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In this paper, we investigate multiple lump wave solutions of the new (4 + 1)-dimensional Fokas equation by adopting a
symbolic computation method. We get its 1-lump solutions, 3-lump solutions, and 6-lump solutions by using its bilinear
form. Moreover, some basic characters and structural features of multiple lump waves are explained by depicting the
three-dimensional plots.

1. Introduction

Nonlinear evolution equations can be used to simulate many
nonlinear phenomena in the real world, which appear in
many areas, especially in physical [1], engineering sciences
[2], applied mathematics [3], chemistry, and biology [4].
Recently, it is well known that rogue waves play an essential
role in helping us apprehending the qualitative properties
of many phenomena; it is interesting that lump functions
can provide approximate fitting prototypes to model rogue
waves. In addition to appearing in the ocean [5], lump waves
also actually appear in many other fields, such as atmosphere
[6], superfluids [7], and capillary waves [8]. Further study of
lump waves will help us interpret some unknown fields more
deeply. Certain ways have been arranged to solve the lump
wave solutions of some equations; they are inclusive of the
Hirota bilinear method [9, 10], the inverse scattering trans-
formation [11], the Darboux transformation [12], the Bäck-
lund transformation [13], the functional variable method
[14], the reduced differential transform method [15], and so
on. Many integrable equations which have lump wave solu-
tions are enumerated here, for example, the (3 + 1)-dimen-
sional KPI equation [16], the Davey-Stewartson I equation
[17], the (3 + 1)-dimensional nonlinear evolution equation

[18, 19], and the nonlinear Schrödinger equation [20]. Gen-
erally speaking, it is easier to solve the lower order rational
solutions than to solve the multiple lump waves of the non-
linear evolution equation. In this paper, we mainly work on
a (4 + 1)-dimensional Fokas equation.

4utx − uxxxy + uxyyy + 12uxuy + 12uuxy − 6uzw = 0, ð1Þ

which was first derived by Fokas by the generalization of two
critical nonlinear evolution equations, which are the integra-
ble KP equation and DS equation [21]. The (4 + 1)-dimen-
sional Fokas equation could be applied to portray
nonelastic and elastic interactions [21, 22]. In nonlinear wave
theory, KP and DS equations can be used to characterize the
surface waves and internal waves in straits or channels of
varying depth and width, respectively [23–26]. The signifi-
cance of the (4 + 1)-dimensional Fokas equation follows nat-
urally from the physical applications of the KP and DS
equations. Therefore, the (4 + 1)-dimensional Fokas equa-
tion could be adopted to represent a number of phenomena
in fluid mechanics, optical fiber communications, ocean engi-
neering, and many others. More recently, (4 + 1)-dimensional
Fokas equation has been discussed by some scholars. Demiray
et al. obtained the exact solutions of Equation (1) by applying
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the generalized Kudryashov method (GKM) [27]. Based on
the Hirota bilinear form, two classes of lump-type solutions
of Equation (1) are studied by Cheng and Zhang [28]. In
2017, two distinct methods, namely, the modified simple
equation method (MSEM) and the extended simplest equa-
tion method (ESEM), are employed to look for exact trav-
eling wave solutions of Equation (1) [29]. Zhang et al.
used the fractional subequation method to obtain the exact
analytical solutions of Equation (1) [30]. The lump-bell
solutions of Equation (1) are obtained based on the bilinear
equation and different test functions in [31]. Particularly,
El-Ganaini and Al-Amr discussed the space-time fractional
(4+1)-dimensional Fokas equation via the functional vari-
able, the generalized Kudryashov, the Jacobi elliptic func-
tion expansion, and the generalized Riccati equation
mapping methods and got abundant distinct types of new
exact solutions [32]. Zhang and Xia obtained soliton solu-
tions, fissionable wave solutions, M-lump solutions, and
interaction solutions of the (4 + 1)-dimensional Fokas equa-
tion based on the Hirota bilinear method [33]. However,
Zhaqilao proposed a novel method to construct the multi-
ple rogue wave solutions of nonlinear partial differential
equation; the multiple rogue wave solutions of Equation
(1) have not been extracted by this new method. This paper
is constructed as follows. In Section 2, the bilinear equation
of Equation (1) is acquired. The 1-lump waves are also
gained by employing a new ansatz. In Section 3, 3-lump
waves of Equation ((1)) are researched when the subscript
of f n is equal to 1 in Equation (10). In Section 4, the 6-
lump waves of Equation (1) are studied when the subscript
of f n is equal to 2 in Equation (10). Section 5 is devoted to
a short conclusion and discussion.

