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Periodic solutions of the Coulomb equation motion for three equal negative point charges in the field of six equal positive point
charges fixed in vertices of a convex octagon are found. The system possesses an equilibrium configuration. The Lyapunov

center theorem is applied.

1. Introduction

In this paper, we find an equilibrium in the Coulomb system
of three equal negative point charges in the field of six equal
positive point charges fixed in vertices of a convex symmetric
octagon. This gives us a possibility to find periodic solutions for
one-dimensional (line), two-dimensional (planar), and three-
dimensional (spacial) systems. Earlier, we found periodic and
quasiperiodic solutions for the system of two and three negative
charges in the field of two equal positive charges [1-4].

To obtain these results, we found explicit expressions
for eigenvalues of the matrix U° of second partial deriva-
tives of the potential energy at the equilibrium of the sys-
tems. The existence of the periodic solutions followed
from the Lyapunov center theorem [5-9] whenever there
is no zero eigenvalue among the eigenvalues. The existence
of the quasiperiodic solutions was proved with the help of
the procedure of elimination of a node [8] and an applica-
tion of the Lyapunov center theorem taking into account
that zero eigenvalue of U° results from a rotation invariance
of the potential energy. U° turns out to be the direct sum of
two and three three-dimensional matrices for the consid-
ered here plane and spacial systems, respectively. Their sim-
ple structure permits to find their eigenvalues. U° of the
considered here space system does not possess zero eigen-
value, and the system potential energy does not have a rota-
tion invariance.

To find periodic solutions in Coulomb systems, it is not
necessary to exploit the existence of their equilibria. In [10],
we found the solutions for the system of n equal negative
charges in the field of n equal positive charges fixed on a
line (a coordinate axis). Our technique was inspired by
the Siegel advanced majorant technique [11] which permits
finding solutions of the Newton equation for three gravitat-
ing bodies.

The Lyapunov center theorem concerns periodic solu-
tions of the Hamiltonian systems with an equilibrium in
the origin, which belong to its neighborhood, and is formu-
lated precisely as follows.

Theorem 1. Let an n-dimensional Hamiltonian system have
real analytic Hamiltonian whose Taylor power expansion
converges absolutely and uniformly at a neighborhood of the
origin and begins from quadratic terms. Let also A}, -+, A,
be nonzero eigenvalues of the matrix determining the linear
term of the Hamiltonian vector field such that the following
nonresonance relation hold for purely imaginary A, s=1, -+,
k:A;# n'A, s#j=1,---,2n for an arbitrary integer n'. Then,
the Hamiltonian equation possesses k periodic solutions in a
neighborhood of the origin such that each of them depends
on a different real-valued parameter c; for some j=1,--, k.
These solutions and their periods 7,(c,), -, 7;(c;) are real
analytic functions in the parameters in a neighborhood of
the origin and ;(0) = 2n/|A .
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The periodic solutions from this theorem take values
in a neighborhood of the origin due to the fact that their
expansion in the parameters ¢; does not contain a con-

stant term.

The equation of motion of mechanical systems of N d
-dimensional particles (bodies, charges) with masses m; and
the potential energy U looks like

dzxj aU(’C(N)) LN
mAiz—i, =1, ’x
J dtz axJ J (N) (1)

dN 1 d
= (o e xy) €RTLx; = (xj,---,xj).

If a potential energy possess an equilibrium x;-), j=1,-

N, then the potential energy with the new variables x; = x?,

j=1,---, N will have the equilibrium at the origin, and it is
possible to apply the Lyapunov center theorem to (1).

The Coulomb potential energy U is expressed through
the pair Coulomb potential. It is well known [12] that for
(1) with m; =m, the eigenvalues from Theorem 1 coincide

with A; =+, /-m~'o;, where 0}, j=1, ---, Nd are eigenvalues
of U°.

We believe that the obtained results may be useful
for the semiclassical and Born-Oppenheimer approxima-
tions for quantum models of ionized molecules. The
fixed positive charges and the equal positive and equal
negative charges are associated with heavy nuclei and light
electrons, respectively.

Our paper is organized as follows. In Sections 2, 3, and 4,
we formulate our results concerning periodic solutions of the
considered Coulomb equations of motion for the line, planar,
and spacial systems, respectively. They are formulated in the
theorems in the end of the sections.

