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The present research work is devoted to investigate fractional order Benjamin-Bona-Mahony (FBBM) as well as modified fractional
order FBBM (FMBBM) equations under nonlocal and nonsingular derivative of Caputo-Fabrizio (CF). In this regards, some
qualitative results including the existence of at least one solution are established via using some fixed point results of
Krasnoselskii and Banach. Further on using an iterative method, some semianalytical results are also studied. The concerned
tool is formed when the Adomian decomposition method is coupled with some integral transform like Laplace. Graphical
presentations are given for various fractional orders. Also, the concerned method is also compared with some variational-type
perturbation method to demonstrate the efficiency of the proposed method.

1. Introduction

Fractional calculus is the generalized form of classical cal-
culus. With the rapid change in science and technology,
the aforesaid area has attracted the attention of many
researchers. The mentioned branch has many applications
in different areas of science like modeling, control theory,
physics, signal processing, economics, and chemistry [1–4].
Different researchers have studied fractional differential
equations (FODEs) in their own way, including the stability
aspect, qualitative theory, optimization, and numerical simu-
lations. Many real-world problems are nonlinear in nature,
and their investigation is important for fruitful information.
Therefore, researchers have studied various problems of
FODEs by using different techniques and methods. One of
the important aspects is the existence theory of solution
which has given proper attention in the last years [5–11].
By using the fixed point theory, the existence theory to
numerous problems has been established [12–16]. The

authors in [17–22] also studied different aspects of FODEs
using a derivative with nonsingular kernel and Laplace trans-
form. Therefore, we intend to establish the aforementioned
theory for the following problem with ½0, τ� = J

CFD
γ
t v t, yð Þ − h t, v t, yð Þð Þ = 0,

v y, 0ð Þ = f yð Þ,
ð1Þ

where h : J × R⟶ R and f ∈ CðJÞ. The existence of at least
one solution of (1) has been studied with the help of a fixed
point approach, since the differential operator involving frac-
tional order have a great degree of freedom. Therefore, it
comprehensively describes many dynamical properties and
characteristic of various processes/phenomena [23, 24].
Then, we establish an algorithm to compute the approximate
analytical solutions for the following cases of BBM equations
with y, t ∈ J , γ ∈ ð0, 1� as
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Case 1.

CFD
γ
t v t, yð Þ − vyyt t, yð Þ + av t, yð Þvy t, yð Þ = 0,

v 0, yð Þ = f yð Þ:
ð2Þ

Case 2.

CFD
γ
t v t, yð Þ + vy t, yð Þ + av t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v y, 0ð Þ = f yð Þ:
ð3Þ

Case 3.

CFD
γ
t v t, yð Þ + vy t, yð Þ + av2 t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v y, 0ð Þ = f yð Þ:
ð4Þ

where a is a real constant. The abovementioned problems are
also called regularized long-wave equation which is the
improved form of the Korteweg-de Vries equation (KDVE).
Such equation has been largely used for modeling of waves
of small amplitudes and in the soliton theory of fractals and
dynamics. Moreover, KDVE has countless integrals of
motion and BBM has only three [25–32]. For generalized n
-dimensional BBM equation and its applications, we refer
to [25, 33, 34]. The aforementioned equation has been stud-
ied in surface waves of a long period of fluid [26]. Also, for
the dynamic aspect of the BBM equation, we refer [35]. The
mentioned equation is not only suitable for superficial waves
but also for acoustic and hydromagnetic waves; because of
this, the BBM equation has upper hand on KDVE. We enrich
our study by investigating the modified form of BBM equa-
tion abbreviated as MBBM [36]. We use the decomposition
method coupled with Laplace transform to establish series
solution to our proposed problems (2), (3), and (4). The
mentioned problems have been studied by the homotopy
perturbation method (HPM), variational method (VHPM),
wavelet method, etc., but these studies are limited to frac-
tional order derivative involving the usual Caputo and inte-
ger order derivative. To the best of authors’ information, no
study exists in the present literature to address the investiga-
tion of the aforesaid problems under nonsingular CF deriva-
tive. The mentioned derivative was introduced in 2016 and
has been found suitable in applications of many thermal
problems. The concerned nonlocal integral of CF for a func-
tion is the average of the function and its Riemann integral
which works as a filter, for various applications of the con-
cerned derivative, we refer to [12, 13, 18, 19]. So far, we know
that there is no investigation present in the literature which
addresses the study of the mentioned problems under nonlo-
cal and nonsingular kernel derivatives with fractional order.
We establish some qualitative results of the existence of at
least one solution by Krasnoselskii and Banach fixed point
results. Further, by the proposed method of Laplace trans-
form coupled with Adomian decomposition (LADM), we
compute the series solution whose convergence is also stud-