2. 1-Lump Solutions

The fundamental desire of this section is to investigate the 1-
lump solutions of the new (4 + 1)-dimensional Fokas
equation. Firstly, setting X = x +my + nt and Z = z + cw in
Equation (1) yields

4nuXX + m3 −m
� �

uXXXX + 12mu2X + 12muuXX − 6cuZZ = 0,
ð2Þ

wherem, n, c are all real parameters. With the help of variable
transformation

u = u0 + m2 − 1
� �

lnfð ÞXX , ð3Þ

we can convert the Equation (2) into a bilinear form that
reads

4nD2
X + m3 −m
� �

D4
X − 6cD2

Z

� �
f · f = 0, ð4Þ

where D2
X f · f = f f XX − f 2X , D4

X f · f = 3f 2XX − 4f X f XXX + f
f XXXX , and D2

Z f · f = f f ZZ − f 2Z , where f is a real function
with regard to variable X, Z.D2

X ,D
4
X , andD

2
Z are called Hirota

bilinear D operators. By applying the symbolic computation
approach, assuming

f = X − βð Þ2 + a1 Z − αð Þ2 + a0, ð5Þ

where α, β, a1, and a0 are constants to be determined.
Substituting (5) into (4) and equating the coefficients of

all powers of Xi1Zi2 to 0, one has

12ca21 + 8ma1 = 0,
−24cαa21 − 16mαa1 = 0,

−12ca1 − 8m = 0,
24βca1 + 16βm = 0,

12a21α2c + −12β2 − 12a0
� �

c + 8mα2
� �

a1

+ −8β2 + 8a0
� �

m + 12n3 − 12n = 0:

ð6Þ

Solving these equations, one has

a0 = −
3n n2 − 1
� �

4m ,

a1 = −
2m
3c :

ð7Þ

Therefore, we can get a solution of Equation (4) as

f = X − βð Þ2 − 2m Z − αð Þ2
3c −

3n n2 − 1
� �

4m : ð8Þ

By using variable transformation (3), the 1-lump wave
solutions of Equation (1) read

where X = x +mt, Z = z + cw,m, n, c, α, β are arbitrary real
constants. The 1-lump wave (9) has the structure for three
wave peaks. One peak is higher than the water level, and

the other two are opposite. Figure 1 presents the three dimen-
sional plot, the density plot, and the corresponding contour
plot of the 1-lump wave solution of Equation (1). From

u x, y, z, t,wð Þ = m2 − 1
� � 2

X − βð Þ2 − 2m Z − αð Þ2� �
/3c

� �
− 3n n2 − 1ð Þð Þ/4mð Þ −

2X − 2βð Þ2
X − βð Þ2 − 2m Z − αð Þ2� �

/3c
� �

− 3n n2 − 1ð Þð Þ/4mð Þ� �2

 !

,

ð9Þ
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Figure 1, we can see that the 1-lump wave has one center ðβ, αÞ.
Furthermore, at the point ððð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3mnðn2 − 1Þp
+ 2mβÞ/2mÞ,

αÞ in the plane ðX, ZÞ, the maximum amplitude of the 1-
lump wave is ðu0 − ðð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3mnðn2 − 1Þp Þ/ð3nðn2 − 1ÞÞÞÞ.

