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In this paper, we discuss the existence of solutions for nonlinear fractional Langevin equations with nonseparated type integral
boundary conditions. The Banach fixed point theorem and Krasnoselskii fixed point theorem are applied to establish the results.
Some examples are provided for the illustration of the main work.

1. Introduction

Fractional derivatives give an excellent description of
memory and hereditary properties of different processes.
Properties of the fractional derivatives make the fractional-
order models more useful and practical than the classical
integral-order models.

Several researchers in the recent years have employed the
fractional calculus as a way of describing natural phenomena
in different fields such as physics, biology, finance, econom-
ics, and bioengineering (for more details see [1-9] and many
other references).

With the recent outstanding development in fractional
differential equations, the Langevin equation has been con-
sidered a part of fractional calculus, and thus, important
results have been elaborated (see [10-14]).

The Langevin equation was first introduced by Langevin
in 1908; it is a fundamental theory of the Brownian motion to
describe the evolution of physical phenomena in fluctuating
environments [15, 16]. The fractional model of the Langevin
equation as a generalization of the classical one gives a
fractional Gaussian process parametrized by two indices,
and this fractional model is more flexible for modeling fractal
processes [17, 18].

The fractional Langevin equation is extensively studied in
the literature from both the theoretical and numerical point
of views (for more details see [19-25]). In [26], the authors
studied a nonlinear Langevin equation involving two frac-

tional orders in different intervals. In [27], the authors dis-
cussed the existence theory for a nonlinear Langevin
equations with nonlocal multipoint and multistrip boundary
conditions. In [28], fractional Langevin equations with non-
local integral boundary conditions have been investigated
by Salem et al. In [14], an antiperiodic boundary value prob-
lem for the Langevin equation involving two fractional
orders has been studied.

Recently, in [29], the authors discussed the nonlinear
fractional differential equations with nonseparated type
integral boundary conditions; however, the fractional Lan-
gevin equations involving nonseparated integral boundary
conditions have not been investigated yet; that is why, in
this work and motivated by all the works cited above, we
study the existence and uniqueness of the fractional Lange-
vin equations with nonseparated integral boundary condi-
tions as follows:

DP (CD® + N)x(t) = f (£ x(t), Px(t)), te0,1],

1

(0) +x(1) =0, | g(sx(9)ds,

! (1)
‘Dx(0) + u'Dx(1) = O'ZJ h(s, x(s))ds,
D*x(0) + uD**x(1) = 03J0k(s, x(s))ds,
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where 0<a <1, 1<f<2, p>0, A, y,0,,0,,0,€R* with
p#—1, and ‘DP,°D* are the Caputo fractional derivatives
and f:[0,1]]xRxR— R and g,k k:[0,1]]x R— R
are given continuous functions.

This paper is divided into four sections, in which the
second provides some notations and basic known results,
in the third section, we study the existence and uniqueness
of solutions to problem (1), and in the fourth section, we
give two examples to illustrate our results.

2. Preliminaries and Notations

In this section, we give some notation, definitions, and
lemma which are needed throughout this paper.

Definition 1 (see [5]). The fractional integral of order a >0
with the lower limit zero for a function f can be defined as

1

If(r) = WL“ — (s, @)

Definition 2 (see [5]). The Caputo derivative of order a >0
with the lower limit zero for a function f can be defined as

”D“fzﬁjt(t—s)”_a_lf(m(s)ds’ (3)

0

whereneIN,0<n-1<a<n,and t>0.

Theorem 3 (see [30]). Let M be a bounded, closed, convex,
and nonempty subset of a Banach space X. Let A and B be
operators such that

(I) Ax + By € M whenever x,y € M
(I) A is compact and continuous

(III) B is a contraction mapping

Then, there exists z € M such that z= Az + Bz.