2. Line Coulomb Dynamics

We consider the line dynamics of three point equal negative
charges —e, in the field of six equal positive point charges
with the same value e’ > 0 fixed in octagon vertices with the
first coordinates —a,0,a and second coordinates +b,+
V/3a2 + b* b, respectively (see the next section). The three
negative point charges move along the first axis which is an
invariant manifold of the planar and spacial dynamics.
The potential energy for the system is given by

) |

-1
+< (xj+a)2+b2>

-1
+ (,/xf+3a2+b2> ],xjelR,a,I»O.

—x]

€€ 5 /3 2, 12 !
- 2e,e z (x;—a)"+b
1

(2)
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The equilibrium equations are given by (3/0x;)U(x3)) =
0,j=1,2,3.. Let us insert the equalities into it for k =1:

_ X, — X
—|x1—x2|k=—k—1 L
0x, X1 — %]

d < *
— (x; —a)* + bz) =k .
0%, ( X2+ bz) ’

That is,

3 . — L —
ai U(x(3>) = —eé Z i xk3 + Zeoe’ x4 3
Xj j=k k=1 |xj - xk| (x. B a)Z 4 bz)

(4)

As a result, we obtain the equilibrium relation for j=1, 3
putting x; =x) =-a,x, =x5 =0, x; =x) =a:

e e 3¢’ (2a)e,
DA a—
( (2a)% + bz)
| 5
5e, 3e

(2a) ( (2a)2+b2>3.

Equality (0/0x,)U(x(3)) =0 is true since |x)—x{|=
0_,0
%3 = X3
The most important information is a spectrum of the
matrix of second derivatives of U. Its nondiagonal elements
are easily calculated as

aU(X(3)) aU(X<3>> 5 5
0x,0x; - dx;0x, =_2eo|xj_xl‘ : (6)

Let U;.)J be this function at the equilibrium. Then,

e )
0 _0 __ % __
U =Us, = VR

0 _ 7170 _170 _770 _ _q,,/
Ul,=U,,=U,3=U;,=-8u.
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Further,
o ( ) 3 26(2) ,
—Ul(x = +2e,e
0x; @) ]=§=1 |x; - xk|3 0
3 (x = a) z

Let U]Q) ; be this function at the equilibrium. Then,

0 _ 7170
Ul,l - U3,3

+2e5e’ |b7 +

(, /sz- +3a2 + b2)5

4qa3

2

15a%

(oree) (o9

5

>

o _ l6eg
227 403
, 2 60> 1
+ 2eqe 3~ = + 51 -
(\/ a’+ b2> (v a’+ bz) (\/ 3a2 + bz)
©)
From the equilibrium relation, it follows that
(5e0> B 1 (10)
e/ 20 Joap b
As a result,
@+t =a’[4(n" - 1)+ 1] =a’n " (4-3),
3+ =a*[A(n"' - 1)+ 3] =’y (4 - 1),
2 5u'
2ee'b =55 (2a) (1 -n) = % 1-n)",

!
dege

( (2a)* + b2>

5e, /(1)° !
3 = 4eoe' —? P =
3e 2a 3

!
30e,e’ a®

5 5/3
=4730e,¢' (20} (2a)7
( > " \3e’
(2a) + b2>

460‘?, I 3372 3280 -3/2
5 =4deje a " (4-3n) =?u(4—311) ,

(Ve 7)

1q?
12e,e

(Ve +F)

3,52

_ 12%6/,1 7 (4-3n) "7 _ 80u';7(4 _ 377)—5/2’

5

2‘306, 1 -3.32 3 40 -3/2
5 =2eean (4-1) =?u(4—11) .

(\/ 3a% + bz)
(11)
These equalities allow to represent W™ U;.))k as simple

functions of 7.

37
v+
3

3 25

5
U0 =02 =u'v, “(1- “n
11 33UV 3( 1) 4’7

Uy,=u'g=u' [16 + % (4-3n)7" - 80n(4 - 37) "

+ ?n(zl -n) = [16 + ? (4-3n)""(4-3y
40

-3n) + ?;7(4 - ;1)‘3’2} ,g=3"'8 [6 +20(2

= 3n7)(4=3n) " + 5n(4 - '7)3/2} :

(12)
Let U° be the matrix with the elements U;’J, 51=1,2,3.
v -8 -1
U'=4'U'y, U=|-8 g -8|=-2U,+@+1)]L
-1 -8 v
1 8 1
UJg)=U.,=2"[8 29, 8| 29,=-g+v+1,
1 8 1

(13)

where I is unity matrix. U, has identical first and third rows
and this means that DetU ,; = 0. This allows one to find roots

of the characteristic polynomials p,, of U,, and p; of U,

p.(Aq) =Det(AI-U,(q)) = [A* = (g + 1)L+ q-32]A
(14)

Here, we subtracted the third row of -U,(q)+ Al
from the first row. The determinant does not change after



the subtraction.