ied. Also, the results are compared with the results of VHPM.
The results reveal that the proposed method can also be used
as a powerful tool to find approximate results to many non-
linear problems.

2. Preliminaries

Definition 1 (see [37]). Let v ∈H1ð0, aÞ, a > 0, γ ∈ ð0, 1Þ, then
CF derivative is defined below

CFD
γ
t v tð Þ = ℕ γð Þ

1 − γð Þ
ðt
0
exp −

γ t − sð Þ
1 − γ

� �
v′ μð Þdη,

 γ ∈ 0, 1ð Þ, t ≥ 0,
ð5Þ

where the function ℕðγÞ is called normalization.

Definition 2 (see [38]). The CF integral with γ ∈ ð0, 1Þ is given
below

CF Jγt v tð Þ = 1 − γð Þv tð Þ
ℕ γð Þ + γ

ℕ γð Þ
ðt
0
v ηð Þdη: ð6Þ

Definition 3 (see [37]). For the CF derivative of order γ ∈ ð0, 1�
and n ∈ℕ, the Laplace transform is given below

L CFD
n+γ
t v tð Þ

� �
sð Þ

= 1
1 − γð ÞL v n+1ð Þ tð Þ

� �
L exp −

γt
1 − γ

� �� �

= sn+1L v tð Þ½ � − snv 0ð Þ − sn−1v′ 0ð Þ−⋯−vn 0ð Þ
s + γ 1 − sð Þ :

ð7Þ

Definition 4. The considered method is used to compute
the solution in an infinite series form. We consider the
solution as

v t, yð Þ = 〠
∞

n=0
vn y, tð Þ ð8Þ

and nonlinear term is decompose as

N v = 〠
∞

n=0
An, ð9Þ

where An is given by

An =
1

Γ n + 1ð ÞD
n
μ N 〠

n

j=0
μ jvj

 !" #
μ=0

: ð10Þ

Theorem 5 (Krasnoselskii’s fixed point theorem [39]). If
D ⊂ X be a convex and closed nonempty subset, there exist
two operators G1 and G2 such that

(i) G1v1 +G2v2 ∈D for all v1, v2 ∈D
(ii) G1 is a condensing operator
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(iii) G2 is continuous and compact

then, there exists at least one solution v ∈D which satisfies
G1ðvÞ +G2ðvÞ = v.

3. Steps for Existence of Results

In the ongoing section, we discuss the existence of the consid-
ered problem.

Lemma 6. Under Definitions (1) and (2), we have

v t, yð Þ = f yð Þ + 1 − γð Þ
ℕ γð Þ h t, v t, yð Þð Þ½

− h 0, v 0, yð Þð Þ� γ

ℕ γð Þ
ðt
0
h θ, v θ, yð Þð Þdθ:

ð11Þ

The assumptions needed for our work are
(B1) hðt, vÞ is the nonlinear function satisfy the growth

condition as

h t, vð Þj j ≤ bh + C vj jp, p ∈ 0, 1ð Þ, C ≥ 0: ð12Þ

(B2) For all v1, v2 ∈ Rthere exist a positive constant khone
can get,

h t, v1ð Þ − h t, v2ð Þj j ≤ kh v1 − v2j j, for all t ∈ J : ð13Þ

Furthermore, hðt, 0Þ = 0 holds.
G1, G2 : X⟶ X are the operators defined as

G1 t, vð Þ = f yð Þ + 1 − γð Þ
ℕ γð Þ h t, v t, yð Þð Þ − h 0, v 0, yð Þð Þ½ �,

G2 t, vð Þ = γ

ℕ γð Þ
ðt
0
h θ, v θ, yð Þð Þdθ:

8>>><
>>>:

ð14Þ

Theorem 7. In light of hypothesis (B1) and (B2), if ð1 − γÞ/
ðℕðγÞÞkh ≤ 1, then (1) has at least one solution.

