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Type-II censored data is an important scheme of data in lifetime studies. The purpose of this paper is to obtain E-Bayesian
predictive functions which are based on observed order statistics with two samples from two parameter Burr XII model.
Predictive functions are developed to derive both point prediction and interval prediction based on type-II censored data, where
the median Bayesian estimation is a novel formulation to get Bayesian sample prediction, as the integral for calculating the
Bayesian prediction directly does not exist. All kinds of predictions are obtained with symmetric and asymmetric loss functions.
Two sample techniques are considered, and gamma conjugate prior density is assumed. Illustrative examples are provided for all
the scenarios considered in this article. Both illustrative examples with real data and the Monte Carlo simulation are carried out
to show the new method is acceptable. The results show that Bayesian and E-Bayesian predictions with the two kinds of loss
functions have little difference for the point prediction, and E-Bayesian confidence interval (CI) with the two kinds of loss
functions are almost similar and they are more accurate for the interval prediction.

1. Introduction

The Burr type XII distribution with two parameters was first
introduced by Burr [1]. The probability density function
(PDF) and cumulative distribution function (CDF) of this
distribution can be, respectively, written as

f x ; θ, αð Þ = θαxα−1 1 + xαð Þ− θ+1ð Þ, x > 0, α > 0, θ > 0, ð1Þ

F x ; θ, αð Þ = 1 − 1 + xαð Þ−θ, x > 0: ð2Þ
In the following, we shall denote it by Burr(θ, α), where θ

is the shape parameter and α is the scale parameter. In fact, it
is basically a Pareto (type IV) model with the scale parameter
α set to 1 in Equation (1). The inference problems with Burr
distribution have been extensively investigated in the litera-
ture, and it is extremely important in the study of biological,
industrial, reliability, and life testing and quality control. In

the life or quality tests or experiments, a random sample X1,
X2,⋯, Xn of size n is chosen from the distribution using
CDF FðxÞ and PDF f ðxÞ for the test or experiment, but
instead of continuing until all n samples have failed, the test
is terminated at the time of the rth (1 < r < n) failure. The
order statistics of the data is Xð1Þ ≤ Xð2Þ≤⋯≤XðrÞ: This kind
of data is called type-II censored data. Only the smallest
observed values are observed, because it takes a long time
to observe all the failure of n individuals in some cases, and
such a censoring experiment is both time-saving and cost
saving. The number of the censored samples is determined
before the test or experiment. Tekindal et al. evaluated
left-censored data through substitution, parametric, semi-
parametric, and nonparametric methods [2]. The Bayesian
inference is highly recommended by scholars to study cen-
soring data. Feroze and Aslam [3] studied Bayesian analysis
of Gumbel type II distribution under censored data. Tabas-
sum et al. [4] discussed Bayesian inference from the mixture
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of half-normal distributions under censoring. Singh et al. [5]
provided “Bayesian Estimation and Prediction for Flexible
Weibull Model under Type-II Censoring Scheme.”

Lewis [6] proposed the use of the Burr(θ, α) distribution
as a model in accelerated life test data representing times
of breakdown of an insulating fluid. Inferences and predic-
tions for the Burr(θ, α) distribution and some of its testing
measures based on complete and censored samples were
discussed by many authors. Evans and Ragab [7] obtained
Bayes estimates of θ and the reliability function based on
type-II censored samples. AL-Hussaini and Jaheen [8, 9]
obtained Bayesian estimation for the two parameters and
reliability and failure rate functions of the Burr XII distri-
bution. Ali Mousa [10] obtained empirical Bayes estima-
tion of the parameter θ and the reliability function based
on accelerated type-II censored data. Based on complete
samples, Moore and Papadopoulos [11] obtained Bayesian
estimates of θ and the reliability function when the parameter
α is assumed to be known. A1i Mousa and and Jaheen [12]
obtained Bayes approximate estimates for the two param-
eters and reliability function of the Burr(θ, α) distribution
based on progressive type-II censored samples. Jaheen
[13] used the generalized order statistics to obtain Bayes-
ian inference for the Burr XII model. Based on progressive
samples from the Burr(θ, α) distribution, Soliman [14]
obtained the Bayesian estimates using both the symmetric
(squared error) loss function and asymmetric (LINEX, gen-
eral entropy) loss functions.

The E-Bayesian method is a special Bayesian method
which was developed by Han [15], and it is more and more
popular now. The E-Bayesian method can be used to estimate
statistical distribution parameters. Gonzalez-Lopez et al. used
E-Bayesian to gain flexibility in the reliability-availability sys-
tem estimation based on exponential distribution under the
squared error loss function [16]. Han estimated the system
failure probability with the E-Bayesian method, and the rela-
tionship of E-Bayesian estimators with three different prior
distributions of hyperparameters was revealed [17]. Jaheen
and Okasha [18] provided the E-Bayesian parameter and
reliability estimation for the Burr type XII model based on
type-II censoring. However, those literatures only discussed
the E-Bayesian parameter estimation or reliability for some
models and lack of prediction research for Burr type XII
model with type-II censoring data.

Prediction of future events on the basis of the past and
present information is a fundamental problem of statistics,
arising in many contexts and producing varied solutions.
As in estimation, a predictor can be either a point or an inter-
val predictor. Parametric and nonparametric predictions
have been considered in the literatures. In many practical
data-analytic situations, we are interested in getting the pre-
diction interval of the statistical distribution parameters.

Prediction has been applied in medicine, engineering,
business, and other areas as well. Many authors discussed
prediction problems for many distributions, references to
research done and review papers on prediction, in nonpara-
metric and parametric settings, such as Al-Hussaini and
Ahmad [19, 20], Al-Hussaini and Jaheen [8, 9], Ashour and
El-Wakeel [21], Dunsmore [22], Guilbaud [23], Johnson

et al. [24], Nigm et al. [25, 26], Patel [27], Sindhu et al.
[28], and Singh et al. [5]. For more details, one can refer to
Aitchison and Dunsmore [29] and Geisser [30].

In this article, an effort has been made to find Bayesian
prediction bounds for future order statistics from the two-
parameter Burr XII model based on type-II censored data
using the two-sample prediction technique. E-Bayesian and
Bayesian predictive function approaches have been used
for obtaining the estimates of the unknown parameter,
and some other lifetime characteristics such as the reliability
and hazard functions. Bayesian estimation has been devel-
oped under symmetric and asymmetric loss functions in
Section 2. E-Bayesian predictive functions are derived based
on a conjugate prior for the parameter of interest and
symmetric and asymmetric loss functions in Section 3.
Properties of E-Bayesian predictive functions are carried out
in Section 4. Finally, comparison between the new method
and the corresponding Bayes techniques is made using the
Monte Carlo simulation in Section 5.