A-21 —4 27! A 0 -A
-4 A-q -4 |—| 4 r-q -4
270 4 A2 270 4 A2
(15)

After that, we decomposed the determinant in the ele-
ments of the first row:

p.Ag)=A[A-q)(A-27")-16-16-2""(A-q)]

(16)
= A[(A-g)(A-1)-32].
The roots of p, (q) are given by
2A=q+1+4/(q-1)*+128,A1=0. (17)
The roots p; of U; are given by
A v+l
() =-2°p, (—5 = ,91>>
(18)

A=v-g + (g1—1)2+128, A:v+1:(i,

Let {,',{} be the roots corresponding to the plus and
minus before the sign of the square root, respectively:

+v-1 -v+1\?
G =9 (1Y +128,
2 2
(19)
+v-1 -v+1\?
c;=g v (Y +128.
2 2
We shall always use 7 < 1. Let 0 < < 37!, then
_1 20 -1 2
g=238(6+—-)=16+35=17—,
32 3
37 5027\ 1 ., [2\'"* 2
V< —+ = | — <12-+3710( — <15-.
3 3\8 3 32 3
(20)

Here, we applied 5/3 < /3 < 7/4. This leads to {,’ >
g>v+2>{," +1 and there is no resonance in {,. Here, we
used also

2

(g—TvH) +128> g—TvH (21)

If n>37'2, then

v+5>g, (22)
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since

37 5 25 37 25 25 37 25
v> 433 T s T T TS T T S 14,
3 473 3 473 12
8
g<378[6+3775] =16+ 2 <19.
(23)

Here, we applied 5/3 < /3 < 7/4. From

_ 2
v>g— (—g ;+1) =4 (v-g+5)7-6(v-g+5)

+47'67 <47M(v—g+5)
2

o (g—v+1>
2

+128<27'(v-g+5)
+12— ¢, < +13,
(24)

it follows

10 13 ! 13
v>——>(1'>——>6i,<1+—,<4. (25)
3 3 3 ;

We have to exclude the equality {," = {," with the help of

2

. —y+l
o - =97V ; 3, (L ;”L ) +128.  (26)

Equality {," —¢," = 0 leads to

o, 2 _ 2
<7g ; 3) =<7g ;’”) +128—v—g=63. (27)

We proved the following proposition.

Proposition 2. There is no resonance in {,' > 0if 0 <n < 1/3.
Moreover if v— g + 63 and 1 > 3712, then there is no quadratic
; : -1 .
resonance in (,', ie, {{,' #k’5s=23 where k is an
integer.
Let’s prove the next proposition.

Proposition 3. {,' > 0 and there is no quadratic resonance in
,if0<n<2/3

Proof. We shall prove {,'¢," " <4,{," #¢,’ and take into
account {;' <{,". Let 0 <5 < 1/3.
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Then,

37 5 25 37 5
V> —+-—-—=—-—>11,
33 12 3 12
g<37'8[6+37240+37°%5] =16+ 3777320 + 377240
320 8

=16+ — + —
45 9

64 8
=16+ — + - =24.
9 9

Here, we used 5/3 < /3. From v— g+ 13 >0 and

_ 1\ 2
<g ;’Jr > =4 (v=g+13)2 = 7(v—g+13)+ 49

<4 M(v-g+13)* +49

_ 2
_>\/(g;+l) +128<27 (v -g+13)

+14 -8 < +19,

(29)

it follows

Let 1/3 < <2/3. Then,

37 5/3\ 25 49 5(\27\ 49 5
>—+—(—> __:_+§ ) s 2423

3 3\2
49 25 49 8 5

+ — =
6 9 6 3 6

20 +10 3\
42 3 \10

g<3'8|6+

—3igl64 4 V3 <8{6+ > . 1}
V2 V10 NRNVE
I 5 3 20 8 3
<3718l6+ — + = <16+—\/§+_:27+_,V (31)
L V2 5 5 5
37 5 25
<20y 23302 +5 )
3 3 2 ° V3-
—121+ 15 <15+9+24
33 ’
- 5 _1\-312 5
1 1 _
g>3 8{6+§(4—3 ) }—16+§>16. (32)

Here, we used 5/3<+/3,v/2<3/2. That is, (2' > 0.
From v—g+17>0 and (g-v+1/2)° =47 (v-g+17)* -

18/2(v — g + 17) + (18)*/4<47 (v — g +17)* + 81 —

\/(g—v+1/2)2+ 128<27'(v— g+17)+15—{,' <)’
+ 22,it follows

22 22
> ci <l+ — <4 (33)

1 1

We have also {; #(, since v—g<8 for 1/3<n<2/3
and {,>(, if 0<n<1/3.