Proof. Using (2.5), and a bounded set defined as D = fv ∈
X : kvkX ≤ Rg. The continuity of vðt, yÞ implies that G1
and G2 are continuous operators. To show that G1 is a con-
densing map, considerv1, v2 ∈D, under the assumption (B1)

G1 v1ð Þ − G1 v2ð Þk kX
=max

t∈J

1 − γð Þ
ℕ γð Þ h t, v1 t, yð Þð Þ − 1 − γð Þ

ℕ γð Þ h t, v2 t, yð Þð Þ
����

����
≤

1 − γð Þ
ℕ γð Þ kh v2 − v1k kX :

ð15Þ

This show that G1 is a condensing map; further, for the
continuity and compactness of G2 for all v ∈D, consider

G2 vð Þk kX =max
t∈J

γ

ℕ γð Þ
ðt
0
h θ, v θ, yð Þð Þdθ

����
����

≤
γ

ℕ γð Þ max
t∈J

ðt
0
h θ, v θ, yð Þð Þj jdθ

≤
γ

ℕ γð Þ
ðt
0
bh + C vj jp	 


dθ

≤
γ

ℕ γð Þ bh + CRP	 

τ:

ð16Þ

Therefore, G2 is bounded on D. For continuity consid-
ering t1 − t2 > 0, one can infer that

G2v1 t1ð Þ −G2v2 t2ð Þj j
= γ

ℕ γð Þ
ðt1
0
h θ, v θ, yð Þdθð Þ −

ðt2
0
h θ, v θ, yð Þð Þdθ

� �����
����

≤
γ

ℕ γð Þ bh + CRp½ � t1 − t2ð Þ:
ð17Þ

This implies that kG2v1ðt1Þ −G2v2ðt2ÞkX ⟶ 0, as t1
tends to t2. So it shows that G2 is compact and equicontin-
uous; by Theorem 1, the problem (1) has no less than one
solution in D.

Theorem 8. In view of assumption (B2) if ðð1 + γðτ − 1ÞÞ/
ðℕðγÞÞÞkh, then problem (1) has a unique solution.

Proof. By using (1), we define the operator G as

Gv t, yð Þ = f yð Þ + 1 − γð Þ
ℕ γð Þ h t, v t, yð Þð Þ − h 0, v 0, yð Þð Þ½ �

+ γ

ℕ γð Þ
ðt
0
h θ, v θ, yð Þð Þdθ:

ð18Þ

Suppose v1, v2 ∈ X, we have

Gv1 −Gv2k k \ leqx
≤max

t∈J

1 − γð Þ
ℕ γð Þ h t, v1 t, yð Þ − h t, v2 t, yð Þð Þð Þ½ �
����

����
+max

t∈J

ðt
0
h θ, v1 θ, yð Þð Þ − h θ, v2 θ, yð Þð Þdθ½ �

≤
1 − γð Þ
ℕ γð Þ kh v1 − v2k kX + γ

ℕ γð Þ τkh v1 − v2k kX

= 1 + γ τ − 1ð Þ
ℕ γð Þ

� �
kh v1 − v2k kX :

ð19Þ

Therefore, G is a condensing operator which implies the
uniqueness of solution.
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4. Main Results

To present the iterative solution of our considered problem,
we first give a general procedure for the given problem as

CFD
γ
t v t, yð Þ =N v t, yð Þ +Rv + g t, yð Þ,

v 0, yð Þ = f yð Þ y ∈ 0, 1½ �,

(
ð20Þ

where N is a nonlinear operator and R is a linear operator
and g is external source function. Further, f : J ⟶ R is a
nonlocal, bounded, and continuous function.