3. 3-Lump Solutions

In the section, in order to construct the multiple lump solu-
tions, we propose the notation just like this:

Fn X, Zð Þ = 〠
n n+1ð Þ/2

k=0
〠
k

i=0
an n+1ð Þ−2k,2iZ

2iXn n+1ð Þ−2k,

Pn X, Zð Þ = 〠
n n+1ð Þ/2

k=0
〠
k

i=0
bn n+1ð Þ−2k,2iX

2iZn n+1ð Þ−2k,

Qn X, Zð Þ = 〠
n n+1ð Þ/2

k=0
〠
k

i=0
cn n+1ð Þ−2k,2iZ

2iXn n+1ð Þ−2k,

f X, Zð Þ = f n+1 X, Zð Þ = Fn+1 X, Zð Þ + 2αZPn X, Zð Þ
+ 2βXQn X, Zð Þ + α2 + β2� �

,
ð10Þ

where ai,j, bi,j, and ci,j are arbitrary constants. Then, we take
n = 1,

f X, Zð Þ = F2 X, Zð Þ + 2αZP1 X, Zð Þ
+ 2βXQ1 X, Zð Þ + α2 + β2� �

,
ð11Þ

where

F2 X, Zð Þ = X6 + a4,0X
4 + a4,2Z

2X4

+ a2,0 + a2,2Z
2 + a2,4Z

4� �
X2

+ a0,0 + a0,2Z
2 + a0,4Z

4 + a0,6Z
6,

P1 X, Zð Þ = b0,0 + b0,2X
2 + b2,0Z

2,
Q1 X, Zð Þ = c0,0 + c0,2Z

2 + c2,0X
2:

ð12Þ

Substituting Equation (11) into Equation (4) and collect-
ing all the coefficients of Xi1Zi2 , we can get a group of con-
straining relationships for the parameters. Dealing with
these equations, one gets
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Figure 1: The 1-lump solution u of Equation (1) with the parameter selectionsm = −2, n = 2, c = 1, u0 = 0, α = 0, β = 0. (a) Perspective view of
the wave uðX, ZÞ, (b) overhead view of the wave uðX, ZÞ, and (c) the corresponding contour plot uðX, ZÞ.
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Figure 2: The 3-lump solution u of Equation (1) with the parameter selections m = −3, n = 2, c = 1, u0 = 0, α = 1000, β = 1000, c2,0 = 1,
b0,2 = 1. (a) Perspective view of the wave uðX, ZÞ, (b) overhead view of the wave uðX, ZÞ, and (c) the corresponding contour plot
uðX, ZÞ.
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where b0,2 and c2,0 are arbitrary constants. Thus, the 3-lump
solution of Equation (1) is shown by

u = u0 + m2 − 1
� �

lnfð ÞXX , ð14Þ

where f is given in Equation (11), in which X = x +my + nt,
Z = z + cw. By increasing the value of α and β, 3-lump wave
merge and their centers form a triangle (see Figure 2). The
3-lump wave is the arrangement of three 1-lump waves in
the plane ðX, ZÞ:

4. 6-Lump Solutions

To get the 6-lump solution of Equation (1), the 6-lump solu-
tion waves of a (4 + 1)-dimensional Fokas equation can be