Now, we have to estimate {," on the interval 2/3 <% < 1.
Obviously g > 16 if 7 =2/3. Let =675, then

5\, 5\ 25 -
g=37"8[6+20 4—— 2-2)+ Z(4-615)""
2 2) "6

V2 25 6
>3718 i V6
6 20,/20

>3‘8<6 >>3“8<6—3\6+§)

- 10
2
>3” 18(6—9 5>>16—12+1
2

125 37 200 125
—6\/_— e

>3 9 T s

6

=5v=__
3

37 1
> — +22-511+ — ) >29.
3 24

Let 7=9718, then

8 =5/2 8 =5/2 8 8
g=3"'8[6+20(4- - 4-— 2--)2-=
3 3 3 3
L4 99 O 409\[ 40 1
<37'8(6- —
928\/_ 3 32 93\/5
3 8 25 8
<3718(6- 5i+— <378(6- =42
4 9 49
2 8 3 40 1
=-Z4+3718-<2,9>37"8[6- si —
3 9 4 944

4 21 5 - 5
>378(6-5—+—-|>3'8[6-7+ —
16 9 9

32 37
> \[__

=——>-2,v=
27 3

54
+45- 2= >51.
9
(35)

Here, we used 4/3<+/2<3/2,7/4>+/3>5/3. From
v>8,

g>37'8(6-20) >37'8(~15) > —40. (36)
and these inequalities follows that v+ ¢g—1>0 and {', >0

since v and g are monotonically increasing and decreasing
functions, respectively, on the interval 2/3 <75 <1. Let us



prove this, i.e., that the derivatives dv,—0g are positive on
the interval.

25 25
>3— - —>0,0g9
2 4

5 25 5 25
v=—(1-n)""-"2>29/3-"
=g =) 4 2\f 4
3

1
'8 [150(2 =3n)(4-3n)7"" + 75;7(4 -
15 -1 60
—60(4-3n)"""? <3182 (9v3) - —
-3 <3787 (v3) -
<318{1— 6O]<0
2 V32

(37)

Taking into account Proposition 2, we see that {', > 0.
Thus, we proved the proposition.

To apply the Lyapunov center theorem, we have to guar-
antee that {'; # 0. Taking to the second power both terms in
the expression for {';, we see that this condition is satisfied
if g(v—1) # 128. This condition is true if 0 <7 <37'2 since
v>9 and g> 16.

The order of charges is preserved due to the infinite
repulsion and we can substitute the holomorphic functions
(x; - x,)" instead of |x; - x| " in the expression for their
potential energies.

Since the eigenvalues of U° coincide with { ;= u'¢ 'j, the
following theorem follows from the Lyapunov center theo-
rem [5-7].

Theorem 4. If 0 < 1 < 1/3, then the line Coulomb equation of
motion (1) with m;=m, d=1,and N = 3 and the potential
energy (2) possesses the equilibrium x%=-a,x9=0,x5=a,
j=1,2,3, and two periodic solutions in its neighborhood
such that each of them depends on its own real parameter
¢; for j=1,2. These solutions and their periods 7;(c),j=1,2
are real analytic functions in a neighborhood of the origin in
these parameters and 7;(0) = 2m\ /miC;. If 37! <n<37'2 or

312<n<landg(v—1)+ 128 v— g+ 63; then, the equation
possesses this equilibrium and a periodic solution in its neigh-
borhood that depends on a real parameter c. This solution and
its period T(c) are real analytic functions in a neighborhood of

the origin in this parameter and t(0) = 2rt/mi( .

