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In this paper, tracking controller and synchronization controller of the Arneodo chaotic system with uncertain parameters and
input saturation are considered. An adaptive tracking control law and an adaptive synchronization control law are proposed
based on backstepping and Lyapunov stability theory. The adaptive laws of the unknown parameters are derived by using the
Lyapunov stability theory. To handle the effect caused by the input saturation, an auxiliary system is used to compensate the
tracking error and synchronization error. The proposed adaptive tracking control and synchronization schemes ensure the
effects of tracking and synchronization. Several examples have been detailed to illuminate the design procedure.

1. Introduction

Although chaotic systems are extremely complex nonlinear
systems highly sensitive to initial value and parametric
uncertainties [1], they have been well known owing to
their potential applications in communications, information,
chemical reactions, lasers, biological systems, etc. [2]. Syn-
chronization and tracking control in chaotic systems has
received more and more attention since several studies on
suppression of chaotic motions [3–6]. In the past decades,
lots of powerful control approaches have been proposed for
chaotic synchronization and chaotic tracking, for example,
backstepping control [7, 8], impulsive control [3, 9], sliding
mode control [10, 11], and adaptive control [12, 13].

A challenge in the chaotic synchronization and tracking
control is the fact that the chaotic systems have mostly uncer-
tain parameters or dynamics. In reference [14], the strict-
feedback form chaotic system with unknown parameter is
studied by using adaptive backstepping. In reference [15],
the adaptive backstepping technique is adopted to realize
the synchronization between two chaotic systems with
uncertainties. The adaptive synchronization for two different
chaotic systems with uncertainty is given in reference [16].
To deal with the unknown parameters in chaotic system,

T-S fuzzy system is used for modeling of chaotic systems
[17], and fuzzy neural network is used for modeling of
chaotic systems [18]. A class of chaotic systems with time-
varying unknown bounded parameters is stabilized by a
novel robust adaptive controller [19]. LMIs and Barbalat’s
lemma is adopted to synchronize chaotic systems with uncer-
tainty [20]. The synchronization between two different cha-
otic systems with unknown parameters and external
disturbances is realized by a robust adaptive sliding mode
controller [21]. In reference [22], the output feedback adap-
tive robust controller for uncertain chaotic systems is studied.
Considering the unmeasured states and unknown parame-
ters, a novel neural network-based adaptive observer and an
adaptive controller have been designed [23]. To handle the
disturbance, a sliding mode RBF neural network controller
is presented by using the disturbance observer [24].

Unfortunately, input saturation has not been considered
in most of the abovementioned works. However, in practical
physical systems, there exist limitations for input, known as
input saturation problem. Moreover, the limitations of input
can cause serious influence on performance and stability.
Tracking control for the chaotic systems with input nonlin-
earities via variable structure design is studied [25], and syn-
chronization of the chaotic systems with input nonlinearities
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is realized by an adaptive sliding mode controller [26];
however, the limitations of input are not considered. An
adaptive neural synchronization control with Nussbaum-
type function is developed for chaotic system, which has
unknown control directions and input saturation [27]. An
adaptive controller based on fuzzy neural is given for
uncertain chaotic systems, in which the auxiliary system is
used to deal with saturation [28]. However, owing to the
adaptive neural network, the abovementioned works are
complex in computation.

Motivated by the above works, both tracking and syn-
chronization control for the Arneodo chaotic system with
unknown parameters and input saturation is developed in
this paper. To handle the input saturation, an auxiliary sys-
tem has been constructed, similar to [29]. The unknown
parameter adaptive law is obtained based on the Lyapunov
stability analysis. With the proposed schemes, the output of
the Arneodo chaotic system with uncertain parameters can
track the expected trajectory. Furthermore, the synchroni-
zation of two chaotic systems with different initial states
can be realized. Theoretical analysis and simulations dem-
onstrate the effectiveness of the proposed method. Com-
pared with the above works, the main merits of this paper
are listed as follows. (a) A systematic design scheme is pre-
sented for both synchronization and tracking control of
chaotic systems. (b) The transient performance is adjustable
by choosing proper design parameters and can also be
adjusted by choosing the initial value. (c) Both unknown
parameters and input saturation are considered in this
paper; the auxiliary system is designed to deal with satura-
tion problem.

