
Research Article
The Existence of Normalized Solutions for a Nonlocal
Problem in ℝ3

Jing Yang

School of Science, Jiangsu University of Science and Technology, Zhenjiang, China

Correspondence should be addressed to Jing Yang; yyangecho@163.com

Received 8 November 2019; Accepted 22 January 2020; Published 5 February 2020

Academic Editor: Dimitrios Tsimpis

Copyright © 2020 Jing Yang. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we study the following fractional Schrödinger equation in ℝ3ð−ΔÞσu − λu = jujp−2u, in ℝ3 with σ ∈ ð0, 1Þ, λ ∈ℝ and
p ∈ ð2 + σ, 2 + ð4/3ÞσÞ. By using the constrained variational method, we show the existence of solutions with prescribed L2 norm for
this problem.

1. Introduction

This paper concerns with the following fractional Schrödin-
ger problem:

−Δð Þσu − λu = uj jp−2u, inℝ3, ð1Þ

where σ ∈ ð0, 1Þ, p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, and λ ∈ℝ. Here, the
fractional Laplacian ð−ΔÞσ in ℝn is defined by

−Δð Þσu = Cn,σPV
ð
ℝn

u xð Þ − u yð Þ
x − yj jn+2σ dy, ð2Þ

where PV stands for the Cauchy principal value and Cn,σ is a
normalization constant.

In the present paper, the motivation for studying
such equations comes from mathematical physics: search-
ing for the form of standing wave ψ = e−ihtu of the evolution
equation

i
∂ψ
∂t

+ −Δð Þσψ + λ − hð Þψ = ψj jp−2ψ inℝ+ ×ℝ3 ð3Þ

leads to looking for solutions of (1). Here, i is the imaginary
unit and h ∈ℝ. This class of Schrödinger-type equations
is of particular interest in fractional quantum mechanics
for the study of particles on stochastic fields modelled by
Lévy processes. A path integral over the Lévy flight paths

and a fractional Schrödinger equation of fractional quantum
mechanics are formulated by Laskin [1, 2] from the idea of
Feynman and Hibbs’s path integrals.

On the other hand, problem (1) has attracted consider-
able attention in the recent period. Part of the motivation is
to consider h ∈ℝ as a fixed parameter and then to search
for a solution u ∈Hσðℝ3Þ solving (1). In this direction,
mainly by variational methods, many researches have been
devoted to the study of the existence, multiplicity, unique-
ness, regularity, and asymptotic decay properties of the
solutions to fractional Schrödinger equation (1). For this
information, we can refer to [3–11] and the references
therein. Besides, some more complicated fractional equations
and systems were also studied, and indeed, some interesting
results were obtained. Nearly, Mingqi et al. [12] investigated
a critical Schrödinger-Kirchhoff type systems driven by non-
local integrodifferential operators and by applying the moun-
tain pass theorem and Ekeland’s variational principle; the
authors obtained the existence and asymptotic behavior of
solutions for this system under some suitable assumptions.
Later, in [13], the same authors as in [12] studied a diffusion
model of Kirchhoff-type. Under some appropriate condi-
tions, by employing the Galerkin method, the local existence
of nonnegative solutions was obtained, and then by virtue of
a differential inequality technique, they proved that the local
nonnegative solutions blow up in finite time with arbitrary
negative initial energy and suitable initial values. Moreover,
in [14], Mingqi et al. concerned with a class of fractional
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Kirchhoff-type problems with the Trudinger-Moser nonline-
arity. By applying minimax techniques combined with the
fractional the Trudinger-Moser inequality, they found the
existence of a ground state solution with positive energy
and the existence of nonnegative solutions with negative
energy by using Ekeland’s variational principle. In [15], the
three authors considered a fractional Choquard-Kirchhoff-
type problem involving an external magnetic potential and
a critical nonlinearity and established a fractional version of
the concentration-compactness principle with magnetic
field, and then together with the mountain pass theorem,
they verified the existence of nontrivial radial solutions in
nondegenerate and degenerate cases. Furthermore, Mingqi
et al. [16] concerned the Schrödinger-Kirchhoff-type prob-
lems involving the fractional p-Laplacian and critical expo-
nent. By using the concentration-compactness principle in
fractional Sobolev spaces, they showed the existence of m
pairs of solutions for anym ∈ℕ, and by applying Krasnosels-
kii’s genus theory, they also got the existence of infinitely
many solutions under some suitable conditions for the
parameter. For more information on this direction, one can
refer to [17–24] and the references therein.