presented if we choose n = 2,

f X, Zð Þ = F3 X, Zð Þ + 2αZP2 X, Zð Þ + 2βXQ2 X, Zð Þ
+ α2 + β2� �

F1 X, Zð Þ,
ð15Þ

where

F3 X, Zð Þ = X12 + a10,0 + a10,2Z
2� �
X10

+ a8,0 + a8,2Z
2 + a8,4Z

4� �
X8

+ a6,0 + a6,2Z
2 + a6,4Z

4 + a6,6Z
6� �
X6

+ a4,0 + a4,2Z
2 + a4,4Z

4 + a4,6Z
6 + a4,8Z

8� �
X4

+ a2,0 + a2,2Z
2 + a2,4Z

4 + a2,6Z
6 + a2,8Z

8 + a2,10Z
10� �

X2

+ a0,0 + a0,2Z
2 + a0,4Z

4 + a0,6Z
6

+ a0,8Z
8 + a0,10Z

10 + a0,12Z
12,

a0,0 = −
5625n9 − 192β2c22,0m

3 − 16875n7 + 32α2cm2b20,2 + 192α2m3 + 192β2m3 + 16875n5 − 5625n3
192m3 ,

a0,2 = −
475n2 n4 − 2n2 + 1

� �

24cm ,

a0,4 = −
17n n2 − 1
� �

m

9c2 ,

a0,6 = −
8m3

27c3 ,

a2,0 = −
125n2 n4 − 2n2 + 1

� �

16m2 ,

a2,2 =
15n n2 − 1
� �

c
,

a2,4 =
4m2

3c2 ,

a4,0 = −
−25n n2 − 1

� �

4m ,

a4,2 = −
2m
c
,

b0,0 = −
5b0,2n n2 − 1

� �

12m ,

b2,0 =
2mb0,2
9c ,

c0,0 =
c2,0n n2 − 1

� �

4m ,

c0,2 =
2mc2,0

c
,

c2,0 = c2,0,
b0,2 = b0,2,

ð13Þ
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P2 X, Zð Þ = b0,0 + b2,0 + b2,2X
2 + b2,4X

4� �
Z2

+ b4,0 + b4,2X
2� �
Z4 + Z6 + b0,2X

2

+ b0,4X
4 + b0,6X

6,

Q2 X, Zð Þ = c0,0 + c0,2Z
2 + c0,4Z

4 + c0,6Z
6

+ c2,0 + c2,2Z
2 + c2,4Z

4� �
X2

+ c4,0 + c4,2Z
2� �
X4 + X6,

F1 X, Zð Þ = X2 + a0,2Z
2 + a0,0: ð16Þ

Substitute (15) into (4) and let all the coefficients of the
different powers of Xi1Zi2 equal to zero, we can get a set of
constraining relations for the parameters. Figuring out these
equations, one has