2. Bayesian Two-Sample Predictions

Suppose that X1, X2,⋯, Xn form a random sample from the
distribution with CDF FðxÞ and PDF f ðxÞ. The order sta-
tistics is Xð1Þ ≤ Xð2Þ ≤⋯≤ XðnÞ: Let Xð1Þ, Xð2Þ,⋯, XðnÞ have
a joint CDF ~Fðxð1Þ, xð2Þ,⋯, xðnÞÞ and PDF ~f ðxð1Þ, xð2Þ,⋯,
xðnÞÞ. Then to the k observations xði1Þ, xði2Þ,⋯, xðikÞ of Xði1Þ
≤ Xði2Þ≤⋯≤ XðikÞ, we can get the joint PDF:

~f x i1ð Þ, x 2ð Þ,⋯, x nð Þ ; θ, α
� �
=

n!
i1 − 1ð Þ! i2 − i1 − 1ð Þ!⋯ ik − ik−1 − 1ð Þ! n − ikð Þ!

� F x i1ð Þ
� �h ii1−1 · F x i2ð Þ

� �
− F x i1ð Þ
� �h ii2−i1−1

⋯

� F x ikð Þ
� �

− F x ik−1ð Þ
� �h iik−ik−1−1

� 1 − F x ikð Þ
� �h in−ik

f x i1ð Þ
� �

f x i2ð Þ
� �

⋯ f x ikð Þ
� �

:

ð3Þ

In particular,

~f x 1ð Þ, x 2ð Þ,⋯, x nð Þ ; θ, α
� �

= n!f x 1ð Þ
� �

f x 2ð Þ
� �

⋯ f x nð Þ
� �

:

ð4Þ

Suppose that Xð1Þ ≤ Xð2Þ ≤⋯ ≤ XðrÞ is a type-II censored
sample of size r obtained from a life test on n items, then
the joint PDF is also the likelihood function (LF), which
can be written as

~f x 1ð Þ, x 2ð Þ,⋯, x rð Þ ; θ, α
� �
=

n!
n − rð Þ! 1 − F x rð Þ

� �h in−r
f x 1ð Þ
� �

f x 2ð Þ
� �

⋯ f x rð Þ
� �

:

ð5Þ
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To the Burr XII distribution with the PDF (1) and CDF
(2), we can get the likelihood function (LF):

L θ, α ∣ xð Þ = ~f x 1ð Þ, x 2ð Þ,⋯, x rð Þ ; θ, α
� �

=
n! θαð Þr
n − rð Þ! 1 + x rð Þ

α
� �− n−rð ÞθYr

i=1
x ið Þ

α−1 1 + x ið Þ
α

� �− θ+1ð Þ

=
n!

n − rð Þ! θ
r x ið Þ

α−1αrQr
i=1 1 + x ið Þα
� � 1 + x rð Þ

α
� �− n−rð ÞθYr

i=1

� 1 + x ið Þ
α

� �−θ
=

n!v
n − rð Þ! θ

re−Tθ,

ð6Þ

wherev = ðQr
i=1xðiÞ

α−1αrÞ/ðQr
i=1ð1 + xðiÞ

αÞÞ, x = ðxð1Þ, xð2Þ,⋯,
xðrÞÞ, T =∑n

i=1lnð1 + xðiÞ
αÞ + ðn − rÞ ln ð1 + xðrÞ

αÞ.
When α is known, the above functions with para-

meters θ and α can be rephrased only with parameter θ,
and we suppose θ is a random variable. According to the
Bayesian theory, we use the gamma conjugate prior density
for parameter θ, which can be written as

g θ ∣ c, kð Þ = kc

Γ cð Þ θ
c−1e−kθ, θ > 0, ð7Þ

where c > 0 and k > 0. This prior was first used by Papado-
poulos [31]. The posterior density of θ given x can be
obtained from (6) and (7) as follows:

q θ ∣ xð Þ = ηθr+c−1e− k+Tð Þθ, θ > 0, ð8Þ

where η = ððk + TÞc+rÞ/ðΓðr + cÞÞ:
2.1. Bayesian Prediction Bounds. Assume that XðrÞðr = 1,⋯,
nÞ is the rth ordered observation in the same sample of size
n independent of the informative sample of Xs′, and they have
the same distribution. Denote Ysð s = 1,⋯,m Þ as a future
independent type-II censored sample from the same popula-
tion with censoring scheme s, and suppose that Y1 ≤ Y2 ≤
⋯≤ Ys is a type-II censored sample of size s obtained from
a life test onm items. Our aim is to develop a method to con-
struct a Bayesian prediction about the sth (1 ≤ s ≤m) ordered
lifetime Ys in a future sample of size m. The PDF of Ys is
given as

h ys θjð Þ = m!

s − 1ð Þ! m − sð Þ! F ysð Þ½ �s−1 1 − F ysð Þ½ �m−s f ysð Þ

=
m!

s − 1ð Þ! m − sð Þ! 1 − 1 − F ysð Þð Þ½ �s−1

� 1 − F ysð Þ½ �m−s f ysð Þ

= s
m

s

 !
f ysð Þ〠

s−1

j=0

s − 1

j

 !
−1ð Þj 1 − F ysð Þ½ �m−s+j:

ð9Þ

Substitution of f ðysÞ and FðysÞ, given by (1) and (2),
respectively, yields

h ys θjð Þ = s
m

s

 !
θαys

α−1 1 + ys
αð Þ− θ+1ð Þ 〠

s−1

j=0

s − 1

j

 !
� −1ð Þj 1 + ys

αð Þ− m−s+jð Þθ

= s
m

s

 !
θ
αys

α−1

1 + ys
α
〠
s−1

j=0

s − 1

j

 !
� −1ð Þj 1 + ys

αð Þ− m−s+j+1ð Þθ

= θτs
αys

α−1

1 + ys
α
〠
s−1

j=0
ρj 1 + ys

αð Þ−σ jθ,

ð10Þ

where

τs = s
m

s

 !
, ρj =

s − 1

j

 !
−1ð Þj, σj =m − s + j + 1:

ð11Þ

The Bayes predictive PDF of Ys is defined as

h∗ ys ∣ xð Þ =
ð∞
0
h ys θjð Þq θ ∣ xð Þdθ: ð12Þ

Thus, combined with hðysjθÞ (10) and the posterior PDF
qðθ ∣ xÞ (8), one has

h∗ ys ∣ xð Þ =
ð∞
0
h ys θjð Þq θ ∣ xð Þdθ = r + cð Þτs

k + Tð Þ
αys

α−1

1 + ys
α
〠
s−1

j=0
ρj

� 1 +
σ j

k + T
ln 1 + ys

αð Þ
� �− r+c+1ð Þ

, ys > 0:

ð13Þ

To obtain the prediction bounds of ys, we first need to
find the predictive survival function P½Ys > v ∣ x�. It follows
from (13) that

P Ys > v xj½ � =
ð∞
v
h∗ ys xjð Þdys = τs 〠

s−1

j=0

ρj

σj

�
�
1 +

σj

k + T
ln 1 + vαð Þ

�− r+cð Þ
, v > 0:

ð14Þ

A two-sided 100δ% predictive interval for Ys, 1 ≤ s ≤m is
given by P½L < Ys <U � = δ and denote LðxÞ and UðxÞ are the
confidence lower and upper limits which satisfy

P Ys > L xð Þ½ � = 1 + δ

2

P Ys >U xð Þ½ � = 1 − δ

2

9>>=>>;: ð15Þ
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In this case, it is also not possible to obtain the solutions
analytically, and one needs a suitable simulation technique
for solving these nonlinear equations. And sample fractiles
are used to replace the population fractiles during the simu-
lation process.