The rest of the brief is organized as follows. In Section
2, system description and problem are presented. In Sec-
tion 3, the design procedure of the adaptive control is
given. In Section 4, adaptive synchronization for chaotic
systems is given. Simulation results are included in Sec-
tion 5. Finally, some concluding remarks are included in
Section 6.

2. System Description

Consider the Arneodo system ([5]) in the following form of

_x1 = x2,
_x2 = x3,
_x3 = ax1 − bx2 − x3 − x21 + u vð Þ,
y = x1,

ð1Þ

where x1, x2, x3 are the system states, y ∈ R is the output,
and a, b are unknown parameters; v ∈ R is the control
input. uðvÞ ∈ R denotes the magnitude of the plant input,
which can be described by

u vð Þ = sat vð Þ =
sign vð ÞuM , vj j ≥ uM ,
v, vj j < uM:

(
ð2Þ

When there is no input and a, b > 0, the Arneodo sys-
tem (1) is unstable at the origin. And the Arneodo system
(1) undergoes chaotic behavior, when a = 7:5, b = 3:8.

The goal is to design adaptive tracking and synchroniza-
tion controller for the Arneodo system (1) such that the
closed loop system is globally stable; meanwhile, the tracking
error and synchronization error are adjustable by the
designed parameters.

3. Adaptive Tracking Control

In this section, an adaptive tracking controller is designed for
stabilizing the uncertain Arneodo system with input satura-
tion. Define the tracking error vectors as the following:

e1 = y1 − yr = x1 − yr ,
e2 = x2 − x2d ,
e3 = x3 − x3d ,

ð3Þ

where x = ½x1, x2, x3�′ ∈ R3 are the Arneodo system states, yr
is the reference trajectory, and the three-order derivative of
yr exists. x2d , x3d are the visual controllers in the following
backstepping design.

Remark 1. The three-order derivative of yr means yr , _yr , €yr is
bounded in a compact set.

To compensate the effect of the saturation, the auxiliary
signals λ ∈ R3 are generated by the following system:

_λ1 = λ2 − c1λ1,
_λ2 = λ3 − c2λ2,
_λ3 = −c3λ3 + Δu,

ð4Þ

where c1, c2, c3 are design parameters, Δu = uðvÞ − v.

Remark 2.When c1, c2, c3 > 0, the plant is BIBO, i.e., bounded
input bounded output stable. And the error Δu has no effect
on ei, because it is the input of the constructed system (4).

Then, the tracking error vectors (3) can be compensated
as follows:

z1 = e1 − λ1,
z2 = e2 − λ2,
z3 = e3 − λ3:

ð5Þ

The design scheme of the adaptive backstepping control
is given.

Step 1. Starting as derivative the compensated tracking error
(5), then we obtained

_z1 = x2 − _yr − λ2 + c1λ1 = z2 + x2d − _yr + c1λ1: ð6Þ
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Choose the following virtual control:

x2d = −c1 x1 − yrð Þ + _yr , ð7Þ

where c1 > 0 is a positive constant to be designed. A Lyapu-
nov function V1 is defined as

V1 =
1
2 z

2
1, ð8Þ

Combining with formula (7), the derivative of V1 along
(6) is given as

_V1 = −c1z
2
1 + z1z2: ð9Þ

Step 2. For z2 = x2 − x2d − λ2, we can design the virtual con-
trol law x3d as

x3d = −c2 x2 − x2dð Þ + _x2d − z1, ð10Þ

where c2 > 0 is a positive constant to be designed. With for-
mula (10), the derivative of z2 can be written as

_z2 = z3 − c2z2 − z1: ð11Þ

Then, the Lyapunov function can be chosen as

V2 =V1 +
1
2 z

2
2: ð12Þ

The derivative of V2 along (11) can be given as

_V2 = −c1z
2
1 − c2z

2
2 + z2z3: ð13Þ

Step 3. We can obtain the derivative of z3 as follows:

_z3 = ax1 − bx2 − x3 − x21 − _x3d + c3λ3 + v: ð14Þ

Then, the adaptive control law v can be designed as
follows:

v = −c3 x3 − x3dð Þ − z2 − âx1 + b̂x2 + x3 + x21 + _x3d , ð15Þ

where c3 > 0 is a positive constant to be designed and
â, b̂ are the estimate of a, b. Choose Lyapunov function
as