Lemma 4 (see [5]). Let a, 3 = 0; then, the following relations
hold:

wp_ T(B+D) o
Itﬁ_mt A,

F(ﬁ+ 1) tﬁ—tx'

cDatﬁz
I'(B-—a+1)

Lemma 5 (see [5]). Let ne Nandn—1<a<n. If f is a con-
tinuous function, then, we have

IDf(t) = f(t) + &g + azt + ayt’+--+a, "' (5)
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Lemma 6. Let y € C([0, 1], R). Then, a unique solution of the
bondary value problem

DP (‘D" + N)x(t) =y(t), te[0,1],
I

x(0) + px(1) = olj g(s5(5))ds,

3 3 1 (6)
‘D*x(0) + u'Dx(1) = GZLh(s ;x(5))ds,
‘D*x(0) + uD**x(1) = 03J k(s x(s))ds

0

is given by

Ok(s s x(s))ds + r?g(-t)a ) J;u —5)P 1y (s)ds

L0 s b |

Jo (1

(1= Ty(s)ds,

(1- s)"Hx(s)ds

(7)

where

_t%0,(1-AT(2- 0))
C T(a+ D) (1+u)

2, I(2~a)
I'2+a)

Ay(t)

U 1
’ ((1 )T+ 1) (I+wl(a+ 2)) T2-a)la,

_ o,
(1+u)’T(a+1)

pAo,
(1+pf°T(a+1)

t*Ao o
A= o 1)(; n i Trp
t*T'(2-a)o;
Tla+ D(1+a)
I'2-a)o;
C(I+wl(a+2)

I (2-a)o,
I'(a+2)u

ul'(2-a)o,

As(r) = (1+u)’T(a+1)

t'T2-a)u  t*I(2-a)
Tla+)(1+y) T(a+2)

Ayt)= +I(2-a)

, ¢ - W
(I+wl(a+2) (1+p)°T(a+1) '

B tlxﬂ ~ HZ
As(t)_F(Oc+1)(1+[/l) (1+”)2F(0‘+1)' (8)
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Proof. By applying Lemma 5, we have

(D" + V)x(t) = IPy(t) + ay + ayt,
‘Dx(t) = IPy(t) + a0 + a,t — Ax(t),
x(t) = 1Py (t) + I%ay + [*a,t - [“Ax(t) + ay,
)

where ay, a;,a, € R.
Using the condition ‘D**x(0) + u‘D**x(1) =
(s))ds, we obtain

(73f(1)k(s;x

a,=T(2-a) (%{; k(s; x(s)ds + %J;h(s;x(s»ds (10)
__ 1 )J (1—5)/3_“}’(5)515)'

By conditions ‘D*x ( )+[45D“ (1)
and x(0) + px(1 1fo

= ozfé (s5x(s))ds

))ds, we have

—f2-aa JO k(s x(s))ds + (I—M;(ﬁ—%))az L h(s, x(s))ds

Aoy (! I'2-a)u ! a1
d +‘u.[0g(s, x(s))ds + WL (1-s)Fy(s)ds

“ ' -1
’<1+uﬂwﬁ»t(l’sf y)ds

%= 1+u

_ ur ! el o1 pAo,
= ggrar )y 1 "““”(w r<a+1><1+m2>

-1 s, x(s s—$1 — )P 1y (5)ds
|, ot 0t~ st | (-9 (o

u o
' (1+/")2F(,3)F(tx+1)J0(1 )P y(s)ds + 7

u W !
' ((1+y)F(oc+2) B (1+y)2F(a+1))Jo(l

r2-ao,

|t )
(1+u)?T(a+1) (1+u)(a+2) u

Ho, !
_ WW} JO h(s, x(s))ds.

— )Py (s)ds

(11)

Substituting the value of a,, a,, and a,, we obtain the
desired results. And by direct computation, one can obtain
the converse of the lemma.

3. Main Results

Denote by X the Banach space of all continuous functions
from [0,1] — R endowed with norm ||x|| =sup {|x(¢)|:
tel0,1]}.

By Lemma 6, we transform problem (1) into a fixed point
problem as x = Px, where P : X — X is given by

Pa(r) = ocl+ B J (=5 £ (5, x(s), I'x(s) s
F&J S)ds + A, (t )J;h(s;x(s))ds
J g(s3x(s))ds+ Ay (t )J;k(s;x(s))ds
' F(ﬁ ~a) L (1 =5 £ (5, x(s), P x(s))ds
P ] -9 s 009, P
- g | 09 e, e

(12)

Theorem 2. Suppose that f:[0,]]x R*? — R and h, g,
k:[0,]]xR— R are continuous functions satisfying
(H,)—there exist positive constants q,, q, such that

[f(txpyy) = f(bxny)| S qplx; = x| + qoly; —ya (13)

forallx;, x5y, v, €R, t€0,1].
(H,)—there exist positive constants qs, q,, 4 such that

M as|x =yl |h(t x) —h(t,y)| < q4x -y,
y<aslx=yl VxyeR.