Taking Laplace transform of (14) and using the initial
condition, we have

CFD
γ
t v t, yð Þ½ � = f yð Þ

s
+ s + γ 1 − sð Þ

s
L Nv t, yð Þ½

+Rv t, yð Þ + g t, yð Þ�:
ð21Þ

Let us consider the solution in terms of a series as

v = 〠
∞

n=0
vn, ð22Þ

and decompose the nonlinear term N vðt, yÞ in terms of the
Adomian polynomial as

N v = 〠
∞

n=0
An, ð23Þ

where

An =
1

Γ n + 1ð ÞD
n
u N 〠

n

j=0
μjvj

 !" #�����
μ=0

: ð24Þ

Using (15) and comparing the terms on both sides, we
have

v0 = f yð Þ,

v1 =L−1 γ + s 1 − γð Þ
s

L A0 t, yð ÞRv0 t, yð Þ + g t, yð Þð Þ
� �

,

⋮

vn+1 =L−1 γ + s 1 − γð Þ
s

L An t, yð ÞRvn t, yð Þ + g t, yð Þð Þ
� �

, n ≥ 0:

ð25Þ

After evaluation, the required solution is

v t, yð Þ = 〠
∞

n=0
vn t, yð Þ = v0 t, yð Þ + v1 t, yð Þ + v2 t, yð Þ+⋯: ð26Þ

Theorem 9. Let T be a nonlinear contractive operator on a
Banach space X, such that for all v, v∗ ∈ X, one has

Tv − Tv∗k kX ≤ k v − v∗k kX , 0 < k < 1: ð27Þ

Then, the unique fixed point v satisfies the relation Tv = v.
Let us write the generated series (26) as

vn = T vn−1ð Þ, vn−1 = 〠
n−1

i=0
vi, n = 1, 2, 3,⋯, ð28Þ

and assume that v0 ∈ SrðvÞ, where SrðvÞ = fv∗ ∈ X : kv − v∗kX
≤ r, r ≥ 0g. Then, we have

A1ð Þ xn ∈ Sr vð Þ:
A2ð Þ limn→∞vn = v:

ð29Þ

Proof. (A1) By using mathematical induction for n = 1, we
have

v1 − vk kX = Tv0 − Tvk kX ≤ kv0 − vk kX : ð30Þ

Considering that the result for n − 1 is true, then

vn−1 − vk kX ≤ kn−1 v0 − vk kX : ð31Þ

Now consider

vn − vk kX = Tvn−1 − Tvk kX ≤ k vn−1 − vk kX ≤ kn v0 − vk kX :
ð32Þ

With the help of (A1), we have

vn − vk kX ≤ kn v0 − vk kX ≤ knr ≤ r, ð33Þ

which gives that vn ∈ SrðvÞ, since

vn − vk kX ≤ kn v0 − vk kX , ð34Þ

and limn→∞kn = 0. Therefore, we have limn→∞kvn − vkX = 0
which yields limn→∞vn = v.

4.1. General Procedure for Case 1. Consider the following
FBBM equation under the given condition as

CFD
γ
t v t, yð Þ − vyyt t, yð Þ + av t, yð Þvy t, yð Þ = 0,

v 0, yð Þ = f yð Þ:

(
ð35Þ

Taking Laplace transform of (35), one has

L v t, yð Þ½ � = f yð Þ
s

+ γ + s 1 − γð Þ
s

L vyyt t, yð Þ − av t, yð Þvy t, yð Þ	 

:

ð36Þ

Let us consider the solution in terms of a series as

v = 〠
∞

n=0
vn, ð37Þ
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and the decomposition of the nonlinear term is

vvy = 〠
∞

n=0
An, ð38Þ

where

An =
1

Γ n + 1ð ÞD
n
μ 〠

n

j=0
μ jvj

 !
〠
n

j=0
μjvjy

 !" #�����
μ=0

: ð39Þ

An for different values of n are

A0 = v0 t, yð Þv0y t, yð Þ,
A1 = v0 t, yð Þv1y t, yð Þ + v0y t, yð Þv1 t, yð Þ,

ð40Þ

and so on. Putting these values in (36) and comparing the
terms on both sides, we have

v0 t, yð Þ = f yð Þ,

v1 t, yð Þ =L−1 γ + s 1 − γð Þ
s

L v0yyt t, yð Þ − av0 t, yð Þv0y t, yð Þ� �� �
,

⋮

vn+1 t, yð Þ =L−1 γ + s 1 − γð Þ
s

L vnyyt t, yð Þ − avn t, yð Þvny t, yð Þ� �� �
, n ≥ 0:

ð41Þ

After calculation, the solution of the considered problem
(35) is obtained in the form of a series.