V3 =V2 +
1
2 z

2
3: ð16Þ

Combining with formula (15), the derivative of V3
along (14) is given as

_V3 = −c1z
2
1 − c2z

2
2 − c3z

2
3 + ~ax1z3 − ~bx2z3, ð17Þ

where ~a = a − â, ~b = b − b̂. The parameter update laws can be
designed as

_̂a = 1
Γa

x1z3,

_̂b = −
1
Γb

x2z3,
ð18Þ

where Γa, Γb are positive-designed parameters. We define the
Lyapunov function V as

V = V3 +
Γa

2 ~a2 + Γb

2
~b
2
: ð19Þ

Then, the derivative of V along with (18) is given as

_V = −c1z
2
1 − c2z

2
2 − c3z

2
3, ð20Þ

which is a negative definite function, and it manifests that V
is bounded. Thus, zi, i = 1, 2, 3, and â, b̂, ~a, ~b are bounded.
From Remark 1 and Remark 2, we have found that xi,, i = 1,
2, 3, are bounded. Therefore, the boundedness of x2d , x3d and
the control signal v can be obtained from (7), (10), and (15).
Thus, Δu = uðvÞ − v is also bounded. Therefore, all signals
in the closed loop system are bounded, which is stated in
the following theorem.

Theorem 3. For the uncertain chaotic system (1) with input
saturation, the control signal v (15) can ensure the bounded-
ness of all signals and the following statements:

y − yrk k2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γa~a 0ð Þ2 + Γb

~b 0ð Þ2
q

+ 1ffiffiffiffi
c0

p Δuk k: ð21Þ

Proof. From equation (20), we have the following inequation:

_V ≤ −2cminV , ð22Þ

where cmin = min ðc1, c2, τa, τbÞ, then we can have

z1k k22 = y − yr − λ1k k22 ≤ 2V ≤ 2V 0ð Þe−2cmint ≤ 2V 0ð Þ: ð23Þ

From the auxiliary system (4), we define the positive
Lyapunov function Vλ = 1/2∑3

i=1λ
2
i . Then, the derivative

of Vλ along the auxiliary system (4) is given as

_Vλ = −c1λ
2
1 + λ1λ2 − c2λ

2
2 + λ2λ3 − c3λ

3
3 + λ3Δu

≤ −〠
3

i=1
�ciλ

2
i + Δu2

≤ −c0 λk k2 + Δu2,

ð24Þ
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where �c1 = c1 − ð1/2Þ, �c2 = c2 − 1, �c3 = c3 − ð3/4Þ, c0 = min
1≤i≤3

�ci.

Integrating both sides of (24), we can obtain the fol-
lowing:

λ1k k22 ≤ λk k22 ≤
1
c0

Vλ 0ð Þ +
ð∞
0

Δuð Þ2dt
� �

: ð25Þ

By setting initial parameters λi = 0, e1ð0Þ = 0, i = 1, 2, 3,
combine formulas (23) and (25), we have

y − yrk k2 ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γa~a 0ð Þ2 + Γb

~b 0ð Þ2
q

+ 1ffiffiffiffi
c0

p Δuk k: ð26Þ

From Theorem 3, we can draw the following conclusions.

Remark 4. The initial estimate error and the designed
parameters determine the transient performance. The
smaller the initial estimate error, the better the transient
performance.

Remark 5. The bound of ky − yrk2 depends on the
bound of Δu, and increasing parameter c0 can improve
the system transient performance. If Δu⟶ 0 as t⟶∞,
λ1 ⟶ 0. Therefore, limt→∞½y − yr� = 0. It implies that no
input saturation as t⟶∞, perfect tracking is ensured.