lg(t:x) - g(t,
Ik(t, x) — k(t,
(14)

Then there exist a unique solution for boundary value
problem (1) provided that r; < 1, where

oo ) (v * e

As + U + A1
rg+1) |(I+wl(a+p+1) I'la+1)
723
+ ‘(I*'A”)F(“"'I) +Aq,+A;s +A3‘J5]
(15)
and A;=max | A,(t) | fori=1,2,.,5.
te[0,1]
Proof. We set sup|f(£,0,0)|=M,, sup|g(t,0)|=
0<t<1 0<t<1

sup |h(t,0)| =

0<t<1

M,, sup |k(t,0)| = M.
0<t<1



Let B, ={x€X : ||x|]| <r} the ball with radius r, where
r>(ry/(1-r;)), with

M, MyA,
r, = + +A M, +A,M,
F(ﬁ —a+1)

M, (16)

A+ (a+p+1)|

r@+1)

Then, B, is a closed, convex, and nonempty subset of
the Banach space X.

Our aim is to prove that the operator P has a unique fixed
point on B,.We show that PB, C B,.

For x € B,, t € [0, 1], we have

t (t =) P f (s, x(s), IPx(s))|ds

! (£ =5)" e (s)ldls + | A, ( )IJOIh(S;x(S))IdS

|Px(t)] <

(@) Jo
+| J
(t)

A,y (
|?4 |>J (1= /P f (5 x(5), IPx(s) s

J (1= 5P f (s, x(s), IPx(s))|ds

H

(55(5))|ds + Ayt >|L\k<s;x<s>>|ds

+

pA
+‘(1+#)F(0c)
u
+‘<1+u> I{a+B)
1

< g ), =97 6 (9 ) (5.0,

Jl (1— )% x(s)lds

j (1= (s, x(), PPx() s

+1f(5,0,0) | ]ds + %J; (t—s)"x(s)lds

1

A0 1hls3) = hs3 01 + (s 0)1ds
A0 19(s559) - gls:0)1 + s 0
T 1A5(0)] ; Ik(s s x(s)) — k(s30)] + [k(s; 0)ds
+ gL [ 9o x50

As()] [ -1
~£(5,0,0)] + [f(5,0,0)|]ds + a0 Jo(l—s)ﬁ

(IS (s:x(s), Px(s)) = f (5, 0, 0)| + | f (5, 0, 0)[Jdls
‘ uA Jo(l—s)“_llx(s)lds
u
+‘(1+u)F(“+ﬁ :
x[1f (s x(s), IPx(s)) = £ (5, 0,0)| + |f (s, 0, 0)[]ds,
(17)

AT W)
) J (1 _S)a+/3—1
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which implies that

1P = g (0 ) 4

A
+ Ta+1) llx[| + Ay [qalx]| + My] + Ay [g5]|x| + M, ]

A4
+ As[qs || x|| + M;] + TB-a+l)

I B
'qu (p+1)>| I+ ] W” I
* (1+wI ([jx+ﬁ+1) qu I(p+ )>|| |+ M]
S\ o))\ T+ pr1) " T—a+1)
(it STl

+ As + ¢ + A
F(ﬁ+1) (1+y)1‘((x+ﬁ+1) I'(e+1)
4 Ay + Aray +A3q5} I

pA
BEETrReED
MO M0A4
T+ p+l) T(B-a+l)
A5M0
rp+1)

AS
I'(B+1)

+A M, +A,M,

pM,
(I+wI'(a+p+1)

+AsM; +

Srir+r,<r.
(18)

Now, for x,y € B, and for t € [0; 1],

|[Px(t) = Py(t)]

1 ' at+f-1
< g ), () e x(9,7x(5)

A ' a-1
— (5 y(5) IPy(s))|ds + mj (£ =5 x(s)

1

(s x(5)) = h(s;

0

—y(s)lds + |A1<t>|j ¥(s)|ds
. |Az<t>|jo 19055 (5)) — 953 () ds + A (1)

(1 =5)* P f (s, x(5), IPx(s)) = £ (5, y(5), IPy(s))|ds

—|A5(t)| 1 — )P 1 (s, x(s), IPx(s

e | -9 s x9x0e)

(9 Pyl + 0 -
U ! a+p-1

“[x(s) = y(s)[ds + A+@l@+p) JO(I_S) F

(s, x(5), IPx(s)) = £ (5, y(5), Py(s)) | ds.
(19)
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Thus,
[P~ Py <7y 3. (20)

Since 7, <1, then operator P is a contraction mapping.
Therefore, boundary value problem (1) has a unique
solution.