3. Planar Coulomb Dynamics

In this section, we consider the planar system of three equal
charges: —e, in the field of six equal positive charges e’ fixed
at the octagon vertices with the coordinates b;,1<j<6,

— (b B2 2
b; = (b}, b?) € R2.

by = (@ b), by = (), by = (~a, b), b, = (~a,-b), bs

- (0, M),bé - (o,—\/W)’a’ boo, (38)
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with the potential energy

The equilibrium is given by x! =x" =—g,x} =x9' =0,
x=x=a, x§ —x] =0, =2. The first partial derivatives

of U look like

a 3 oc_ a , 6 X?—bz

—U(x =—e e — .

o ( ) °k;¢]|x k| o ,;|xj—bk}3
(41)

This gives the equilibrium relation between ey, e, a,
and b the same as in the previous section equating to zero
the right-hand sides of these equalities for j—l 3 (the

result is the same), taking into account x)' — x3! = 24,
= by[* =[x - b, = b2, xg-b|2:|xg-byz
= %9 = b = xS~ b = (2a)* + B2, |20~ by |*
= | = b =[] - [ :|x1_ B[’
= (2a)* + b7, x"—by 50— by|* =%, |0 - b)|
=q +b2,] X0 - }—361 +b%, k=56
- by _ 6a
- b ( (2a)z+192)3
6 .02 12 6 2
y A bksz— L -0, (42)
k=1 x?—bk‘ k=1 |x(1)_bk’

The right-hand of (41) is zero for a=2 and for j=2
since |x9 — x7] =[x — x|, 2% = -3, x) = 0.
The equilibrium relation is given by

3¢’ (2a)e, 5e, 3¢’

( (2a)2+b2>3’(2a)3 < (2a)2+b2>3.

(43)

The second derivatives of the potential energy (39) are
given by
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aU(x(3)) aU( >)

axjf‘axf axkax
a_ o\ (B _ B
e 5%[; L <xj —xk) (xjs— xk) ) (44)
| = x| | = x|
a, =12,
& _ B B\
0 U(X(3)) 2 i 8. ; (xj —xk) (xj _xk)
8xfax}" 0kz1,k¢j |xj_xk|3 ’xj_xk’5 |
6 X% — b (xﬁ—bﬁ)_
+eye 6“/33—3(] k) 15 ¢ .
i | X by | = b

(45)

Now, we shall find the equilibrium value for all the terms
in these equalities. Let #, u’ be as in the previous section.
Then, we derive the following equalities:

. ! 03—e0((2a) )(1—8 )+2a’38

=9_1—5 +8u'8,,,j=1,2,3,
2 i
(46)

=8,52¢0¢’ (b_3 +2((2a)” + bz)_m)

5
= §8aﬁu' [(1-n)7"+2],j=1,3,
(47)

6
!
'y

= Sopepe [4(a> +87) 7 +2(30”
k= l‘xz bk|

+ bz)—m}

40 _ _
= 5mﬁ? u' [2(4-3n) 2+ (4-1) 3’2]
(48)

relying on equalities below (10) from the previous section.
Let

Let also T?(oc, B) be the equilibrium value of T(a, B).
Now, we will prove the equalities

T%(a, B) = 8,5 (102> (2a)> + b2) "8

a,l

+2(07+ (307 +20) ((20)° 4 7)) 8,0, 5= 1.3,

(50)

(e, B) = Sa’ﬁ{4a2 (@ + ) 6, +2
+ (34 + bz)fm] 8%2}.

20 (@ +07) "

(51)
with the help of the following equalities:
= [0 ((a-b1)¥} + (a- b))
+((2a)* +6%) 7 ((a— bY) b2 + (a - bl) b2
+(a- b+ (abh)B2)] =

T9(1,2)

T0(1,2) = - [(Za)z + ) (-a-
+(-a-by)b; + (-a-
+(-a-b})b))| =

bl)B: + (~a-bL)13
bL)EE) b ((-a - 1)}

T3(1,1) = ((2a) +8°) | (-a-b})" + (-a - b))’
+(-a=b})"+ (ma =0+ 0| (-a - b))’

+(-a- b))’ =108 ((2a)” + 17) ",
T9(2,2)= ) (b2) 5 j=13
k=1 |X bk

19(2,2) = 18(2,2) = 28 [b° + ((20)° +7) ]

+2(3a% + 1) ((2a)* + %) "
=2[b7 + (3a® +20%) ((2a)* +b%) 7,

S b
TS(a,m:Z‘ —
k=1

B 4
L) Y

- k’ k=1

+ (302 + 1) 5“2%5_ Sup{ta’ (@ +17) "5,

+ [4b2(a +b%)" 5/2+2(3a +b) 3/2}6%2}.

(52)
Here, we took into account
2
172
k=1
53
) (53)
172
Y b =0.
k=3



(50) and (51) are proved. Taking into account

(o))

2 / / 2( -3 -3

€ - =e5(a” +(2a)7)8, 404,
k=1k#j ’X? - X2|

9y’ .
= 7806,/3606,1’] = 1, 3

(54)

we derive from (47), (46), and (50)

U(l),zx;l,ﬁ = U(S),zx;S,ﬁ = u/éa,ﬁ (V/ - 601,1 ul* - 80(,21’{”*) > (55)

where

!