By applying the following formula due to Lingappaiah
[32],

〠
n

j=0
−1ð Þj

n

j

 !
j +mð Þ−1 = n!Qn

j=0 j +mð Þ , ð16Þ

one can get the simulation confidence limits from (14).

2.2. Special Cases

Case 1. To predict the first failure time Y1 in the sample of
size m, we set s = 1 in (14), so that

P Y1 > v ∣ x½ � = 1 +
m

k + T
ln 1 + vαð Þ

� �− r+cð Þ
: ð17Þ

The case s = 1 is of particular interest; for instance, a lower
limit for the first failure in a fleet of m items is called a safe
warranty life or an assurance limit for the fleet.

Hence, the lower and upper 100δ% Bayesian prediction
bounds for Y1 are given, respectively,

L1 xð Þ = exp −
k + T
m

1 − 1 + δ

2

� �−1/r+c
" # !

− 1
" #1/α

,

U1 xð Þ = exp −
k + T
m

1 −
1 − δ

2

� �−1/r+c
" # !

− 1
" #1/α

:

ð18Þ

Case 2. The predictive survival function of Ym (the last life-
time in a future sample of size m) can be obtained by setting
s =m in (14), yielding

P Ym > v xj½ � = 〠
m−1

j=0
−1ð Þj

m

j + 1

 !
1 +

j + 1
k + T

ln 1 + vαð Þ
� �− r+cð Þ

:

ð19Þ

It resulted from (15) and (19) by replacing v by the lower
bound LðxÞ and the upper bound UðxÞ. With a suitable
numerical technique for solving these nonlinear equations,
we can get the lower and upper bounds of Ym.

2.3. The Bayesian Predictor of Ys. With h∗ðys ∣ xÞ given by
(13), the two sample Bayesian predictive PDF of Ys under
squared error loss function can be obtained as

ŷBSs =
ð∞
0
ysh

∗ ys xjð Þdys: ð20Þ

However, this integral of (20) tends to infinity, so the
integral does not exist. To solve this problem, we apply the

median Bayesian estimation for the two-sample Bayes pre-
diction of Ys. Under the symmetric (Squared error (SE)) loss
function, according to the definition of median, we can see
the median ŷBSs is the solution of the equation:

τs 〠
s−1

j=0

ρj

σj
1 +

σj

k + T
ln

1 + vα

1 + yr
α

� �− r+cð Þ
=
1
2
, ð21Þ

because

P Ys > v xj½ � =
ð∞
v
h∗ ys xjð Þdys

= τs 〠
s−1

j=0

ρj

σj
1 +

σ j

k + T
ln

1 + vα

1 + yr
α

� �− r+cð Þ
:

ð22Þ

And from now on, the Bayesian estimation ŷBSs of ys is
the median estimator; for convenience, we use the same
token ŷBSs .

And the Bayes point predictor of Ys under asymmetric
(LINEX (BL)) loss function is given by

ŷBLs = −
1
a
ln
ð∞
0
e−aysh∗ ys xjð Þdys

� �
= −

1
a
ln
"
τs 〠

s−1

j=0

ρj

σj

 
1 − a

ð∞
0
e−ays

�
�
1 +

σj

k + T
ln 1 + ys

αð Þ
�− r+cð Þ

dys

!#
:

ð23Þ

3. E-Bayesian Estimation of θ

According to Han [33], the prior parameters c and k should
be selected to guarantee that the prior gðθ ∣ c, kÞ in (7) is a
decreasing function of θ. The derivative of gðθ ∣ c, kÞ with
respect to θ is

dg θ ∣ c, kð Þ
dθ

=
kc

Γ cð Þ θ
c−2e−kθ c − 1ð Þ − kθ½ �: ð24Þ

Thus, for 0 < c < 1, k > 0, the prior gðθ ∣ c, kÞ is a decreas-
ing function of θ.

Assuming that the hyperparameters c and k in (7) are
independent and πðc, kÞ = π1ðcÞπ2ðkÞ, the E-Bayesian esti-
mate of parameter θ (expectation of the Bayesian estimate
of θ) is

bθEB
= E θ xjð Þ =∬

D
bθB

c, kð Þπ c, kð Þdcdk, ð25Þ

where D is the domain of c and k for which the prior density

is decreasing in θ, and bθB is the Bayes estimate of θ . For more
details, see Han [34] and Jaheen and Okasha [18].

3.1. The E-Bayesian Predictor of Ys with Squared Error Loss
Function. E-Bayesian estimate of θ is obtained based on three
different distributions of the hyperparameters c and k. These
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distributions are used to investigate the influence of the dif-
ferent prior distributions on the E-Bayesian estimation of θ.

The following distributions of c and k may be used

π1 c, kð Þ = 1
bB u, vð Þ c

u−1 1 − cð Þv−1, 0 < c < 1, 0 < k < b

π2 c, kð Þ = 2 b − kð Þ
b2B u, vð Þ c

u−1 1 − cð Þv−1, 0 < c < 1, 0 < k < b

π3 c, kð Þ = 2k
b2B u, vð Þ c

u−1 1 − cð Þv−1, 0 < c < 1, 0 < k < b

9>>>>>>>>>=>>>>>>>>>;
,

ð26Þ

where Bðu, vÞ is the beta function. Forπiðc, kÞ, i = 1, 2, 3, the
E-Bayesian estimate of Y s with squared error loss function
is obtained from (21) and (26) as

ŷEBSis =∬
D
ŷBSs πi c, kð Þdkdc: ð27Þ

3.2. E-Bayesian Point Predictor of Ys with LINEX Loss
Function. Based on the LINEX loss function, the E-Bayesian
estimation of θ can be computed for the three different
distributions of the hyperparameters c and k given by (26).
For πiðc, kÞ, i=1, 2, 3, the E-Bayesian estimator of Y s with
LINEX loss function is obtained from (23) and (26) as below:

ŷEBLis =∬
D
ŷBLs πi c, kð Þdkdc: ð28Þ

Analytical and numerical computations for the integrals
in (27) and (28) are very complicated. With Monte Carlo
simulation, we can get all of the estimators, and the samples
are shown in part 4.