4.2. General Procedure for Case 2. Consider the following
FBBM equation under the given condition as

CFD
v
t v t, yð Þ + vy t, yð Þ + av t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v 0, yð Þ = f yð Þ:

(

ð42Þ

Taking Laplace of (42), one may have

L v t, yð Þ½ � = f yð Þ
s

−
γ + s 1 − γð Þ

s
L v t, yð Þ½

+ vyyy t, yð Þ + av t, yð Þvy t, yð Þ
: ð43Þ

Here, we consider the unknown solution as

v = 〠
∞

n=0
vn, ð44Þ

and the nonlinear term is decomposed as

v t, yð Þvy = 〠
∞

n=0
An, ð45Þ

where An is define as

An =
1

Γ n + 1ð ÞD
n
μ 〠

n

j=0
μjvj

 !
〠
n

j=0
μ jvjy

 !" #�����
μ=0

: ð46Þ

An for different values of n are

A0 = v0 t, yð Þv0y t, yð Þ,
A1 = v0 t, yð Þv1y t, yð Þ + v0y t, yð Þv1 t, yð Þ,

ð47Þ

and so on. Using these values in equation (43) and equating
the corresponding terms on both sides, we have

v0 t, yð Þ = f yð Þ,

v1 = −L−1 γ + s 1 − γð Þ
s

L v0 t, yð Þ + v0yyy t, yð Þ + aA0
� �� �

,

v2 t, yð Þ = −L−1 γ + s 1 − γð Þ
s

L v1 t, yð Þ + v1yyy t, yð Þ + aA1
� �� �

,

⋮

vn+1 t, yð Þ = −L−1 γ + s 1 − γð Þ
s

L vn t, yð Þ + vnyyy t, yð Þ + aAn

� �� �
, n ≥ 0:

ð48Þ

In this way, the series solution of the proposed problem
(42) is obtained.

4.3. Procedure for Case 3. Consider the following FMBBM
equation under the given condition

CFDt
γv t, yð Þ + vy t, yð Þ + av2 t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v 0, yð Þ = f yð Þ:

(

ð49Þ

Taking Laplace of (49) and after rearranging the terms,
we have

L v t, yð Þ½ � = f yð Þ
s

−
γ + s 1 − γð Þ

s
L v t, yð Þ½

+ vyyy t, yð Þ + av2 t, yð Þvy t, yð Þ
: ð50Þ

Here, we consider the unknown v ðt, yÞ as

v = 〠
∞

n=0
vn, ð51Þ

and nonlinear term is decomposed as

v2 t, yð Þvy = 〠
∞

n=0
An, ð52Þ
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where An is “Adomian polynomials” defined as

An =
1

Γ n + 1ð ÞD
n
μ 〠

n

j=0
μjvj

 !2

〠
n

j=0
μ jvjy

 !" #
μ=0

: ð53Þ

Anfor different values of n are

A0 = v20 t, yð Þv0y t, yð Þ,
A1 = v20 t, yð Þv1y t, yð Þ + 2v0 t, yð Þv0y t, yð Þv1 t, yð Þ,

ð54Þ

and so on. Putting these values in equation (50) and compar-
ing terms on both sides, we have

v0 t, yð Þ = g yð Þ,

v1 t, yð Þ = −L−1 γ + s 1 − γð Þ
s

L v0 t, yð Þ + v0yyy t, yð Þ + aA0
� �� �

,

v2 t, yð Þ = −L−1 γ + s 1 − γð Þ
s

L v1 t, yð Þ + v1yyy t, yð Þ + aA1
� �� �

,

⋮

vn+1 t, yð Þ = −L−1 γ + s 1 − γð Þ
s

L vn t, yð Þ + vnyyy t, yð Þ + aAn

� �� �
, n ≥ 0:

ð55Þ

Hence, in this case, the solution in same way may be
computed.