In the present paper, inspired by the fact that physi-
cists are often interested in normalized solutions, we look
for solutions in Hσðℝ3Þ having a prescribed L2 norm to
equation (1). Such types of problems were studied exten-
sively in recent years for the classical Schrödinger equa-
tions with the standard Laplacian operator. We refer
the interested reader to [25–31] and to the references
therein. But up to our knowledge, not much is obtained
for the existence of normalized solutions of equation (1) in
Hσðℝ3Þwith a fractional Laplacian operator. So, in this paper,
the aim is to get the normalized solutions of equation (1).
Here, we give the definition of prescribed ρ-L2 norm solu-
tions. For fixed ρ > 0, if uρ ∈Hσðℝ3Þ is a solution of problem
(1) such that

uρ
�� ��

2 ≔
ð
ℝ3

uρ
�� ��2� �1/2

= ρ, ð4Þ

we call it a prescribed ρ-L2 norm solution. Naturally, a
prescribed ρ-L2 norm solution uρ ∈Hσℝ of (1) can be a
constrained critical point of the functional

I uð Þ = 1
2

ð
ℝ3

−Δð Þσ/2u�� ��2�
−
1
p

ð
ℝ3

uj jp, ð5Þ

on the L2 sphere Bρ in Hσðℝ3Þ, where

Bρ = u ∈Hσ ℝ3� �
: uk k2 = ρ, ρ > 0

	 

: ð6Þ

Note that for any p ∈ ð2, 6/ð3 − 2σÞÞ, IðuÞ is a well-defined
and C1 functional. Set

mρ = inf
Bρ

I uð Þ: ð7Þ

It is standard that if uρ is a minimizer of (7), then uρ is a
solution of (1) with prescribed ρ-L2 norm with the constraint
λρ ∈ℝ being the Lagrange multiplier. However, it is worth
mentioning that dealing with this kind of problem, one has
to face the main difficulty concerning with the lack of com-
pactness of the minimizing sequence fung ⊂ Bρ. In fact, we
will encounter two possible bad scenarios that un ⇀ 0 and
un ⇀ �u ≠ 0 with 0 < k�uk2 < ρ. In order to avoid the possible
cases and to get that the infimum is obtained, we prove
an important lemma (Lemma 6) that guarantees the com-
pactness of minimizing sequence. As a consequence of this
lemma, setting

ρ∗1 = inf ρ > 0 : mρ < 0
	 


,

ρ∗2 = inf ρ > 0 : ∃u ∈ Bρ such that I uð Þ ≤ 0
	 


,
ð8Þ

we can get our main result as follows:

Theorem 1. If p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, then mρ has a mini-
mizer if and only if ρ ∈ ½ρ∗1 ,+∞�.

In particular, there is a prescribed ρ-L2 norm solution
uρ ∈Hσðℝ3Þ of (1) with the constraint λρ ∈ℝ. But, when
p = 2 + ð4/3Þσ, mρ has no minimizer for any ρ ∈ ðρ∗2 ,+∞Þ.

Remark 2. In fact, for any ρ > 0, we can infer that mρ ≤ 0.
To see this, letting u ∈ Bθ−1ρ be arbitrary and considering

uθðyÞ = θ5/2uðθyÞ for any θ > 0, we find uθ ∈ Bρ and

I uθ
� �

= 1
2 θ

2+2σ
ð
ℝ3

−Δð Þσ/2u�� ��2 − 1
p
θ 5/2ð Þp−3

ð
ℝ3

uj jp: ð9Þ

Hence, IðuθÞ⟶ 0 as θ⟶ 0 and the conclusion is as
follows:

Finally, we give the following notations which can be
used in this paper:

(i) Hσðℝ3Þ is the usual Sobolev space endowed with the
standard norm

uk k2Hσ =
ð
ℝ3

−Δð Þσ/2u�� ��2 + u2
� �

ð10Þ

(ii) Denote kuk2σ ≔
Ð
ℝ3 jð−ΔÞσ/2uj2

(iii) kukq is the norm of the Lebesgue space Lqðℝ3Þ for
1 < q<∞

(iv) Denote C > 0 by various positive constants which
may vary from one line to another and which are
not important for the analysis of the problem

This paper is organized as follows: In Section 2, we will
give some preliminary results which are crucial to prove
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our main result. And then the proof of our main result is
given in Section 3.