a0,0 =
1

36864m8 α2 + β2 + 1
� � 878826025m2n17

��

− 5272956150m2n15 + 13182390375m2n13

− 17576520500m2n11 + 472392α2c7n2

− 27648β2m7n2 + 13182390375m2n9 − 472392α2c7

+ 27648m7β2 − 5272956150m2n7 + 878826025m2n5ÞnÞ,

a0,10 =
464m4n n2 − 1

� �

243c5 ,

a0,12 =
64m6

729c6 ,

a0,2 =
1

2304m6c α2 + β2 + 1
� �

� 150448375m2n15 − 752241875m2n13
�

+ 1504483750m2n11 − 1504483750n9m2

+ 26244α2c7 − 1536m7β2 + 752241875m2n7

− 150448375m2n5Þ,

a0,4 =
16391725n4 n8 − 4n6 + 6n4 − 4n2 + 1

� �

1728m2c2
,

a0,6 =
199745n3 n6 − 3n4 + 3n2 − 1

� �

162c3 ,

a0,8 =
1445n2 n4 − 2n2 + 1

� �
m2

27c4 ,

a10,0 = −
49n n2 − 1
� �

2m ,

a10,2 = −
4m
c
,

a2,0 = −
1

1536m7 79893275m2n15 − 399466375m2n13
�

+ 798932750m2n11 − 798932750n9m2 + 26244α2c7

+ 1536m7α2 + 399466375m2n7 − 79893275m2n5Þ,

a2,10 = −
64m5

81c5 ,

a2,2 = −
94325n4 n8 − 4n6 + 6n4 − 4n2 + 1

� �

64cm3 ,

a2,4 =
1225n3 n6 − 3n4 + 3n2 − 1

� �

12c2m ,

a2,6 = −
17710n2 n4 − 2n2 + 1

� �
m

27c3 ,

a2,8 = −
760m3n n2 − 1

� �

27c4 ,

a4,0 = −
5187875n4 n8 − 4n6 + 6n4 − 4n2 + 1

� �

768m4 ,

a4,2 =
18375n3 n6 − 3n4 + 3n2 − 1

� �

8cm2 ,

a4,4 =
18725n2 n4 − 2n2 + 1

� �

18c2 ,

a4,6 =
2920m2n n2 − 1

� �

27c3 ,

a4,8 =
80m4

27c4 ,

a6,0 = −
18865n3 n6 − 3n4 + 3n2 − 1

� �

48m3 ,

a6,2 = −
4655n2 n4 − 2n2 + 1

� �

6cm ,

a6,4 = −
1540mn n2 − 1

� �

9c2 ,

a6,6 = −
160m3

27c3 ,

a8,0 =
735n2 n4 − 2n2 + 1

� �

16m2 ,

a8,2 =
115n n2 − 1

� �

c
,

a8,4 =
20m2

3c2 ,

b0,0 =
169785n3 n6 − 3n4 + 3n2 − 1

� �
c3

512m6 ,

b0,2 =
17955c3n2 n4 − 2n2 + 1

� �

128m5 ,

b0,4 =
2835c3n n2 − 1

� �

32m4 ,

b0,6 = −
135c3
8m3 ,
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b2,0 = −
2205c2n2 n4 − 2n2 + 1

� �

64m4 ,

b2,2 =
855c2n n2 − 1

� �

8m3 ,

b2,4 = −
45c2
4m2 ,

b4,0 = −
21cn n2 − 1

� �

8m2 ,

b4,2 =
27c
2m ,

c0,0 = −
12005n3 n6 − 3n4 + 3n2 − 1

� �

192m3 ,

c0,2 = −
535n2 n4 − 2n2 + 1

� �

24cm ,

c0,4 = −
5mn n2 − 1

� �

c2
,

c0,6 = −
40m3

27c3 ,

c2,0 = −
245n2 n4 − 2n2 + 1

� �

16m2 ,

c2,2 = −
115n n2 − 1

� �

3c ,

c2,4 = −
20m2

9c2 ,

c4,0 = −
13n n2 − 1
� �

4m ,

c4,2 =
6m
c
: ð17Þ

By this mean, we arrive at the 6-lump solution of Equa-
tion (1) represented by

u x, y, z, t,wð Þ = lnfð ÞXX , ð18Þ

where f is given in Equation (15). Figure 3 shows that the 3D
plot of the 6-lump wave consists of a central peak and five 1-
lump waves in a ring. One can observe that the six peaks tend
to the same height as ∣α ∣ and ∣β ∣ increase.

5. Conclusions

In this work, we have analytically established and analyzed
novel multiple lump solutions of a (4 + 1)-dimensional Fokas
equation based on the bilinear equation and a new ansatz. A
series of rational solutions including the 1-lump wave solu-
tions, the 3-lump wave solutions, and the 6-lump wave solu-
tions are obtained. The 1-lump wave has one positive peak
and two negative peaks. In order to search the 3-lump and
the 6-lump solutions, three polynomial functions Fn, Pn,
and Qn are utilized. It is notable that these lump waves all
have the properties limx→±∞u = u0, limy→±∞u = u0, and
limz→±∞u = u0. The 3-lump and 6-lump waves consist of
three and six independent single 1-lump waves, respectively.
All the peaks of the multiple lump waves tend to the same
height when α and β are large enough. The results of this
paper enrich the types of solutions of the (4 + 1)-dimen-
sional Fokas equation. Comparing with the existing results
in the literature, our results are new. We expect these results
to provide some values for researching the dynamics of mul-
tiple waves in the deep ocean and nonlinear optical fibers.
And it is very helpful for us to obtain the soliton molecules
in the future.
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