3.3. Properties of E-Bayesian Point Predictor of Ys. As the
integral of ŷBSs (21) does not exist, we cannot get the expres-
sion of real ŷBSs , and we can only get the median estimation
of ŷBSs with (22). So, we cannot prove the properties of E-
Bayesian point predictor of Y s, but with our experience of
E-Bayesian estimation [18], we can only guess the relations
among ŷEBSis and ŷEBLis , ði = 1, 2, 3Þ as follows:

(i) ŷEBS2s < ŷEBS1s < ŷEBS3s

(ii) lim
T→∞

ŷEBS1s = lim
T→∞

ŷEBS2s = lim
T→∞

ŷEBS3s

(iii) ŷEBL2s < ŷEBL1s < ŷEBL3s

(iv) lim
T→∞

ŷEBL1s = lim
T→∞

ŷEBL2s = lim
T→∞

ŷEBL3s

The relationship of ŷEBSis , ŷEBLis ði = 1, 2, 3Þ can be
observed only, and we cannot give the proof. However, the
examples in part 4 can confirm this relationship.

In order to verify our parameter estimation, sample pre-
diction, and the above relationship, the following examples
are given to illustrate them.

4. Monte Carlo Simulation and Comparisons

4.1. Illustrative Example with Real Data. To verify the esti-
mation and prediction method of this paper, we give two
illustrative examples. A complete sample from a clinical trial
describes a relief time (in hours) for 50 arthritic patients
given by Wingo [35] and used recently by Ahmed et al.
[36, 37] and Wu et al. [38]. Wingo [35], and Ahmed et al.
[36, 37] showed that the Burr type XII model was acceptable
for these data. Ahmed et al. [37] obtained the estimation of

the parameters as bα = 5:115 and bθ = 7:0651.

Table 1: Prediction of Example 1 for the real data with sample size n = 15.

s BL1 BS1 BS1 CI EBS1 EBS1 CI EBL1 EBL1 CI

1 0.4263764 0.4316624 (0.2576238, 0.5902167) 0.4257137 (0.3786459, 0.4628089) 0.4174119 (0.3695664, 0.4584008)

2 0.5237016 0.5259481 (0.3823931, 0.6691212) 0.5186851 (0.4608387, 0.5644443) 0.5142769 (0.4546417, 0.5652961)

3 0.5941900 0.5944176 (0.4607947, 0.7375225) 0.5861901 (0.5200581, 0.6387599) 0.5837638 (0.5153327, 0.6425961)

4 0.6616387 0.6603902 (0.5269148, 0.8136975) 0.6512217 (0.5765007, 0.7110461) 0.6503505 (0.5731552, 0.7170255)

5 0.7496692 0.7448745 (0.5982316, 0.9329483) 0.7344847 (0.6474641, 0.8051043) 0.7360397 (0.6461408, 0.8144799)

s BL2 BS2 BS2 CI EBS2 EBS2 CI EBL2 EBL2 CI

1 0.4065425 0.4110962 (0.2454158, 0.5614648) 0.4103752 (0.3748135, 0.4511887) 0.4025163 (0.3647253, 0.4450713)

2 0.4985693 0.5006385 (0.3642232, 0.6357492) 0.4997995 (0.4561466, 0.5500556) 0.4956201 (0.4489861, 0.5483002)

3 0.5652026 0.5654322 (0.4387903, 0.6996264) 0.5645469 (0.514723, 0.6221456) 0.5622232 (0.5088181, 0.6227278)

4 0.6286810 0.6275569 (0.501555, 0.7699742) 0.6266803 (0.5705216, 0.6919983) 0.6257744 (0.5659482, 0.6945529)

5 0.7098164 0.7064558 (0.5690331, 0.8778819) 0.7057107 (0.6406105, 0.7823044) 0.7069225 (0.6379363, 0.7888539)

s BL3 BS3 BS3 CI EBS3 EBS3 CI EBL3 EBL3 CI

1 0.4392170 0.4465164 (0.2664276, 0.6111139) 0.4409658 (0.401057, 0.4644336) 0.4325223 (0.3911746, 0.4624098)

2 0.5399871 0.5442798 (0.3955065, 0.6935378) 0.5374641 (0.4883087, 0.5664592) 0.5332061 (0.4809603, 0.5704103)

3 0.6130198 0.6154904 (0.4766979, 0.765482) 0.6077103 (0.5513518, 0.6410906) 0.6056173 (0.5458406, 0.6482854)

4 0.6832925 0.6843914 (0.5452837, 0.8463613) 0.6756226 (0.6116752, 0.7137244) 0.6752716 (0.6078378, 0.7231206)

5 0.7764433 0.7732495 (0.6194648, 0.9751638) 0.7630916 (0.6880245, 0.8083315) 0.7655518 (0.6860387, 0.8221346)
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Example 1. The following data sample was generated from
the two parameter Burr type XII distribution with α =
5:115:0, θ = 7:0651; sample size n = 15; 10 observations r =
10; 5 censoring data m = 5; to predict the 5 censoring data
with s = 1, 2, 3, 4, 5, we set u = v = 3, b = 1, a = 1, δ = 0:9.
The data is the sample coming from the real data and is
arranged as the order statistics, and the last 5 bold ones are
censored which we predict in Table 1: 0.29, 0.35, 0.36, 0.44,
0.46, 0.49, 0.50, 0.52, 0.55, 0.55, 0.57, 0.59, 0.61, 0.70, 0.80.

Using this data, we can get the point prediction and
bound prediction of the last 5 censored data according to
the method given by this paper. With the results of Equations

(21), (23), and (27)–(28), different Bayesian and E-Bayesian
estimators for Y s and its bounds are computed and are pre-
sented in Table 1. The procedure for estimating them is as
follows:

(i) For given values of the prior parameters u = v = 3,
b = 1, a = 1, δ = 0:9, we generate samples from the
beta distribution c ~ Bðu, vÞ and uniform priors k ~
Uð0, bÞ, respectively

(ii) Repeat the above step (i) 10,000 times. Using the real
data above, we obtain the E-Bayes estimates of Y s
and its bounds based on the BS function and BL
function by simulation
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Figure 1: The prediction curves.