2. Preliminaries

In this part, we give some important results. First, similar to
the classical Gagliardo-Nirenberg inequality to the Laplacian
operator, we introduce the fractional version of Gagliardo-
Nirenberg inequality as follows:

Lemma 3 (see [32]). Let 1 ≤ q, p2 <∞,0 < α < q<∞, 0 < σ < n,
and 1 < p1 < ðn/σÞ. We have

uk kLq ℝnð Þ ≤ Cα/q
0 −Δð Þσ/2u�� ��α/q

Lp1 Rnð Þ uk k q−αð Þ/q
Lp2 ℝnð Þ, ð11Þ

with αðð1/p1Þ − ðσ/nÞÞ + ððq − αÞ/p2Þ = 1and

C0 = 2−σπ−σ/2 Γ n − σð Þ/2ð Þ
Γ n + σð Þ/2ð Þ

Γ nð Þ
Γ n/2ð Þ

� �σ/n
: ð12Þ

In particular, when n = 3, one has

uk kq ≤ Cϑ
0 −Δð Þσ/2u�� ��ϑ

2
uk k1−ϑ2 , ð13Þ

with ϑ = ð3ðq − 2ÞÞ/2qσ.

In [33], the authors have established the Pohozaev iden-
tity for the fractional Laplacian operator.

Applying the Pohozaev identity, we have the following:

Lemma 4. If u∗ is a critical point of IðuÞ on Bρ, then ηðu∗Þ = 0,
where

η uð Þ = 2σ
ð
ℝ3

−Δð Þσ/2u�� ��2 − 3 p − 2ð Þ
p

ð
ℝ3

uj jp: ð14Þ

Proof. Define the functional energy corresponding to (1) as

Fλ uð Þ≔ 1
2

ð
ℝ3

−Δð Þσ/2u�� ��2 − λ

2

� ð
ℝ3

uj j2 − 1
p

ð
ℝ3

uj jp: ð15Þ

Then any critical point u of FλðuÞ satisfies the Pohozaev
identity for (1) (see [33]), that is,

Dλ uð Þ≔ 3 − 2σð Þ
ð
ℝ3

−Δð Þσ/2u�� ��2 − 3λ
� ð

ℝ3
uj j2 − 6

p

ð
ℝ3

uj jp = 0:

ð16Þ

On the other hand, if u is a critical point of IðuÞ restricted
to Bρ, there is a Lagrange multiplier λ∗ ∈ℝ such that

I ′ u∗ð Þ = λ∗u∗: ð17Þ

So, for any ψ ∈Hσðℝ3Þ, we have

Fλ∗ u∗ð Þ, ψh i = I ′ u∗ð Þ − λ∗u∗, ψ
D E

= 0: ð18Þ

Furthermore, if we now know that

Aλ uð Þ≔ Fλ uð Þ, uh i =
ð
ℝ3

−Δð Þσ/2u�� ��2 −�
λ
ð
ℝ3

uj j2 −
ð
ℝ3

uj jp,

ð19Þ

by (18), we find Aλ∗ðu∗Þ = 0. As a result,

η u∗ð Þ = 3Aλ∗ uð Þ −Dλ∗ uð Þð Þ u=u∗ = 0:j ð20Þ

Using Lemma 3, the estimate (13) leads to the follow-
ing fact:

Lemma 5. If p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, then for any ρ > 0, func-
tional I is bounded from below and coercive on Bρ.

Proof. If kuk2 = ρ, from Lemma 3, we have

uk kp ≤ C uk k 3 p−2ð Þð Þ/2pσ
σ : ð21Þ

So,

I uð Þ = 1
2

ð
ℝ3

−Δð Þσ/2u�� ��2 − 1
p

ð
ℝ3

uj jp ≥ 1
2 uk k2σ − C uk k 3 p−2ð Þð Þ/2σ

σ :

ð22Þ

Since p < 2 + ð4/3Þσ and ðð3ðp − 2ÞÞ/2σÞ < 2, our result
follows.