Remark 6.When there exists a bounded external disturbance
jwðtÞj ≤D, where D is the upper bound. The chaotic system
(1) can be described as follows:

_x1 = x2,
_x2 = x3,
_x3 = ax1 − bx2 − x3 − x21 + u vð Þ +w tð Þ:

ð27Þ

Then, the adaptive control law (15) can be modified as
follows:

v = −c3 x3 − x3dð Þ − z2 − âx1 + b̂x2
+ x3 + x21 + _x3d −D sign z3ð Þ,

ð28Þ

where −D sign ðz3Þ is a robust term to handle the external
disturbance. As a result, the derivative of (19) along with
(18) is given as

_V ≤ −c1z
2
1 − c2z

2
2 − c3z

2
3: ð29Þ

4. Adaptive Synchronization

As the master system, we take the Arneodo dynamics
described by

_x1 = x2,
_x2 = x3,
_x3 = ax1 − bx2 − x3 − x21,

ð30Þ

where a, b are unknown parameters. As the slave system, we
consider the controlled Arneodo dynamics described by

_y1 = y2,
_y2 = y3,
_y3 = ay1 − by2 − y3 − y21 + u vð Þ,

ð31Þ

where v ∈ R is the control input. uðvÞ ∈ R denotes the
constrained input described in (2). Define the synchroni-
zation error as

ei = yi − xi, i = 1, 2, 3ð Þ: ð32Þ

Then, the error dynamics is obtained as

_e1 = e2,
_e2 = e3,
_e3 = ae1 − be2 − e3 − y1 + x1ð Þe1 + u vð Þ:

ð33Þ

Combining the auxiliary system (4), we can define the
compensatory synchronization error

e_1 = e1 − λ1,
e_2 = e2 − e2d − λ2,
e_3 = e3 − e3d − λ3,

ð34Þ

where e2d , e3d are the virtual controllers in the backstep-
ping design. The control design procedure is omitted in
here, which is similar to Section 3. The main results
can be described in the following theorem.

Theorem 7. The slave Arneodo system with unknown param-
eters (31) can synchronize with the master system by the fol-
lowing controller:

e2d = −c1e1,
e3d = −c2 e2 − e2dð Þ + _e2d − e_1,

v = −c3 e3 − e3dð Þ − e_2 + e3 + y1 + x1ð Þe1
+ _e3d − âe1 + b̂e2,

ð35Þ

where â, b̂ are estimates of the unknown parameters a, b and
the parameter update laws are given by

_̂a = 1
Γa

e_3e1,

_̂b = −
1
Γb

e_3e2:

ð36Þ

Proof. Similar with Section 3, we define the Lyapunov
function
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V = 1
2〠

3

i=1
e_
2
i +

Γa

2 ~a2 + Γb

2
~b
2
: ð37Þ

Differentiating V along the derivative of the compensa-
tory synchronization error system (34), we get

_V = −c1 e
_2

1 − c2 e
_2
2 − c3 e

_2
3, ð38Þ

which is a negative definite function. Hence, similar to the
analysis in Section 3, we can obtain that the slave Arneodo
system synchronizes with the master system.

Remark 8.When there exists a bounded external disturbance
jwðtÞj ≤D, where D is the upper bound. Then, the adaptive
control law v in equation (35) can be modified as follows:

v = −c3 e3 − e3dð Þ − e_2 + e3 + y1 + x1ð Þe1
+ _e3d − âe1 + b̂e2 −D sign e_3

� �
:

ð39Þ

As a result, the derivative of (37) along with (36) is
given as

_V ≤ −c1 e
_2
1 − c2 e

_2
2 − c3 e

_2
3: ð40Þ

5. Numerical Simulations

5.1. Tracking Control Example. We take the reference tra-
jectory as yr = sin ðtÞ, and the true parameters in the cha-
otic system are taken as a = 7:5, b = 3:8. We choose
Γa = Γb = 5 for the adaptive and update laws. Suppose that
the initial values of the estimated parameters are âð0Þ = 2
, b̂ð0Þ = 5. The parameters in the auxiliary system are set
as c1 = c2 = c3 = 5, and the initial states of the auxiliary sys-
tem are λ1ð0Þ = λ2ð0Þ = λ3ð0Þ = 0. The initial state of the
system (1) is selected as x1 = 3, x2 = 8, x3 = ‐1 and the con-
trol input is constrained by uM = 20. Figures 1–4 show
simulation results for the Arneodo system (1) with the
control law (15) and the parameter update law (18).
Figure 1 shows that the output of the Arneodo system
(1) can asymptotically converge to the reference trajectory.
Figure 2 shows the control law constrained by uM = 20.