Theorem 7. Assume that (H,) and (H,) hold, f : [0;1] X
R? — R is a continuous function. Further, we suppose

(Hy)—f (x5 y)| <m(t) s [h(t,x)| <p(t); [k(tx)| <y
()5 1g(t, x)| < p(t),¥(t, x,p) € 0, 1] x R? with m, p, o,y € C
([0, 1] ; R*).Then, boundary value problem (1) has at least
one solution on [0, 1] if Q< 1 and ' < 1, where

_ Ay 9>
Q= {A1q4 +Ayq;+Asqs + m <‘11 + T(p+ 1)>

5 9> |/"M
T+ D) (q’ ' r<p+1>> v mit@+1)

(21)
1| 9
T armir(aspr1) (q” r(p+1))}’

A T |uA|
r(a+ )| (T+p)l(a+ 1)

Proof. Consider the closed ball B, = {x € X : ||x|| < r'} with
the radius 7' > (r',/(1~1"})), where

|m
= Ty AP Al Al

Aqlm| As|[m|

. il
Ir'(B-a+1) TI(B+1)

(IL+u)l(a+pr1)°
(22)

We introduce the decomposition P = P, + P,, where

(a1+ﬁ)J; -
%J t—s)"" ! x(s)ds,

0

Pyx(t) = $)* P f (s, x(s), IPx(s)) ds

1

I(
J h(s;x(s))ds + A,(t )J g(s;x(s))ds

0

+A3(t)L k(s;x(s))ds + F?[;(—t)oc) L -

x(s), IPx(s))ds + ?5(2)) J;

723
x(s), Px(s))ds + W

(=9 s,
(1= f(s
g eeds . —

J, 4=
: JO (1= )P f (s, x(s), IPx(s) )ds.

For x, y € B,, we have

|Pyx(t) + Pyy(t
1
(a+p)
A
I'(a)

~—

<

(t = )P f (s, x(s), IPx(s))|ds

—
o B

~

t
+

(t- s)"‘"1 lx(s)lds + |A, (t)IJ1 |h(s;y(s))lds

—
o

A1) lals s y(s))lds + |A3(t)|JO Ik(s;57(s))lds

A0 [
" I'(f-a) Jo (

A1 [y e
R =96 Py s

‘AM)L‘ ! —s a—1 s B
+<|1+;4|>r<oc>L“ She)

| !
NIETINCET) J,0-

1 ' at+f-1
S—F(oc+ﬂ) JO (t—ys) p m(s)ds

Jt (t—5)*x(s)|ds + Aljl p(s)ds

0

~F 1 (5, 9(5), PPy(s) Ids

)P f (5 (s), Iy(s))|ds

A
")

O PN R N

(1= m(s) > J (1= m(s)ds

A
L(B) Jo

A e
i ), (79 s
@l Lol gyl
TRy 0 s
(24)
which implies that
|Px + Py < Il r' A pll
I'(a+p+1) [I'(a+1)
A
+ A ] + Ay + F(ﬁ_”i”l'l)
As||m|| " A r
rg+1) ([L+u)l(a+1)
. |eal [ <
(M+u)l(a+p+1)
(25)

Thus, P,x + P,y c B,".



!
For x,y € B,', we have

[P2x(t) = Poy(t)]
< |A1(t)|J0 [h(s3x(s5))) = h(s:y(s))|ds

+ IAz(f)IJO g(s5x(5)) = g(s3¥(s))|ds

+ IAa(f)IJ0 k(s x(s)) = k(s5.7(s))lds

+ LBOL T (g o9, 06
sy, @)+ O (1o

F(5 3(5) P(5) = £ 5 (5 Py (5)ds
|MA | ! a-1
T T J (197 ets) (6 s

|4 (] geh (26)
+|(1+ﬂ)\F(a+ﬁ)Jo(l )