From the above Lemma, we can prove that

Lemma 6. If p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, then

(i) there exists ρ1 > 0 such that for all ρ ∈ ðρ1,∞Þ,mρ < 0

(ii) for any ρ > 0 such that mρ < 0, mρ admits a
minimizer

(iii) the functional ρ↦mρ is continuous about each ρ > 0

Proof.

(i) Letting uβðyÞ = β1−ð3/2Þθuðβ−θyÞ such that kuβk2 = β
kuk2 with β, θ ∈ℝ, we see

ð
ℝ3

−Δð Þσ/2uβ
��� ���2 = β2−2σθ

ð
ℝ3

−Δð Þσ/2u�� ��2,
ð
ℝ3

uβ
��� ���p = βp 1− 3/2ð Þθð Þ+3θ

ð
ℝ3

uj jp:
ð23Þ

If we take θ = −2, one has

I uβ
� �

= 1
2β

2 1+2σð Þ
ð
ℝ3

−Δð Þσ/2u�� ��2 − 1
p
β4p−6

ð
ℝ3

uj jp: ð24Þ
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Since p > 2 + σ and 4p − 6 > 2 + 4σ, for β is large enough,
we get IðuβÞ < 0 and then (i) has been proved.

(ii) We will divide it into three steps to show (ii).

Step 1. We claim that for any 0 < ν < ρ, mρ <mν +
m ffiffiffiffiffiffiffiffiffi

ρ2−v2
p . To see this, let fung be a minimizing sequence on

Bρ for mρ. Since mρ < 0, from (22), we can get

0 < C1 < unk k2σ < C2,
0 < C3 < unk kpp < C4:

ð25Þ

On the other hand, applying (24), we obtain that for
θ = −2,

I uβn
� �

= 1
2β

2 1+2σð Þ
ð
ℝ3

−Δð Þσ/2un
�� ��2 − 1

p
β4p−6

ð
ℝ3

unj jp

= β2 I unð Þ + f β, unð Þð Þ,
ð26Þ

where

f β, unð Þ = 1
2 β4σ − 1
� �ð

ℝ3
−Δð Þσ/2un

�� ��2 − 1
p

β4p−8 − 1
� �ð

ℝ3
unj jp,

ð27Þ

with 4p − 8 > 4σ. Moreover, using IðunÞ < 0, we can
deduce that

df β, unð Þ
dβ β=1

�� �� = 2σ
ð
ℝ3

−Δð Þσ/2un
�� ��2 − 1

p
4p − 8ð Þ < 0, ð28Þ

and for all β > 1,

d2 f β, unð Þ
dβ2 = 2σ 4σ − 1ð Þβ4σ−2

ð
ℝ3

−Δð Þσ/2un
�� ��2

−
1
p

4p − 8ð Þ 4p − 9ð Þβ4p−10
ð
ℝ3

unj jp < 0:
ð29Þ

Thus, combining (28) and (29), for all β > 1, we find
f ðβ, unÞ < 0 and from (26),

mβρ < β2mρ: ð30Þ

As a result, if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − ν2

p
< ν < ρ,

mρ =m ρ/νð Þν <
ρ2

ν2
mν =

ρ2 − ν2 + ν2

ν2
mν

= ρ2 − ν2

ν2
m

ν/
ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p� � ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p +mν <m ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p +mν,

ð31Þ

and if ν <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − ν2

p
< ρ,

mρ =m
ρ/

ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p� � ffiffiffiffiffiffiffi
ρ2−ν2

p < ρ2

ρ2 − ν2
m ffiffiffiffiffiffiffiffiffi

ρ2−ν2
p

= ρ2 − ν2 + ν2

ρ2 − ν2
m ffiffiffiffiffiffiffiffiffi

ρ2−ν2
p =m ffiffiffiffiffiffiffiffiffi

ρ2−ν2
p

+
ν2

ρ2 − ν2
m

ν
ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p
/ν

� �
<m ffiffiffiffiffiffiffiffiffi

ρ2−ν2
p +mν:

ð32Þ

It follows from (31) and (32) that the claim holds.
Step 2. We will show that all the minimizing sequences

fung for mρ have a weak limit, up to translations, different
from zero. Let fung be a minimizing sequence on Bρ for

mρ. Note that for any sequence fyng ⊂ℝ3, unð⋅ +ynÞ is still
a minimizing sequence for mρ. So the proof of this step
can be finished if we can prove the existence of a sequence
fyng ⊂ℝ3 such that the weak limit of unð⋅ +ynÞ is different
from zero.