5. Examples

Here, in the ongoing section, we find series solutions for (35),
(42), and (49) with the help of LADM using CFFOD.

Example 1. Consider the following FBBM equation [40] as

CFDt
γv t, yð Þ = vyyt t, yð Þ − v t, yð Þvy t, yð Þ,

v 0, yð Þ = sec h2 y
4
� �

:
ð56Þ

With the exact solution given below,

v t, yð Þ = sec h2 y
4 −

t
3

� �
: ð57Þ

With the help of the procedure discussed in Case 1,
one has

v0 = sec h2 y
4
� �

,

v1 = −
1
2 1 + γ t − 1ð Þð Þ sec h4 y

4
� �

tanh y
4
� �

,

v2 = −
γ

2 1 + γt − γð Þ
�
sec h6 y

4
� �

tanh3 y
4
� �

+ 3
2 sec h8 y

4
� �

tanh y
4
� ��

+ 1
2 1 + γtð Þ2

2 − 2γ2t + γ2
 !

�
�
sec h6 y

4
� �

tanh2 y
4
� �

+ 1
4 sec h8 y

4
� �

+ 1
2 sec h6 y

4
� �

tanh2 y
4
� ��

:

ð58Þ

And hence, the solution of (56) in the form of a series
is given by

v t, yð Þ = sec h2 y
4
� �

−
1
2 1 + γ t, yð Þð Þ sec h4 y

4
� �

tanh y
4
� �

−
γ

2 1 + γt − γð Þ
�
sec h6 y

4
� �

tanh3 y
4
� �

+ 3
2 sec h8 y

4
� �

tanh y
4
� ��

+ 1
2 1 + γtð Þ2

2 − 2γ2t + γ2
 !

�
�
sec h6 y

4
� �

tanh2 y
4
� �

+ 1
4 sec h8 y

4
� �

+ 1
2 sec h6 y

4
� �

tanh2 y
4
� ��

:

ð59Þ

The approximate solution graphs for various fractional
orders are given in Figure 1. We see from graphs as the
order γ⟶ 1, the behavior of the surfaces of the solution
tends to the integer order. If we put γ = 1 in the approxi-
mate solution, we get the solution at the integer order.
Now, we compare the four-term LADM solution with
the four-term solution of VHPM given in [40] in
Table 1 at γ = 1. From Table 1, we see that the absolute
error between exact solutions and four-term LADM solu-
tions at the integer order is slightly good than the absolute
error for the mentioned four-term solution by using the
VHPM. As compared to VHPM, the LADM is simple
and easy to use to handle various nonlinear partial differ-
ential equations.

Example 2. Consider the FBBM equation using CFFOD as

CFDt
γv t, yð Þ + vy t, yð Þ

+ v t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,
v 0, yð Þ = ey:

ð60Þ
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With the help of procedure discussed for Case 2, one has

v0 = ey,
v1 = − 1 + γt − γð Þ 2ey + e2y

� �
,

v2 = 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �
4ey + 14e2y + 3e3y
� �

,

v3 = − 1 − γð Þ3 + 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

� �
� 8ey + 136e2y + 138e3y + 14e4y
� �
−
γ2t2

2 1 + γt
3 − γ

� �
4e2y + 6e3y + 2e4y
� �

,

ð61Þ

and in the same way, we can find somemore terms; therefore,
we have

v t, yð Þ = ey − 1 + γt − γð Þ 2ey + e2y
� �

+ 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �

� 4ey + 14e2y + 3e3y
� �

−
�
1 − γð Þ3

+ 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

�
� 8ey + 136e2y + 138e3y + 14e4y
� �
−
γ2t2

2 1 + γt
3 − γ

� �
4e2y + 6e3y + 2e4y
� �

+⋯:

ð62Þ
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Figure 1: Surface plots of the required solution up to four terms at different values of γ for Example 1.