Table 2: Prediction of Example 2 for the real data with sample size n = 50.

s BL1 BS1 BS1 CI EBS1 EBS1 CI EBL1 EBL1 CI

1 0.4427966 0.4543341 (0.2722825, 0.6114758) 0.4538649 (0.4466274, 0.460834) 0.4441464 (0.42695, 0.4613846)

2 0.5446005 0.5539914 (0.4060942, 0.690365) 0.5534132 (0.544460, 0.5620414) 0.5477999 (0.527261, 0.5684298)

3 0.6182980 0.6266535 (0.4911443, 0.7592645) 0.6259903 (0.615667, 0.6359494) 0.6224449 (0.5998507, 0.645974)

4 0.6890106 0.6970331 (0.5633366, 0.837345) 0.6962807 (0.6844733, 0.70769) 0.6943775 (0.6694205, 0.719781)

5 0.7831541 0.7878778 (0.641267, 0.9639144) 0.7869955 (0.7729321, 0.800626) 0.7879466 (0.7599305, 0.816337)

s BL2 BS2 BS2 CI EBS2 EBS2 CI EBL2 EBL2 CI

1 0.4393090 0.4508057 (0.270185, 0.6065865) 0.4512354 (0.4461563, 0.458294) 0.4416102 (0.425065, 0.4584106)

2 0.5401777 0.5496258 (0.402952, 0.6846776) 0.5501589 (0.5438776, 0.558895) 0.5446061 (0.5248414, 0.564781)

3 0.6131909 0.6216188 (0.4873143, 0.752772) 0.6222362 (0.6149967, 0.632314) 0.6187336 (0.5970456, 0.641236)

4 0.6831240 0.6912727 (0.558888, 0.8297724) 0.6919834 (0.6837077, 0.703519) 0.6901039 (0.666393, 0.7147314)

5 0.7757520 0.7810124 (0.6360892, 0.954093) 0.7818692 (0.772022, 0.7956296) 0.7827897 (0.756385, 0.8103091)

s BL3 BS3 BS3 CI EBS3 EBS3 CI EBL3 EBL3 CI

1 0.4453643 0.4572579 (0.274020, 0.6155324) 0.4564765 (0.449534, 0.4612051) 0.4467165 (0.429975, 0.4636027)

2 0.5478573 0.5576113 (0.4086974, 0.695090) 0.5566453 (0.548053, 0.5625018) 0.5510368 (0.530939, 0.5708726)

3 0.6220617 0.6308316 (0.494319, 0.7646674) 0.6297189 (0.619806, 0.6364815) 0.6262050 (0.6040166, 0.648505)

4 0.6933625 0.7018194 (0.5670253, 0.843662) 0.7005487 (0.689201, 0.7083007) 0.6987046 (0.674852, 0.7230455)

5 0.7886493 0.7935954 (0.645565, 0.9721487) 0.7920867 (0.7785474, 0.801358) 0.7931679 (0.7661625, 0.819795)
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(iii) The computational results are summarized in
Table 1, where BLi is the Bayesian prediction, and
EBLi is the E-Bayesian prediction, for Y s under
LINEX error loss function with three different distri-
butions of the hyperparameters (i = 1, 2, 3). BSi is the
Bayesian estimators (EBSi is the E-Bayesian estima-
tors) for Y s under squared error loss function with
three different distributions of the hyperparameters
(i = 1, 2, 3). BS CI corresponds to the 90% Bayesian
confidence interval, and EBSi CI corresponds to the
90% E-Bayesian confidence interval under squared
error loss function. EBLi CI corresponds to the

90% E-Bayesian confidence interval under LINEX
error loss function

Figure 1 shows us the prediction curves. Here, BSiL
(i = 1, 2, 3) is the lower bound of the corresponding confi-
dence interval, and BSiU (i = 1, 2, 3) is the upper bound of
the corresponding confidence interval. EBSiL (i = 1, 2, 3)
and EBSiU (i = 1, 2, 3) have the same meaning. These three
graphs have similar results: BSi CI (i = 1, 2, 3) totally covers
the real data, but they do not have much of degree of confi-
dence. Especially the lower bound of BSi (i = 1, 2, 3) is far
from the real data curve; EBSi CI and EBLi CI (i = 1, 2, 3)

Table 3: MSE of Example 1 with the estimators in Table 1.

Estimators BL1 BL2 BL3 BS1 BS2 BS3 EBS1 EBS2 EBS3 EBL1

MSE 0.005856 0.010061 0.00409 0.005618 0.009844 0.003666 0.006629 0.00999 0.004274 0.007252

Estimators EBL2 EBL3 LBS1 UBS1 LBS2 UBS2 LBS3 UBS3 LEBS1 UEBS1

MSE 0.010683 0.004789 0.024107 0.002179 0.03017 0.001059 0.020334 0.00521 0.006387 0.008847

Estimators LEBS2 UEBS2 LEBS3 UEBS3 LEBL1 UEBL1 LEBL2 UEBL2 LEBL3 UEBL3

MSE 0.007143 0.011743 0.0031435 0.0084877 0.0072448 0.0086676 0.0082327 0.0119137 0.0038 0.0078657

Table 4: MSE of example 2 with the estimators in Table 2.

Estimators BL1 BL2 BL3 BS1 BS2 BS3 EBS1 EBS2 EBS3 EBL1

MSE 0.003743 0.0040891 0.0035257 0.0030217 0.0032818 0.0028476 0.0030529 0.003247 0.0028904 0.0035903

Estimators EBL2 EBL3 LBS1 UBS1 LBS2 UBS2 LBS3 UBS3 LEBS1 UEBS1

MSE 0.003803 0.0034056 0.0175073 0.0042639 0.0182517 0.0034877 0.0169131 0.0049894 0.00296 0.0093169

Estimators LEBS2 UEBS2 LEBS3 UEBS3 LEBL1 UEBL1 LEBL2 UEBL2 LEBL3 UEBL3

MSE 0.0029161 0.0099231 0.003253 0.0092306 0.0026306 0.0082243 0.0025454 0.0088625 0.0028125 0.0078276

Table 5: Prediction example with simulation.

s BL1 BS1 BS1 CI EBS1 EBS1 CI EBL1 EBL1 CI

1 0.0989268 0.0643332 (0.0045293, 0.337259) 0.0634986 (0.058912, 0.0681691) 0.0962945 (0.0876987, 0.1050439)

2 0.2310097 0.1844959 (0.034875, 0.7016814) 0.1819962 (0.168183, 0.1961246) 0.2266603 (0.2078706, 0.2459008)

3 0.4209535 0.3657668 (0.0931238, 1.312666) 0.360525 (0.3313396, 0.390554) 0.4154838 (0.3817439, 0.4504281)

4 0.7277203 0.6848347 (0.1923819, 2.69180) 0.6742092 (0.614363, 0.736322) 0.7197569 (0.6624925, 0.7785412)

5 1.3405130 1.515928 (0.393869, 9.209026) 1.488853 (1.332795, 1.653516) 1.3251390 (1.2276826, 1.4256792)

s BL2 BS2 BS2 CI EBS2 EBS2 CI EBL2 EBL2 CI

1 0.0955290 0.062083 (0.004375, 0.3241314) 0.0618931 (0.058546, 0.0664266) 0.0938743 (0.0866777, 0.1019417)

2 0.2228465 0.1777076 (0.0336715, 0.671249) 0.1771502 (0.167088, 0.1908336) 0.2207915 (0.2057193, 0.2390398)