Applying Lion’s lemma, we know that if

lim
n→∞

sup
x∈ℝ3

ð
B x,1ð Þ

unj j2dy = 0, ð33Þ

then un ⟶ 0 in Lqðℝ3Þ for any q ∈ ð2, 6/ð3 − 2σÞÞ,
where Bða, rÞ = fx ∈ℝ3 : jx − aj ≤ rg. Since mρ < 0, we
see that ð

B 0,1ð Þ
un ⋅ +ynð Þj j2dy ≥ δ > 0: ð34Þ

Therefore, it follows the compactness of the embedding
HσðBð0, 1ÞÞ↪L2ðBð0, 1ÞÞ that the weak limit of the sequence
unð⋅ +ynÞ is not the trivial function.

Step 3. Finally, we verify that mρ has a minimizer for
mρ < 0. Suppose fung to be a minimizing sequence on
Bρ for mρ with mρ < 0. Then by Lemma 5, fung is

bounded in Hσðℝ3Þ and Lqðℝ3Þ for any q ∈ ½2, 6/ð3 − 2σÞ�.
So there exists �u ∈Hσðℝ3Þ such that un ⇀ �u in Hσðℝ3Þ and
then we can get

1
2

ð
ℝ3

−Δð Þσ/2un
�� ��2 − 1

p

ð
ℝ3

unj jp =mρ + o 1ð Þ, ð35Þ

1
2

ð
ℝ3

−Δð Þσ/2 un − �uð Þ�� ��2 − 1
p

ð
ℝ3

un − �uj jp + 1
2

ð
ℝ3

−Δð Þσ/2�u�� ��2
−
1
p

ð
ℝ3

�uj jp =mρ + o 1ð Þ:

ð36Þ
If we set ν≔ k�uk2 and ϵn ≔ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 − v2
p Þ/kun − �uk2,

then by the Step 2, 0 < ν ≤ ρ. Now, we want to prove that
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ν = ρ. To see this, we assume that 0 < ν < ρ. From (36),
we find

1
2 ϵn un − �uð Þk k2σ −

1
p

ϵn un − �uð Þk kpp + I �uð Þ =mρ + o 1ð Þ,

ð37Þ

since ϵn ⟶ 1. Noting that kϵnðun − �uÞk2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 − ν2

p
, (37)

tells that

m ffiffiffiffiffiffiffiffiffi
ρ2−ν2

p +mν ≤mρ + o 1ð Þ, ð38Þ

which contradicts to (31) and (32) and then ν = ρ.
Since �u ∈ Bρ, we have kun − �uk2 = oð1Þ. Hence, if we

would verify that un ⟶ �u inHσðℝ3Þ, it remains to show that
kun − �uk2σ = oð1Þ up to a subsequence. First, by assumption,
there is fλng ⊂ℝ such that

I ′ unð Þ − λnun, ψ
D E

= o 1ð Þ, ∀ψ ∈Hσ ℝ3� �
: ð39Þ

So,

I ′ unð Þ − λnun, un
D E

= o 1ð Þ, ð40Þ

which implies fλng is bounded and up to a subsequence;
there exists λ ∈ℝ with λn ⟶ λ.