! 1 —3/2 7 1 27u
=_[5(1- e T i
v 3[( 7) 5 uu 3

=6ee’5a% ((2a)> + %) 7 u'u'!

*

(56)
:6e0e'(b_3+(3a2+b2)(( a) +0%) "),
27 025 sul -
= 2+4r]u*—7[4 n+4(1-n)""].

Here, we took into account

, L 5\ P/ 1\°
6ege5a’ ((2a) +b) ? = 6eye'5a (36,) (%>
25u'
- Tun’ 6ege' b

=5u’(1-1) "2, 6epe' b’ ((2a)” + 172)_5/2

56\ /115
=6e,e’ (2a)2 (1 -yt [ =2 -
e - (35) (55
sul(1-n) 18¢ye’ a?
= N
( (2a)2+b2>
NG 15
=27'9¢,e’ (3—?) (2a)7 = Zu'n.
(57)
From the equality
o 0a\ (OB 0
(23 = 7 )(xz‘B—xkﬂ)

2 -

)

k=1k#2

= e§2a_35a’,36a)1 = 8u'8a,ﬁ6a,1,
(58)

(48), (51), and (46), it follows

Ug,a;Z,ﬁ = ”,‘Sa,ﬁ (Vl -8, - 8&,2”1’)’ (59)
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where

40
v, =-8u' + ?ul [2(4-37)7" + (4-n)"], 0y
=3eye'4a’ (a’ + 192)_5/2 —24u" =80u'n(4 - 3n)7"

—24u',u,' = 3eoe' [41)2 (az + b2)75/2 + 2(36!2 + b2)73/2}

=40u' [8(1—n)(4-3n) "+ (4—n) "]
(60)
Here, we used
2a=(1-n)""2/nb,a* + b’
= azn’l (4-31), e’ (a* + bz)*slza2
_eoe a 3115/2(4_311)—5/2
20 _
714 ;7(4 3n)” -2 (a2+b2) 2 (61)
=epe’a”n’?(1-n)(4~ 317)‘5/2(211)2
80 _
=5 u'(1-m)(4-3n)2 epe’ (30 + %) "
e, e'a 37]3/2( )—3/2 _ ?u'(4—71)_3/2.
We have also
0 0
, (x9% - x )(xzﬁ —xF ) xgaxiﬁ )
€ =&z = =eya 606’1;8“,1
% - xk’
=4u 8 /380‘ 1
ay (OB _ OB
x7% —x X — X3
=1,3,e§(1 3)( )

kS —x3|

= e(z)(za)%aa,ﬁé‘a,l = ?aa,ﬁaa,l

(62)
From these two equalities, one derives
!
u
1a3/3 U3a1/3 6/3( -39, Y 2a3/3 U3a2/3
= U‘Z{a;l,ﬁ = Ul’a;z)ﬁ =4u S“ﬁ(l ~38,,)-
(63)

Now, we determine two matrices U%, a = 1, 2 by the rule

Ulasks = OapUsi (64)
and renumerate indexes of coordinates in the following way:

(1,1)=13(2,1) =25 (3,1) =3;(1,2)
=4;(2,2)=5;(3.2)=6.

(65)
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where the first and second indexes under the round brackets
corresponds to the lower and upper indexes of coordinates.
This gives

U'=0%e US. (66)

The elements of the symmetric matrices U? are defined
as follows:

0 _ 170 _q70  _q170  _ 0f 1 0
U1 = Ul = Uig3 = Uy = U (V u, ) Ulaa
0 e 0 _1/0 _ 770
=Uppp i =u (v —uy), Upy = Uy, =Up g,
_ 10 _ 10 _7/0  _ 1 110 _ 110
==8u,Ujz, =V} 3= U3 = 4, Uy = Uy

10 _ el 710 _ 770 _ 10 _ 110
= U a1 ==8u s Uy = U = Uns3 = Us s,

!

[ 1 r o U 0 0
=u (V —u *> =-uu + 7)U2;2,2=U2,2;2,2
o ' _ 1 140 710 _ 770
=u (Vl —u 1) =u g,Uy,=U,=Ulsn,

!
u

A4 70 0 _ 770 _ 0 _ 110
=4u, Uz = Uy 3=Uj s, = PR Unsn = Usps
_ 7170 _ !

=Ujps,=4u .