3 0.4056461 0.3513917 (0.089825, 1.247777) 0.3502552 (0.329043, 0.3792505) 0.4044791 (0.3782247, 0.4372029)

4 0.7009810 0.6552626 (0.1852814, 2.531697) 0.6530585 (0.6097058, 0.712764) 0.7006364 (0.6570353, 0.7567613)

5 1.2939372 1.438354 (0.3782452, 8.434845) 1.433241 (1.320916, 1.590156) 1.2919972 (1.2178218, 1.3893391)

s BL3 BS3 BS3 CI EBS3 EBS3 CI EBL3 EBL3 CI

1 0.1014997 0.0660396 (0.004646, 0.347282) 0.0651254 (0.0606048, 0.068627) 0.0987469 (0.0906665, 0.1063018)

2 0.2371997 0.1896604 (0.035787, 0.725086) 0.1869064 (0.173261, 0.1975176) 0.2326070 (0.2146817, 0.2486330)

3 0.4325663 0.3767499 (0.095628, 1.363028) 0.3709303 (0.3420138, 0.393537) 0.4266335 (0.3940571, 0.4542965)

4 0.7479744 0.7075708 (0.197785, 2.817802) 0.6956375 (0.6360885, 0.742565) 0.7391301 (0.6833638, 0.7852044)

5 1.3756176 1.576287 (0.4058139, 9.83703) 1.545187 (1.388652, 1.670446) 1.3587232 (1.2634259, 1.4365982)
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The Code for the Examples
two_R.txt
rm(list = ls())
#set.seed(99)
n = 200
r = 195
af = 1
th = 2
z1 = runif(n,0,1)
z2 = sort(((1-z1)^(-1/th)-1)^(1/af))
x = z2[1:r]
xaf = log(1 + x^(af))
t = sum(xaf) + (n-r)∗xaf[r]
b = 1
u = 3
v = 3
a = 1
yebs = 0
yebl = 0
p = 0
yebs11 = 0
yebl11 = 0
while (p< 5000) {
k = runif(1,0,b) #EBS1
# k1 = runif(1,0,1) #EBS23
# k = b∗(1-sqrt(1-k1)) #EBS2
# k = b∗sqrt(k1) #EBS3
c = rbeta(1,u,v)
m=n-r
s = 1
ybs11 = 0
ybl11 = 0
q = 5000
y = rexp(q,a)
while (s<m+1) {
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)
ybs = t(((1 + log(1 + y^af)%o%sg/(k + t))^(-r-c))∗exp(a∗y))∗((ta/a)∗rosg)
ybs1 = apply(ybs,2,sum)
ybs11 = rbind(ybs11,ybs1)
ybl = t((1 + log(1 + y^af)%o%sg/(k + t))^(-r-c))∗(ta∗rosg)
ybl1 = apply(ybl,2,sum)
ybl11 = rbind(ybl11,ybl1)
s = s + 1
}
ybs111 = apply(ybs11,1,sum)/q
ybl111 = apply(ybl11,1,sum)/q
ybl111 = -log(1-ybl111)/a
yebs = yebs+ybs111
yebs11 = cbind(yebs11,ybs111)
yebl = yebl+ybl111
yebl11 = cbind(yebl11,ybl111)
two_R.txt
p = p + 1
}
yebs1 = yebs/p
yebl1 = yebl/p
yebs11 = yebs11[,1:p + 1]
yebl11 = yebl11[,1:p + 1]

Algorithm 1: Continued.

8 Advances in Mathematical Physics



deta = 0.90
low= ceiling((1-deta)∗p/2)
up = ceiling((1 + deta)∗p/2)
yebs1low= apply(yebs11,1,sort)[low,]
yebs1up = apply(yebs11,1,sort)[up,]
yebl1low= apply(yebl11,1,sort)[low,]
yebl1up = apply(yebl11,1,sort)[up,]
s = 1
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)
z3 = ybs111 [1]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1 + deta)/2)/f2
}
ybslow1 = z3
z3 = ybs111 [2]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1-deta)/2)/f2
}
ybsup1 = z3
s = 2
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)
z3 = ybs111 [2]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1 + deta)/2)/f2
}
ybslow2 = z3
z3 = ybs111 [3]
two_R.txt
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1-deta)/2)/f2
}
ybsup2 = z3
s = 3
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)

Algorithm 1: Continued.
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z3 = ybs111 [3]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1 + deta)/2)/f2
}
ybslow3 = z3
z3 = ybs111 [4]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1-deta)/2)/f2
}
ybsup3 = z3
s = 4
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)
z3 = ybs111 [4]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1 + deta)/2)/f2
}
ybslow4 = z3
z3 = ybs111 [5]
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1-deta)/2)/f2
}
ybsup4 = z3
s = 5
ta = 1/beta(s,m-s + 1)
rosg = ((-1)^c(0:(s-1)))/(beta(c(1:s),s + 1-c(1:s))∗s∗(m-s + c(1:s)))
sg =m-s + c(1:s)
z3 = ybs111 [3]
two_R.txt
z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1 + deta)/2)/f2
}
ybslow5 = z3
z3 = ybs111 [6]

Algorithm 1: Continued.
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almost coincide, and their upper bounds are closest to the
real data; BLi, BSi, EBLi, and EBSi (i = 1, 2, 3) almost coin-
cide. So we can see that the point prediction BLi, BSi, EBLi,
and EBSi (i = 1, 2, 3) are not very different, the interval pre-
diction EBSi CI and EBLi CI (i = 1, 2, 3) are almost similar,
and the E-Bayesian interval predictions are more accurate.
The next two examples have the similar results, so we will
not show the figures again.

Example 2. Another example is with the data sample gener-
ated from the same distribution as the above Example 1,
but here, we enlarge the sample size to n = 50; the meaning
of other indexes is the same as the above example. Here,
r = 45; m = 5; s = 1, 2, 3, 4, 5; u = v = 3; b = 1; a = 1; δ = 0:9.
We get the prediction of the last 5 bold ones as Table 2.
The data are as follows:

0.29, 0.29, 0.34, 0.34, 0.35, 0.36, 0.36, 0.36, 0.44, 0.44,
0.46, 0.46, 0.49, 0.49, 0.50, 0.50, 0.52, 0.54, 0.55, 0.55, 0.55,
0.56, 0.57, 0.58, 0.59, 0.59, 0.60, 0.60, 0.61, 0.61, 0.62, 0.64,
0.68, 0.70, 0.70, 0.71, 0.71, 0.71, 0.72, 0.73, 0.75, 0.75, 0.80,
0.80, 0.81.

To compare the estimators, the mean square error (MSE)
is used to measure the estimation accuracy as follows. Here,
to compare the bounds of the estimators, the 90% confidence
limits of real data is used to calculate the MSE of our esti-
mated bounds. For the convenience of the comparison, the
MSE of Tables 1 and 2 is computed and put together as
Tables 3 and 4.