On the other hand, we find n,m⟶∞,

I ′ unð Þ − I ′ umð Þ − λnun + λmum, un − um
D E

= o 1ð Þ,
λn − λmð Þ um, un − umh i = o 1ð Þ:

ð41Þ

Hence,

un − umk k2σ −
ð
ℝ3

unj jp−2un − umj jp−2um
� �

un − umð Þ − λn unk
− umk22 = o 1ð Þ:

ð42Þ

Notice that by the interpolation inequality, we get

un − umk kp ≤ C un − umk kγ2 un − umk k1−γσ , ð43Þ

with ðγ/2Þ + ðð1 − γÞ/2∗σÞ = 1/p and 2∗σ = 6/ð3 − 2σÞ, and then

un − umk kp = o 1ð Þ: ð44Þ

As a result,

ð
ℝ3

unj jp−2un umj jp−2um
� �

un − umð Þ
����

����
≤

ð
ℝ3

unj jp
� � p−1ð Þ/p

+
ð
ℝ3

umj jp
� � p−1ð Þ/p" #

� un − umk kp = o 1ð Þ:

ð45Þ

Using kun − umk2 = oð1Þ, λn ⟶ λ, (42) and (45), one
can get that fung is a Cauchy sequence in Hσðℝ3Þ and hence
kun − �ukHσðℝ3Þ ⟶ 0 as n⟶∞.

(iii) Now, we come to prove that if ρn ⟶ ρ, then lim
n→∞

mρn
=mρ. For any n ∈ℕ+, let wn ∈ Bρn

such that
IðwnÞ <mρn

+ ð1/nÞ. Using Lemma 5, we deduce

that fwng is bounded in Hσðℝ3Þ and then kwnkσ
and kwnkp are bounded. So it is easy to find that

mρ ≤ I
ρ

ρn
wn

� �
= 1
2

ρ

ρn

� �2
wnk k2σ −

1
p

ρ

ρn

� �p

wnk kpp
= I wnð Þ + o Ið Þ <mρn

+ o 1ð Þ:
ð46Þ

On the other hand, letting fvng ⊂ Bρ be a minimizing
sequence for mρ, we have

mρn
≤ I

ρn
ρ
vn

� �
= I vnð Þ + o 1ð Þ =mρ + o 1ð Þ: ð47Þ

Hence, from (46) and (47), lim
n→∞

Iρn =mρ follows.

3. Proof of the Main Result

To prove our main theorem, we first give the following
important results:

Lemma 7. When p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, there exists ρ3 > 0
such that mρ has no minimizer for all ρ ∈ ð0, ρ3Þ.

Proof. We prove it by contradiction and suppose that there
exist fρng ⊂ℝ+ with ρn ⟶ 0+ as n⟶∞ and fung ⊂ Bρn
such that IðunÞ =mρn

.

Since for any ρ > 0, mρ ≤ 0, we have mρn
≤ 0 and then by

Lemma 3,

1
2 unk k2σ ≤

1
p

unk kpp ≤ C unk k 3 p−2ð Þð Þ/2σ
σ ρp 1−ϑð Þ

n , ð48Þ

with ϑ = ð3ðp − 2ÞÞ/2pσ. Due to p < 2 + ð4/3Þσ and ð3ðp − 2ÞÞ/
ð2σ < 2Þ, (48) tells us that

unk kσ ⟶ 0 as n⟶∞: ð49Þ
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So, from (48) and Lemma 4, we infer that

η unð Þ = 2σ unk k2σ −
3 p − 2ð Þ

p
unk kpp

≥ 2σ unk k2σ − C unk k 3 p−2ð Þð Þ/2σ
σ ρp 1−ϑð Þ

n > 0,
ð50Þ

which is impossible since ηðunÞ = 0 from Lemma 4.
Recall that

ρ∗1 = inf ρ > 0 : mp < 0
	 


,

ρ∗2 = inf ρ > 0 : ∃u ∈ Bρ such that I uð Þ ≤ 0
	 


:
ð51Þ

We have

Lemma 8. If p = 2 + ð4/2Þσ, then p∗2 ∈ ð0,+∞Þ.

Proof. First, it follows from Lemma 3 that for any u ∈ Bρ, if
p = 2 + ð4/3Þσ

uk kpp ≤ C uk k2σρ2: ð52Þ

So,

I uð Þ ≥ 1
2 uk k2σ −

C
p

uj k2σρ2: ð53Þ

Thus, IðuÞ > 0 for any u ∈ Bρ with ρ > 0 small enough and
then ρ∗2 > 0 follows.

On the other hand, taking u1 ∈ B1, then uθðyÞ = θð5/2Þ

u1ðθyÞ ∈ Bθ for all θ > 0 and

I uθ
� �

= 1
2 θ

2+2σ u1k k2σ −
1
p
θ 5/2ð Þp−3 u1k kpp: ð54Þ

This implies that if θ > 0 is large enough, IðuθÞ < 0 and
our result has been proved.