(s x(5), Px(5)) = f (5, y(s), Iy () |dbs

sAIJ’O Qalx(s)  y(9)\ds + A2|JO galx(s) = y(3)|ds
1 144 1
4 alelo) -yl s |
(1= 5 (g (5) = y(9)] + P (s) - IPy(s)] s

e OO

|uA | !
+q,[IPx(s) = IPy(s)|)ds + WJU

(1= 5)"Vx(s) = y(s)|ds 7“4' 1
(=95 O+ e |,

S (1=9) @y |x(9) =y (9)] + @lPx(s) = Py (s) )ds,
which implies that

[[P2x = Poy|| < Ayqylx = y|| + Aygs]lx — ¥l + Asgs||lx - y||
A

4 9
ErT (q1+ F(p+1))”x_y”

As 9
g (0 ) e
[pA |
[(1+up) [ T(e+1)

|t |
1+u) | T(a+p+1)

x—y|+
=yl

q
: (% + F(Pj' 1)) x=y < {Al‘h +A,q; + Asqs
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Ay 9> As
TTF-a+1) (q1+ F(p+1)) TR+

9, luA |
' (ql * F(p+1)) T ICES)
[ee ] 9
MEPINCYED <‘“ r(p+1>>}”"‘y”
<Qlx -yl

(27)

since Q < 1, then P, is a contraction.
Next, we show that P, is compact and continuous. Con-
tinuity of f implies that the operator P, is continuous.
Since, |[Pyx]| < ([[m|[/(I(a+ B +1))) + [(M(I(a+1)))]
r', therefore, P, is uniformly bounded on B,’. Suppose that
0<t <t,<1. We have

|Pyx(t,) = Pyx(t))]

(oL r (ty = )P f (s, x(s), IPx(s))ds

Jt

AL a-1 a-1
m L ((t2 —)¥ = (8, ) )x(s)ds
+J; (s =) "x(s)ds| (amL Y [2(t - 1)

(28)

As t; — t,, the above expression tends to be zero inde-
pendently from x € B,’. This implies that P, is relatively com-
pact on B,'. Then, by the Arzela-Ascoli theorem, operator P,
is compact on Br'.

Therefore, according to the Krasnoselskii fixed point the-
orem, problem (1) has at least one solution on B,’.

4. Example

Example 8. Consider the following boundary value problem:

- 1 1 1 (*
DD+ )x(t)= ——— (sinx+ (t—s)xds ), te[0,1],
300 500+ £2 r(3/4) ),

(29)

[x(s)|
0+ K@
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We choose f=4/3, a=1/3, A =1/300, u =1, o, = 1/200,
0, =1/200, 05 = 1/200, p = 1/4, and the continuous functions

1 1 t
£, V) = - £ o) Mxds ),
f(tx 1" x) 2003 72 (smx+ T3] JO( )" xds

__ x®)
g(t:x) = 300+ [x(1)]”

_ (LY k)
9= (53) v

(0 +x()= [ ! !

11\’
cD1/3x(0)+cD1/3x(1) -
200 J,\s+2

1Y/ 1\
CD2/3x(0)+cD2/3x(1) - -
200 ), \s+4

Here, f=3/4, a=1/3, A=1/30, u=1, 0, =1/200, 0, =1
/200, o5 = 1/200, p = 1/4, and the continuous functions

S s o ).
g(tx) = t+110%)
h(t, x) = (%Y%
k(t, x) = (%)2%

(32)

Clearly, q, = g, = 1/500, g, = 1/300, g, = 1/240, and g, =

1/480; thus, we have Q = 0.057 < 1 and ', = 0, 0065 < 1.
Then, problem (31) has a least one solution.

5. Conclusion

In this paper, we studied the existence and uniqueness of
fractional Langevin equations with nonseparated integral
boundary conditions. First of all, we transformed the prob-
lem into an equivalent fixed point problem; second of all,
we utilized the Banach contraction principle and the Krasno-
selskii fixed point theorem to prove the existence and unique-
ness of solutions.

<l cD1/3+L x(t) = 1
300 (t+10)2 5+ x2

=—| ————ds
200 J,s+ 1030 + |x(s)]|

(1Y k)
(%)= <t+4> 30+ [x(8)]

(30)

Clearly, q, = g, = 1/500, g, = 1/300, g, = 1/240, and g, =
1/480,

Then, we have r; = 0.07 < 1.

Thus, all the assumptions of Theorem 2 hold. Then,
problem (29) has a unique solution.

Example 9. Consider the following boundary value problem:

t 1
+ | (t—s) ds|, telo,1],
[ o), e

[x(s)| o
30 + |x(s)| ds,
o),
30 + |x(s)]
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