From Figures 1 and 2, the proposed control can achieve
that the output of the Arneodo system (1) converge to the
reference trajectory with input saturation. The time response
of the parameter estimates â, b̂ is shown in Figure 3. The time
response of the parameter estimation errors ~a, ~b is displayed
in Figure 4.

When the external disturbance is assumed to be wðtÞ =
sin ðx1tÞ or a random noise less than 1, then the parameter
D can be designed as D = 1. The other parameters are
designed as above, and then, the simulation results are dis-
played in Figures 5–8.

From Figures 5–8, it can be concluded that whatever the
external disturbance is, as long as it has an upper bound, the
control method presented in this paper is applicable.

5.2. Synchronization Example. The initial parameters can
be selected as c1 = c2 = c3 = 1, Γa = Γb = 1, uM = 20, λ1ð0Þ =
λ2ð0Þ = λ3ð0Þ = 0, and the true parameters in the chaotic sys-
tem are taken as a = 7:5, b = 3:8.

The initial state of the system (30) is selected as x1 = 3,
x2 = 8, x3 = ‐1, and the initial state of the system (31) is
selected as x1 = 1, x2 = 3, x3 = 2. The external disturbance is
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assumed to be wðtÞ = sin ðx1tÞ. From Figures 9 and 10, we
can see that the slave system and the master system achieve
the synchronization by the proposed method even with the
outside disturbance, although there exist input saturation
and uncertain parameters. Figure 11 shows the adaptive
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â
, b̂
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ã
, b̃

Time (sec)
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estimation of parameters a, b. The control law constrained by
uM = 20 is shown in Figure 12.

6. Conclusions

In this paper, we developed adaptive tracking and synchroni-
zation control design method for the Arneodo chaotic system
with input saturation and unknown parameters. To handle
the effect caused by the input saturation, an auxiliary system
has been constructed to compensate the tracking error and
synchronization error. Then, an adaptive tracking control
and adaptive synchronization control were proposed based
on backstepping. To handle the external disturbance, a
robust term is added to the control. The main results derived
in this paper were proved via the Lyapunov theorem analysis.
Simulation results demonstrate that the tracking and syn-

chronization were achieved with the proposed adaptive
tracking controller and synchronization controller; mean-
while, the uncertain parameters converge to their actual
values.

Data Availability

The simulation of this paper does not require other data.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the Natural Science
Foundation of Shandong Province, China (Grant No.
Zr2019mf065).

References

[1] M.-C. Pai, “Chaos control of uncertain time-delay chaotic sys-
tems with input dead-zone nonlinearity,” Complexity, vol. 21,
no. 3, pp. 13–20, 2016.

[2] J. Wen and C.-S. Jiang, “Adaptive fuzzy control for a class of
chaotic systems with nonaffine inputs,” Communications in
Nonlinear Science and Numerical Simulation, vol. 16, no. 1,
pp. 475–492, 2011.

[3] X.-F. Li, Y.-D. Chu, A. Y. T. Leung, and H. Zhang, “Synchro-
nization of uncertain chaotic systems via complete-adaptive-
impulsive controls,” Chaos, Solitons & Fractals, vol. 100,
pp. 24–30, 2017.

[4] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic
systems,” Physical Review Letters, vol. 64, no. 8, pp. 821–824,
1990.

[5] C.-H. Cheng, Y.-A. Hu, J.-H. Wu, and Z.-C. Xiao, “Output
track control of chaotic system with uncertainty and non-
affine inputs,” Transactions of Beijing Institute of Technology,
vol. 34, no. 4, pp. 386–391, 2014.

[6] C. CHENG and H. U. Y. A.WU, “Track control of system with
uncertainty and non-affine inputs,” Systems Engineering and
Electronics, vol. 36, no. 2, pp. 354–360, 2014.

0 2 4 6 8 10 12 14 16 18 20
–5

0

5

0 2 4 6 8 10 12 14 16 18 20
–5

0

5

Sy
nc

hr
on

iz
at

io
n 

er
ro

r

0 2 4 6 8 10 12 14 16 18 20
–20

0
20

Time (sec)

e3 no w
e3 when w

e2 no w
e2 when w

e1 no w
e1 when w

Figure 10: Synchronization error of states.

0 2 4 6 8 10 12 14 16 18 20–10

–5

0

5

10

15

Time (sec)

â
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