(67)

The parameters of the matrix elements are defined as
follows:

A 5u' o 7uo2su 27,
ulv —u,)=—I((1- —— - — Nt ——=uv,
( ) 3 (1=1) 6 a4 1"

40
u,(V1 —up)= —8u’ +24u’ + ?u, [2(4_ 311)73/2 +(4 _11)73/2]
/

- 80u’;1(4 - 3?})'5/2 =u g

u’ 1 7
1 o 1 ! -3/2
U u =vu —-u - ——=U 751—?] - =

! !
S5u

_ u
—7[4—;7+4(1—;1) ] - >

>

" 51 10 32 11
u =9- —+ —(1- su >11,
7t (1-n)

Il ! !
ug =u (vl—u1>,

!

40 _ _
g =-8+ 3 [2(4-37) Py (4-n) 3’2]

—40[8(1—)(4=3n) "+ (4-1)7"]

80
3
- 12(1-n)),

=8 T a2 T3 -3

g =-8- ? [(4=m) "2+ (4=3n)""(8-9m)], (68)

where v, g are the same as in the previous section. As
a result,

9
y -8 -1
W=u'|-8 g -8|=u'U,U/
-1 -8 v
=-2U,(g,)+ (v+1),2g, =—g+v+1,
2u""+1 8 1
Ug — ufz—l 8 zg! 8 — u’U’z, U’2
1 8 —2u''+1
=U,(g,)-u''Ig,=g" +u'’,
(69)

where matrix U, is defined in the previous section where we
found its eigenvalues as the roots of p,(gq). Now, it is not

difficult to find eigenvalues of U’, as roots of polynomial
p',. They are given by

!

p2(A)=p. (A*’ ”I”gz)-Z/\:gz —2u

(g,-1)?+128,A=—u""={, <0.

1

(70)
+1+

Let {5, {'s be the roots corresponding to the plus and
minus before the sign of the square root, respectively.
Then,

2
2(’5:g’—u”+1+\/(g’+u”—1) +128,

2
2(’6=g’—u”+1—\/(g’+u”—1) +128.

If 0 <#<1/3, then

(71)

’>8+80+580>8+10+4>15|’|>15 (72)
g 2479673 g 1= 2>

{'s<0if g' <0 and

(lg'l—u” + 1)2 +128 < (lg'|+u” - 1)2, (u” - 1) |g'| > 32.
(73)

This is true if 0<x<1/3. In this case, {'s <{'5<0.
This means that there is no resonance in {, and quadratic
resonance in (', for the eigenvalues {,1<j<6 of U°.
This and the Lyapunov center theorem imply the follow-
ing theorem.

Theorem 5. If 0 < 1 < 1/3, then the planar Coulomb equation
of motion (1) with m;=m,d = 2, and N = 3 and the potential
energy (39) possesses the equilibrium x)' = —a, x5! = 0,x§" = a,
x?=0,j=1,2,3, and two periodic solutions in its neighbor-

hood such that each of them depends on its own real
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parameter c; for j=1,2. These solutions and their periods T,
(¢),j=1,2 are real analytic functions in a neighborhood of

the origin in these parameters and 7;(0) =2 /m/C;.

4. Spacial Coulomb Dynamics

In this section, we consider the spacial Coulomb dynamics of

three equal negative charges —e, in the field of six equal pos-

itive charges e’ fixed at vertices of the octagon with vertices

bj,1<j<6,b;=(bj,b7,b} =0) € R*.

b, =(a,b,0),b,=(a,—b,0),b; = (-a, b,0),b, = (—a,—b,0), bs

(o, 302 + 1, o), b = (0,— 302 + 17, 0), a,b>0,
(74)

with the potential energy

U(x<3)> =

where

3

3 6
—eoe'ZZ|x]—bk , (75)

j=1 k=1

NI'—‘

k= 1|x ki

’x]| = (le»)z + (x]2->2 + (x?)z. (76)

It is not difficult to repeat calculations of the previous

section to see that the elements of the matrix of second
partial derivatives at the equilibrium x}=x=—a,x) =
3 =0,x3=x3' =a, x¥ =x}"=0,a=2,3 look like for a, 8 =

j
1,2, 3 as follows:

!

u
6 )/3(1

0 0 0 0 1
Usasp = Usanp = UZ,a;l,ﬁ =Uljapp=4u 8o¢,[3(1

U(l)tx3/3 USoclﬁ _36a,1)’
_38o¢,1)’
U(l)alﬁ U3a3ﬁ_8(x,/3(u’v,_Sa,lui_aa,Zu”*)’