4.2. Illustrative Example with Simulation. To illustrate the
operability of the methods put forward by this paper, we also
give an example with simulation. The following data sam-
ple was generated from the two parameter Burr type XII
distribution with α = 1:0, θ = 2:0, sample size n = 20, 15
observations r = 15, 5 censoring data m = 5; to predict the 5
censored data with s = 1, 2, 3, 4, 5, we set u = v = 3, b = 1,
a = 1, δ = 0:9. The data are listed as follows:

0.05280128, 0.05560962, 0.06225709, 0.10117384,
0.10626390, 0.11375182, 0.19062614, 0.24794003,
0.24840441, 0.42198706, 0.46646103, 0.48875702,
0.55176242, 0.65954615, 0.66710844.

5. Conclusion

In this paper, the E-Bayes point prediction and prediction
bounds for ordered lifetime in a future sample are discussed
under symmetric and asymmetric loss functions. Two exam-
ples with real data and different choices of sample size n were
illustrated to examine the performance of the different pre-
dictions. Comparing Tables 3 and 4, we can find with the
increasing of sample size, the MSE of the Bayes predictions
and E-Bayes prediction decreases, and the predictions vary
with different loss functions.

A simulation study was conducted to show the feasibil-
ity of the E-Bayes prediction given in this paper. All the
predictions computed with different loss functions, different
sample size, and different choice of model parameters of

z4 = 1
while ((1-z4/z3)^2> 10^(-16)){
f1 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c))∗ta∗rosg)
f2 = sum(((1 + log(1 + z3^af)∗sg/(k + t))^(-r-c-1)∗(z3^(af-1)/(1 + z3^af)))∗ta∗rosg∗sg∗(r + c)∗af/(k + t)
)
z4 = z3
z3 = z3 + (f1-(1-deta)/2)/f2
}
ybsup5 = z3
x
z2
ybs111[1:m+ 1]
ybslow1
ybsup1
ybslow2
ybsup2
ybslow3
ybsup3
ybslow4
ybsup4
ybslow5
ybsup5
ybl111[1:m+ 1]
yebs1[1:m+ 1]
yebs1low[1:m+ 1]
yebs1up[1:m+ 1]
yebl1[1:m + 1]
yebl1low[1:m+ 1]
yebl1up[1:m+ 1]

Algorithm 1
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the censored scheme are shown in Tables 1, 2, and 5, and
the predictions with different loss functions are consistent
with the relationship we put forward in 3.3. From the
results, we can draw the following conclusion:

(i) From Tables 1, 2, and 5, the estimators of the
E-Bayes estimates of ŷEBSis and ŷEBLis ði = 1, 2, 3Þ
satisfy the relationship ŷEBS2s < ŷEBS1s < ŷEBS3s and
ŷEBL2s < ŷEBL1s < ŷEBL3s , and the E-Bayes estimates
of different priors are more close to each
other. And they are consistent with the
assumption in 3.3

(ii) If one uses the E-Bayesian approach for predic-
tion, one would expect these estimators to be bet-
ter (in the sense of MSE’s) than the Bayesian
approach. With our examples, this cannot be seen
in the results for different choices of loss func-
tions. However, the results are similar. Because
the E-Bayesian method uses more information
than the ordinary Bayesian approach, it is much
more reliable

(iii) When the sample size n increases, the MSE of E-
Bayesian estimators decrease. So increasing the sam-
ple size can get exacter results

(iv) The results establish that for optimum decision-
making, importance should be given on the choice
of loss function and not just the choice of prior dis-
tribution only

Burr distribution has extreme importance in the study
of biological, industrial, reliability, and life testing and
quality control. With the sample prediction functions,
we can understand the trends and control them in a
time.

Data Availability

The (DATA.doc) data used to support the findings of this
study are included within Reference [36].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors thank the referees for their helpful remarks
that improved the original manuscript. This work was
financially supported by the Fundamental Research
Funds for the Central Universities (WUT: 2019IA004,
2018IB016).

Supplementary Materials

The data for Example 1 and Example 2 to get the param-
eters’ initial estimators in this manuscript are from
Reference [36], and it is illustrated in the manuscript.
(Supplementary Materials)

References

[1] I. W. Burr, “Cumulative frequency functions,” The Annals of
Mathematical Statistics, vol. 13, no. 2, pp. 215–232, 1942.

[2] M. A. Tekindal, B. D. Erdoğan, and Y. Yavuz, “Evaluating left-
censored data through substitution, parametric, semi-para-
metric, and nonparametric methods: a simulation study,”
Interdisciplinary Sciences: Computational Life Sciences, vol. 9,
no. 2, pp. 153–172, 2017.

[3] N. Feroze and M. Aslam, “Bayesian analysis of gumbel type II
distribution under censored data,” 2014, https://www.lap-
publishing.com/.

[4] T. N. Sindhu, H. M. R. Khan, Z. Hussain, and B. al-Zahrani,
“Bayesian inference from the mixture of half-normal distribu-
tions under censoring,” Journal of the National Science Foun-
dation of Sri Lanka, vol. 46, no. 4, pp. 587–600, 2018.

[5] S. K. Singh, U. Singh, and V. K. Sharma, “Bayesian estima-
tion and prediction for flexible Weibull model under Type-II
censoring scheme,” Journal of Probability and Statistics,
vol. 2013, Article ID 146140, 16 pages, 2013.

[6] A. W. Lewis, “The Burr distribution as a general parametric
family in survivorship and reliability theory applications,”
[Ph.D. thesis], Department of Biostatistics, University of
North Carolina, 1981.

[7] I. G. Evans and A. S. Ragab, “Bayesian inferences given a type-
2censored sample from a Burr distribution,” Communications
in Statistics - Theory and Methods, vol. 12, no. 13, pp. 1569–
1580, 1983.

[8] E. K. Al-Hussaini and Z. F. Jaheen, “Bayesian estimation of the
parameters, reliability and failure rate functions of the Burr
type XII failure model,” Journal of Statistical Computation
and Simulation, vol. 41, no. 1-2, pp. 31–40, 1992.

[9] E. K. Al-Hussaini and Z. F. Jaheen, “Approximate Bayes
estimators applied to the Burr model,” Communications in
Statistics - Theory and Methods, vol. 23, no. 1, pp. 99–121,
1994.

[10] M. A. M. A. Mousa, “Empirical Bayes estimators for the Burr
type XII accelerated life testing model based on Type-2 cen-
sored data,” Journal of Statistical Computation and Simulation,
vol. 52, no. 2, pp. 95–103, 1995.

[11] D. Moore and A. S. Papadopoulos, “The Burr type XII dis-
tribution as a failure model under various loss functions,”
Microelectronics Reliability, vol. 40, no. 12, pp. 2117–2122,
2000.

