt
~u] baolfidxu] o),
]RN

RN
c(x)u,v,dx

~u] bl - 2u
RN RN

- (p-2)lp
> (1= 9)|[w, |5 - {Claé [V(N 2)/2%}

-2)/
] (4-2) 1, Cyal |:#(N—2)/N Cu]

2/N

+C, b; {M(N’z)/zcﬂ

2/N
+C,b} {#(Nfz)/Ncﬂ} }||wn||ftT +o(1)
2 (1= 9)||w, 3 - {Claétx@"m’ +C,bip2
+ Coasa?™ + Y] [w, s + (1)

2 +o(1).

Hence, we obtain
lim [jw, |2 =0. (38)
n—00

From (15), (23), and (38), we have

2 =0, (39)

. 1
0<c, = Jlrgosy(wn) <3

a contradiction, which implies that w, #(0,0). We can
easily check that S'M(wn) =0 and S,(w,)<c, by a stan-

dard argument. Hence, w, is a nontrivial solution for (9).

u

It is easy to see that Theorem 2 is a direct consequence of
Theorem 1.
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