Table 1: Comparison between the absolute error at VHPM [40] and the present method (LADM) with the exact solution of Example 1.

y⟶ 0.03 0.04 0.05
t VHPM LADM VHPM LADM VHPM LADM

0.01 1:1543 × 10−4 1:0534 × 10−4 1:4926 × 10−4 1:0067 × 10−4 1:8307 × 10−4 1:0546 × 10−4

0.02 2:5862 × 10−4 1:0987 × 10−4 3:2626 × 10−4 2:4321 × 10−4 3:9387 × 10−4 2:0088 × 10−4

0.03 4:2956 × 10−4 2:2345 × 10−4 5:3101 × 10−4 3:7054 × 10−4 6:3239 × 10−4 4:1234 × 10−4

0.04 6:2827 × 10−4 3:1033 × 10−4 7:6350 × 10−4 3:4034 × 10−4 8:9864 × 10−4 6:6523 × 10−4

0.05 8:5474 × 10−4 4:5643 × 10−4 1:0237 × 10−3 3:9876 × 10−4 1:1926 × 10−4 1:0195 × 10−4
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Here, we plot the approximate solution of the FBBM
equation up to four terms in Figure 2. The approximate solu-
tion graphs for various fractional orders are given in Figure 2.
We see from graphs as the order γ⟶ 1, the behavior of the
surfaces of the solution tends to the integer order. If we put
γ = 1 in the approximate solution, we get the approximate
solution at integer order.

Example 3. Consider the FBBM equation using CFFOD as

CFDt
γv t, yð Þ + vy t, yð Þ

+ v t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v 0, yð Þ = y2:

ð63Þ
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Figure 2: Surface plots of the resultant solution up to four terms at different values of γ for Example 2.
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Figure 3: Surface plots of the resultant solution up to four terms at different values of γ for Example 3.
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and in the same way, we can find somemore terms; therefore,
we have

v0 = y2,
v1 = − 1 + γt − γð Þ 2y + 2y3

� �
,

v2 = 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �
142y2 + 4y3 + 6y4
� �

,

v3 = − 1 − γð Þ3 + 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

� �
� 24 + 200y + 12y2 + 88y3 + 20y4 + 48y5
� �
−
γ2t2

2 1 + γt
3 − γ

� �
4y + 16y3 + 12y5
� �

:

ð64Þ

Here, we plot the approximate solution of FBBM equa-
tion up to four terms in Figure 3. The approximate solution
graphs for various fractional orders are given in Figure 3.
We see from graphs as the order γ⟶ 1, the behavior
of the surfaces of the solution tends to the integer order
solution. If we put γ = 1 in the approximate solution, we
get the approximate solution at the integer order for the
same problem.

Example 4. Consider the modified FBBM equation using
CFFOD as

CFDt
γv t, yð Þ + vy t, yð Þ

+ v2 t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,
v 0, yð Þ = ey:

ð65Þ

With the help of the procedure mentioned in Case 3,
we have

v0 = ey,
v1 = − 1 + γt − γð Þ 2ey + e3y

� �
,

v2 = 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �
4ey + 36e3y + 5e5y
� �

,

v3 = − 1 − γð Þ3 + 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

� �
� 8ey + 1104e3y + 778e5y + 22e7y
� �
−
γ2t2

2 1 + γt
3 − γ

� �
12e3y + 20e5y + 7e7y
� �

,

ð66Þ

and in the same way, we can find some more terms; there-
fore, we have

v t, yð Þ = ey − 1 + γt − γð Þ 2ey + e3y
� �

+ 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �

� 4ey + 36e3y + 5e5y
� �

−−
�
1 − γð Þ3

+ 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

�
� 8ey + 1104e3y + 778e5y + 22e7y
� �
−
γ2t2

2 1 + γt
3 − γ

� �
12e3y + 20e5y + 7e7y
� �

+⋯:

ð67Þ

Here, we plot the approximate solution of the FBBM equa-
tion up to four terms in Figure 4. The approximate solution
graphs for various fractional orders are given in Figure 4.
We see from graphs as the order γ⟶ 1, the behavior of the
surfaces of the solution tends to the integer order solution.
Also, if we put γ = 1 in the approximate solution, we get the
approximate solution at integer order for the same problem.