0 o '
Upap = U 8zx,ﬁ (Vi U8y — Ot 1)-

(77)

Now, we determine three matrices U%, a=1,2,3 by
the rule

U;‘),tx;k,ﬁ = 8%/3 Ug;j,k (78)

and renumerate indexes of coordinates in the following
way:
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where the first and second indexes under the round
brackets correspond to the lower and upper indexes of
coordinates. This gives

U'=0%e U)o UY. (80)

The elements of the symmetric matrices UY, U are
defined in the previous section and

!
u

U(3)13_U331_U(1)oc3ﬁ U30c1ﬁ 80(,[3’

0 0 —
U312_ U321_U3;2,3_U 332 U2333

—_ 7170 —_ 170 _ _
=Ussp3=Upsus = U1,3;2,3 =4u',

0 _ 170 170 _ 770 o
U1 = Ul = Uszs = Usgaz=u v,

!

2v 8 1

Ug;z,z = Ug,3;2,3 = ”/Vp Ug =u'27| 8 2v; 8
1 8 2v

=u'U'5, Uy = U.(g5) + (V’ - 1)1’ g3=V1— v+ 1.
(81)

The roots p'; of U'; are given by

PN =p.(A+1-7'5),

2/\=g3—2(1—v/>+li\/(g3—1)2+128,/\ (82)

=v' -1=0.

Let {'y,{'y be the roots corresponding to the plus and
minus before the sign of the square root, respectively.
Then,

! ! 12
2=y +v —1+ (vl—v) +128,

(83)
2
2 y=v, +v' —1- (vl —v') +128.
We remind that
40
‘Vl =-8+ ? [ (4 311)*3/2 (4 11) 3/2}
(84)
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Let us assume 0<#<1/3. Then,

1 1(5v27 7\ 1 7 1
v [P <2(10-2) =22,
2 3\ 8 2] 3 2 6

3 8+40< < 8+—40 <0
3-8+ O ,
g ! V27

1 '
—5-<v,-v <-
6

>

A

1
-2 <V1+V’<2€’
) 1
[v, +v' =1] <3,
2

(vl —v')2 +128> (11)2.
(85)

As a result,

>

! ! 2 ! 1 1
20 > (vl—v) +128- [y +v/ 1> 11-32 =75

! ! /2 l 1
2 =v +v —1+,/(v1—v) +128<12 +13= 14,

1
20 <11+ ¢ <710,

(86)
The inequality for v' and last three inequalities imply

1 , 1 3 , 1
-—< <1-,3-< <7—, < =5. 87
S <{r<12,35 <720 (87)

From {', <{',, ¢’ >12, it follows
¢y < <0<y <l <0y (88)

This means that there is no resonance in {, = u'¢’, and
quadratic resonance in ¢, =u'{, for eigenvalues of U in
the spacial Coulomb system if 0 <#<1/3 and {', #0, ie,
n#1-(10/13)" < 1/3.

The last inequality follows from

2\"_2v2 3 10 5.
3/ 33 5 13’3

V3, % >V2. (89)

We proved the following theorem with the help of the
Lyapunov center theorem.

Theorem 6. If0 <1 < 1/3and n # 1 — (10/13)°", then the spa-
cial Coulomb equation of motion (1) with m; =m, d = 3, and
N = 3 and the potential energy (75) possesses the equilibrium
X =—a,x5'=0,x =q, x;?“ =0,j=1,2,3, a=2,3, and two
periodic solutions in its neighborhood such that each of them
depends on its own real parameter c; for j= 1, 2. These solu-

11

tions and their periods 7(c;),j= 1,2 are real analytic func-
tions in a neighborhood of the origin in these parameters

and 7;(0) =2, fm/{;.

5. Conclusion

We have shown that the matrix U° of second partial deriva-
tives of the potential energy of our spacial system at the equi-
librium is the direct sum of the three dimensional matrices
U?, j=1,2,3 such that UY and the direct sum of U? with

UY coincide with matrices of the second partial derivatives
of the potential energy at the equilibrium of one-
dimensional and planar systems, respectively. We have
shown also that U? possesses two positive eigenvalues (, {,

and that \/Z] is not in resonance with square roots of other

eigenvalues for j=1,2 if 0<n<1/3, = (560/36')2/3. The

Lyapunov center theorem implies that these eigenvalues gen-
erate periodic solutions mentioned in Theorem 6 if 0 <# <
1/3 and # 1 - (10/13)*”. The last condition guarantees that
neither of the eigenvalues are zero.
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