[12] M. A. M. Ali Mousa and Z. F. Jaheen, “Statistical inference for
the Burr model based on progressively censored data,” Com-
puters & Mathematics with Applications, vol. 43, no. 10-11,
pp. 1441–1449, 2002.

[13] Z. F. Jaheen, “Estimation based on generalized order statistics
from the Burr model,” Communications in Statistics—Theory
and Methods, vol. 34, no. 4, pp. 785–794, 2005.

[14] A. A. Soliman, “Estimation of parameters of life from progres-
sively censored data using Burr-XII model,” IEEE Transactions
on Reliability, vol. 54, no. 1, pp. 34–42, 2005.

[15] M. Han, “E-Bayesian method to estimate failure rate,” in The
Sixth International Symposium on Operations Research and
Its Applications (ISORA’06), pp. 299–311, Xinjiang, China,
August 2006.

[16] V. A. Gonzalez-Lopez, R. Gholizadeh, and C. E. Galarza, “E-
Bayesian estimation for system reliability and availability anal-
ysis based on exponential distribution,” Communications in

12 Advances in Mathematical Physics

http://downloads.hindawi.com/journals/amp/2020/3510673.f1.docx
https://www.lap-publishing.com/
https://www.lap-publishing.com/


Statistics - Simulation and Computation, vol. 46, no. 8,
pp. 6221–6241, 2017.

[17] M. Han, “The E-Bayesian and hierarchical Bayesian estima-
tions for the system reliability parameter,” Communications
in Statistics - Theory and Methods, vol. 46, no. 4, pp. 1606–
1620, 2017.

[18] Z. F. Jaheen and H. M. Okasha, “E-Bayesian estimation for
the Burr type XII model based on type-2 censoring,” Applied
Mathematical Modelling, vol. 35, no. 10, pp. 4730–4737,
2011.

[19] E. K. AL-Hussaini and A. E. L.-B. A. Ahmad, “On Bayesian
predictive distributions of generalized order statistics,”
Metrika, vol. 57, no. 2, pp. 165–176, 2003.

[20] E. K. Al-Hussaini and A. E.-B. A. Ahmad, “On Bayesian inter-
val prediction of future records,” Test, vol. 12, no. 1, pp. 79–99,
2003.

[21] S. K. Ashour and M. A. M. H. El-Wakeel, “Bayesian prediction
of the median of the Burr distribution with fixed and random
sample sizes,” Statistics, vol. 25, no. 2, pp. 113–122, 1994.

[22] I. R. Dunsmore, “The Bayesian predictive distribution in life
testing models,” Technometrics, vol. 16, no. 3, pp. 455–460,
1974.

[23] O. Guilbaud, “Exact non-parametric confidence, prediction
and tolerance intervals with progressive type-II censoring,”
Scandinavian Journal of Statistics, vol. 31, no. 2, pp. 265–281,
2004.

[24] R. A. Johnson, J. W. Evans, and D. W. Green, “Nonparametric
Bayesian predictive distributions for future order statistics,”
Statistics & Probability Letters, vol. 41, no. 3, pp. 247–254,
1999.

[25] A. M. Nigm, “Prediction bounds for the Burr model,” Commu-
nications in Statistics - Theory and Methods, vol. 17, no. 1,
pp. 287–297, 1988.

[26] A. M. Nigm, E. K. Al-Hussaini, and Z. F. Jaheen, “Bayesian
two-sample prediction under the Lomax model with fixed
and random sample size,” Journal of Applied Statistical Science,
vol. 15, pp. 381–390, 2007.

[27] J. K. Patel, “Prediction intervals - a review,” Communications
in Statistics - Theory and Methods, vol. 18, no. 7, pp. 2393–
2465, 1989.

[28] T. N. Sindhu, H. M. R. Khan, Z. Hussain, and T. Lenzmeier,
“Bayesian prediction from the inverse rayleigh distribution
based on type-II trim censoring,” Journal of Statistics and
Management Systems, vol. 20, no. 5, pp. 995–1008, 2017.

[29] J. Aitchison and I. R. Dunsmore, “Statistical prediction analy-
sis,” Bulletin of the American Mathematical Society, vol. 82,
no. 5, pp. 683–688, 1976.

[30] S. Geisser, Predictive Inference. An Introduction, Chapman and
Hall, London, 1993.

[31] A. S. Papadopoulos, “The Burr distribution as a failure model
from a Bayesian approach,” IEEE Transactions on Reliability,
vol. R-27, no. 5, pp. 369–371, 1978.

[32] G. S. Lingappaiah, “Sequential life-testing with spacings, expo-
nential model,” IEEE Transactions on Reliability, vol. R-30,
no. 4, pp. 370–374, 1981.

[33] M. Han, “E-Bayesian estimation and hierarchical Bayesian
estimation of failure rate,” Applied Mathematical Modelling,
vol. 33, no. 4, pp. 1915–1922, 2009.

[34] M. Han, “E-Bayesian estimation of the reliability derived
from Binomial distribution,” Applied Mathematical Modelling,
vol. 35, no. 5, pp. 2419–2424, 2011.

[35] D. R. Wingo, “Maximum likelihood methods for fitting the
burr type XII distribution to life test data,” Biometrical Journal,
vol. 25, no. 1, pp. 77–84, 1983.

[36] A. A. Soliman, A. H. A. Ellah, N. A. Abou-Elheggag, and A. A.
Modhesh, “Bayesian inference and prediction of Burr type XII
distribution for progressive first failure censored sampling,”
Intelligent Information Management, vol. 3, no. 5, pp. 175–
185, 2011.

[37] A. A. Soliman, A. H. Abd Ellah, N. A. Abou-Elheggag, and
A. A. Modhesh, “Estimation from Burr type XII distribution
using progressive first-failure censored data,” Journal of Statis-
tical Computation and Simulation, vol. 83, no. 12, pp. 2270–
2290, 2013.

[38] S.-F. Wu, C. C. Wu, Y. L. Chen, Y. R. Yu, and Y. P. Lin, “Inter-
val estimation of a two-parameter Burr-XII distribution under
progressive censoring,” Statistics, vol. 44, no. 1, pp. 77–88,
2010.

13Advances in Mathematical Physics


	E-Bayesian Prediction for the Burr XII Model Based on Type-II Censored Data with Two Samples
	1. Introduction
	2. Bayesian Two-Sample Predictions
	2.1. Bayesian Prediction Bounds
	2.2. Special Cases
	2.3. The Bayesian Predictor of Ys

	3. E-Bayesian Estimation of &theta;
	3.1. The E-Bayesian Predictor of Ys with Squared Error Loss Function
	3.2. E-Bayesian Point Predictor of Ys with LINEX Loss Function
	3.3. Properties of E-Bayesian Point Predictor of Ys

	4. Monte Carlo Simulation and Comparisons
	4.1. Illustrative Example with Real Data
	4.2. Illustrative Example with Simulation

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments
	Supplementary Materials