Example 5. Consider the modified FBBM equation using
CFFOD as

CFDt
γv t, yð Þ + vy t, yð Þ + v2 t, yð Þvy t, yð Þ + vyyy t, yð Þ = 0,

v 0, yð Þ = y2:

ð68Þ

With the help of the procedure discussed for Case 3, one
may have

v0 = y2,
v1 = − 1 + γt − γð Þ 2y + 2y5

� �
,

v2 = 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �
2 + 120y2 + 20y4 + 18y8
� �

,

v3 = − 1 − γð Þ3 + 3γt 1 − γ2
� �

+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

� �
� 160 + 240y + 100y3 + 6786y5 + 344y7 + 244y11
� �
−
γ2t2

2 1 + γt
3 − γ

� �
12y3 + 40y7 + 28y11
� �

,

ð69Þ

and in the same way, we can find the other terms. Therefore,
we get

v t, yð Þ = y2 − 1 + γt − γð Þ 2y + 2y5
� �

� 1 − γð Þ2 + 2γt 1 − γð Þ + γ2t2

2

� �
� 2 + 120y2 + 20y4 + 18y8
� �
− 1 − γð Þ3 + 3γt 1 − γ2

� �
+ 3
2 γ

2 1 − γð Þt2 + γ3t3

6

� �
� 160 + 240y + 100y3 + 6786y5 + 344y7 + 244y11
� �
−
γ2t2

2 1 + γt
3 − γ

� �
12y3 + 40y7 + 28y11
� �

+⋯:

ð70Þ
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Here, we plot the approximate solution of FBBM equa-
tion up to four terms in Figure 5. The approximate solution
graphs for various fractional orders are given in Figure 5.
We see from graphs as the order γ⟶ 1, the behavior of

the surfaces of the solution tends to the integer order solu-
tion. Also, if we put γ = 1 in the approximate solution, we
get the approximate solution at integer order for the same
problem.
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Figure 4: Surface plots of the resultant solution up to four terms at different values of γ for Example 4.
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Figure 5: Surface plots of the resultant solution up to four terms at different values of γ for Example 5.
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6. Conclusion

In our work, some existence results about the solution to the
nonlinear problem of BBM equations under nonsingular
kernel-type derivative have been developed successfully. We
have discussed different cases of the concerned equations
for semianalytical results. For approximate analytical results,
a novel iterative method of Laplace transform coupled with
Adomian polynomials has been used. Further, by providing
an example, we have computed the absolute errors in com-
parison with VHPM for first four-term solutions at different
values of variables t and y against γ = 1. We observed that the
absolute error is slightly good than the mentioned VHPM.
Therefore, the concerned method of LADM can be used as
a powerful tool to handle many nonlinear problems of
FODEs. Since, the aforementioned equations are increasingly
used to model numerous phenomena of physics including
the propagation of heat or sound waves, fluid flow, elasticity,
electrostatics, and electrodynamics, and population dynam-
ics in biology. A large numbers of the aforementioned equa-
tions may be used in fluid mechanics and hydrodynamics.
Since fractional derivatives have a greater degree of freedom
and produce the complete spectrum of the physical phenom-
enon which include the ordinary derivative as particular case,
global dynamics of the aforesaid physical phenomenon may
be investigated. Since the BBM equation can also be used to
model various physical systems like acoustic-gravity waves
in compressible fluids, acoustic waves in enharmonic crys-
tals, the hydromagnetic waves in cold plasma, (see [41]),
investigation of the BBM equation and its various cases
under different fractional order derivatives may be lead us
to investigate some more comprehensive results by using
various fractional orders which will include the classical
order solution as a special case. The nonlocal behaviors of
such problems can be well studied by using nonsingular
fractional order derivative. In the future, the concerned
BBM equation can be investigated by using more general
fractional order derivative with nonsingular kernel of the
Mittag-Leffler function.
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