Lemma 9. When p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, we have the
following:

(i) ρ∗1 ∈ ð0,∞Þ
(ii) mp = 0 if ρ ∈ ð0, ρ∗1 Þ
(iii) mρ < 0 and is strictly decreasing about ρ if

ρ ∈ ðρ∗1 ,+∞Þ
(iv) Moreover, when p = 2 + ð4/3Þσ, then ρ∗2 ∈ ð0,∞Þ and

mρ = 0 as ρ ∈ ð0, ρ∗2 Þ and mρ = −∞ if ρ ∈ ðρ∗2 ,+∞Þ

Proof.

(i) We prove it by contradiction. Suppose that ρ∗1 = 0,
and then from the definition of ρ∗1 , for any ρ > 0,
we can get mρ < 0. Hence, it follows from Lemma 6
(ii) that mρ has a minimizer for any ρ > 0. But this

gives a contradiction with Lemma 7. On the other
hand, using Lemma 6 (i), we can infer that ρ∗1 <∞
and so (i) follows.

(ii) First, from the definition of ρ∗1 and mρ ≤ 0 for any
ρ > 0, we know that mρ = 0 for ρ ∈ ð0, ρ∗1 Þ. Further-
more, using the continuity of ρ⟶mρ (see Lemma
6 (iii)), we have mρ∗1

= 0 and (ii) is proved.

(iii) By the definition of ρ∗1 , we have mρ < 0 for
ρ ∈ ðρ∗1 ,+∞Þ. So, by Lemma 6 (ii),mρ admits a min-

imizer uρ ∈ Bρ. Setting with uθρ = θð5/2ÞuρðθyÞ ∈mθρ

with θ > 1, we can find that

mθρ ≤ I uθρ
� �

= 1
2 θ

2+2σ uρ
�� ��2

σ
−
1
p
θ 5/2ð Þp−3 uρ

�� ��p
p

= θ2+2σ
1
2 uρ
�� ��2

σ
−
1
p
θ 5/2ð Þp−5−2σ uρ

�� ��p
p

� �

< θ2+2σ
1
2 uρ
�� ��2

σ
−
1
p

uρ
�� ��p

p

� �
= θ2+2σI uρ

� �
,

ð55Þ

which implies thatmθρ < θmρ <mρ sincemρ < 0 and
θ > 1. This tells that (iii) holds.

(iv) It follows from Lemma 8 that ρ∗2 ∈ ð0,+∞Þ. On the
other hand, from the definition of ρ∗2 , it is direct to
see that mρ = 0 for ρ ∈ ð0, ρ∗2 Þ. Now, it remains to
show that mρ = −∞ if ρ ∈ ðρ∗2 ,+∞Þ. Here, we claim
that for any ρ ∈ ðρ∗2 ,+∞Þ, there exists u∗ ∈ Bρ such
that Iðu∗Þ ≤ 0. In fact, suppose that IðuÞ > 0 for all
ρ ∈ ðρ∗2 ,+∞Þ. Then for an arbitrary �ρ ∈ ½ρ∗2 , ρÞ,
taking �v ∈ B�ρ and �vθ = θð5/2Þ�vðθyÞ for θ = ρ/�ρ, we find
�vθ ∈ Bρ and from (55),

0 < I �vθð Þ < θ2+2σI �vð Þ, ð56Þ

which tells that Ið�vÞ > 0 for �v ∈ B�ρ. This contradicts
the definition of ρ∗2 since �ρ ∈ ½ρ∗2 , ρÞ and so the
claim holds.

Now we consider another scaling u∗θ = θð3/2Þu∗ðθyÞ for all
θ > 0. Then u∗θ ∈ Bρ and

I u∗θð Þ = 1
2 θ

2σ u∗k k2σ −
1
p
θ 3/2ð Þp−3 u∗k kpp: ð57Þ

This yields Iðu∗θ Þ⟶ −∞ as θ⟶ +∞, and we get
our result.

Proof of Theorem 1.We will divide it into three steps to prove
Theorem 1.

Step 1. First, we prove that if p ∈ ð2 + σ, 2 + ð4/3ÞσÞ, mρ∗1
has a minimizer. Set ℓn = ρ∗1 + ð1/nÞ for all n ∈ℕ+. Then
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ℓn ⟶ ρ∗1 and using Lemmas 6 (iii) and 9 (ii), we find
mℓn ⟶mρ∗1

= 0.
So applying Lemmas 9 (iii) and 6 (ii), mℓn

< 0 and mℓn
have a minimizer, denoted by vn. By Lemma 5, fvng is
bounded in Hσðℝ3Þ.

Now, we claim that jjvnjjp↛0 as n⟶∞. Suppose that
jjvnjjp ⟶ 0 as n⟶∞ by contradiction. Since IðvnÞ < 0,
similar to (49) and (48), we find

vnk kσ ⟶ 0, ð58Þ

I vnð Þ ≥ 1
2 vnk k2σ −

C
p

vnk k 3 p−2ð Þð Þ/2σ
σ ℓp 1−ϑð Þ

n , ð59Þ

with ϑ = ð3ðp − 2ÞÞ/2pσ, which, combining (58), implies
that IðvnÞ ≥ 0 for n is large enough. This contradicts
IðvnÞ =mℓn

< 0, and then the claim holds.
With the same argument as the proof of (34), there exists

δ > 0 and a sequence fyng ⊂ℝ3 such that

ð
B 0,1ð Þ

vn ⋅ +ynð Þj j2dy ≥ δ > 0: ð60Þ

Letting �vn = vnð⋅ +ynÞ, then �vn is bounded in Hσðℝ3Þ and
there exists v0 ∈Hσðℝ3Þ such that �vn ⇀ v0 inHσðℝ3Þ, and
�vn ⟶ v0 in L2locðℝ3Þ.

Thus, by (60), we can check that v0 ≠ 0. Finally, we come
to show v0 is a minimizer of mρ∗1

. First, we have

lim
n→∞

�vnk k2 = v0k k2 + lim
n→∞

�vn − v0k k2 = ρ∗1 , ð61Þ

and then by Lemma 6 (iii) and 9 (ii),

lim
n→∞

I �vn − v0ð Þ ≥ lim
n→∞

m �vn−v0k k2 =mρ∗1 v0k k2 = 0: ð62Þ

On the other hand, from Lemma 9 (ii), we have
kv0k2 ≤ ρ∗1 and mkv0k2 = 0 and then Iðv0Þ < 0 is impossible.
So by (61) and (62), we can get Iðv0Þ = 0 =mρ∗1

and v0 is a
minimizer of mkv0k2 = 0. Now if we assume that kv0k2 < ρ∗1 ,
using (55), one has

mρ∗1
=mρ∗1 / v0k k2 v0k k2 <

ρ∗1
v0k k2

m v0k k2 = 0: ð63Þ

This yields a contradiction with mρ∗1
= 0, and thus

kv0k2 = ρ∗1 .
Step 2. We will prove thatmρ has a minimizer if and only

if ρ ∈ ½ρ∗1 ,+∞Þ if p ∈ ð2 + σ, 2 + ð4/3ÞσÞ.
Suppose that there is ρ0 ∈ ð0, ρ∗1 Þ such that mρ0

has a
minimizer. Then from the definition of ρ∗1 and (55), we get
that mρ0

= 0 and mρ < 0 for any ρ > ρ0. This contradicts the
definition of ρ∗1 .

On the other hand, if ρ ∈ ðρ∗1 ,+∞Þ, using Lemmas 9 (iii)
and 6 (ii), mρ admits a minimizer.

Step 3. Finally, it follows from the definition of ηðuÞ that
for any u ∈ Bρ and if p = 2 + ð4/3Þσ,

I uð Þ − 1
3 p − 2ð Þ η uð Þ = 1

2 −
2σ

3 p − 2ð Þ
� �

−Δð Þσ/2u�� ��2
2: ð64Þ

Thus, if we assume that mρ has a minimizer uρ ∈ Bρ

for some ρ ∈ ðρ∗2 ,+∞Þ, then from (64) and Lemma 9 (iv),
we have

−∞ =mρ = I uρ
� �

= 0, ð65Þ

which completes the Proof of Theorem 1.
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