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In this paper, we consider the asymptotic behavior of solutlons to the p-system with time-dependent damping on the half-line
= (0,+00), v, —u, = 0,u, + p(v), —((x/(l +1) )u with the Dirichlet boundary condition u|,_, = 0, in particular,
1nc1ud1ng the constant "and nonconstant coeficient damping. The initial data (v,, #,)(x) have the constant state (v,, u,) at
= +00. We prove that the solutions time-asymptotically converge to (v,, 0) as ¢ tends to infinity. Compared with previous
results about the p-system with constant coefficient damping, we obtain a general result when the initial perturbation belongs to

H’ (R") x H (R"). Our proof is based on the time-weighted energy method.

1. Introduction

In this paper, we consider the asymptotic behavior and the
convergence rates of solutions to the p-system with time-de-
pendent damping

v,—u, =0,
g+ p(vV), = —qit, x €R', £<0, (1)
with the initial data

(v(x,0), u(x,0)) = (vy(x), ty(x)) —

(V+,M+),

and with the Dirichlet boundary condition

v, >0, as x — +o00, (2)

ul,_, = 0. (3)

Here, v > 0is the specific volume, u is the velocity, the pressure
p(v) is a smooth function of v such that p(v) > 0, p'(v) <0,
the external term —((x/ (1+1¢) )u with physical coefficients
a>0and A > 0, is called a time-dependent damping. v, > 0
and u, are constant states.

For « = 0, the system (1) reduces to the standard com-
pressible Euler equations. There have been many important
developments.

Fora > 0,1 = Q the system (1) becomes the compressible
Euler equations with damping which model the compressible
flow through porous media. There is a huge literature on the
investigations of global existence and large time behaviors
of smooth solutions to compressible Euler equations with
damping. For the Cauchy problem, the global existence of
smooth solutions with small initial data has been studied by
many authors, cf. [1-4], and the large time behavior of the
solutions was carried out by Hsiao and Liu in
[5, 6] firstly. They showed that the solutions of the Cauchy
problem to (1) time-asymptotically behave as those of the
following system

{Vt -u, =0,
p(¥), = ot (4)
or
— 1, —
Vt = _;P(V)xx’
Kty ©
with the same end states as v, (x):
Vv(too,t) = v,. (6)

Here, the well-known porous media equation is obtained by
Darcy’s law, and a better convergence rate and the optimal
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convergence rate when v(+00, 0) = v(—00, 0) were obtained by
Nishihara in [7, 8]. For the other related results, we refer to
[9-11]. Compared with other results, Zhao in [10] got the
asymptotic behavior, and convergence rate lay in the facts that
the nonlinear diffusion wave (v(x, t), u(x, t)) which satisfies (4)
and (6) need not to be weak, and the initial data can be large
properly. For the results such as the generalized Riemann prob-
lem for a class of quasilinear hyperbolic systems and nonlinear
hyperbolic systems of conservation laws with small BV initial
data, we refer to [12, 13]. For other results such as the p-system
with linear and nonlinear damping, we refer to [14-22].

For the initial-boundary value problems on R" to the equa-
tions of viscous conservation laws have been investigated by
several authors, cf. [23-27]. For the initial-boundary value
problems on R" to the p-system with linear damping, see [28,
29], Nishihara and Yang in [29] considered (1)-(3) with
a > 0,A =0, and they got the asymptotic behavior and the
convergence rates by perturbing the initial value around the
linear diffusion waves (v, u)(x, t) which satisfies

v,—i,=0, xeR", t<0,
P'(v)r, = —ait, (7)
uleO = 0’ (V’ u)lx:oo = (V+’0)'

Fora > 0,1 > 0, the system (1) reduces to compressible Euler
equations with time-dependent damping. Hou et al. [30] con-
sidered the global existence of smooth solutions for0 < A <'1
in three space dimensions; they proved that the solutions will
blow up in finite time for A > 1. In [31, 32], Pan obtained the
existence and decay rates of solutions near constant states
(1,0) for A = 1. For the Cauchy problem of the system (1), Cui
et al. in [33] proved that the solutions time-asymptotically
converge to the diffusion wave whose profile is self-similar
solution to the corresponding parabolic equation. For other
results, we refer to [34].

However, to our knowledge, there are few results for the
initial-boundary value problem of the system (1). In this
paper, we obtained the asymptotic behavior and the decay rates
for the solutions of the system (1) with initial-boundary
value data. Because the time-dependent damping will lead to
some new phenomena and severe mathematical difficulties,
we will use some new techniques here. As usual, we want to
get the convergence rates of the solution by the usual energy
estimates and some elementary computations. However, the
time-dependent damping brings some extra terms, such as in
the right hand of (4.19) and (4.61), C [ (1+1)™V’dx,
Cla+0f™" (VI+V)dx, C[@+0f?N(VE, +V2)dx.
To deal with these terms, we divide the time interval into two
regions, [0,T,) and [T, 00). In the bounded region [0, T}),
we obtain the desired estimates by using Gronwall’s inequality
and the usual energy estimates. In unbounded region
[T,, 00), we observe the bad terms could be bounded by the
corresponding energy functional when ¢ > T, By using the
Gronwall’s inequality and the time-weighted energy method,
we also obtain the desired decay estimates, and the
desired decay rates will not be lost by using the weight function
(1+1)".

The rest of this paper is organized as follows. In Section 2,
we reformulate the problem (1)-(3) and state the main
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theorems. In Section 3, a priori estimates of finite time inter-
vals will be given. In Section 4, decay rates will be given.

1.1. Notation. Hereafter, we denote several generic positive
constants depending on T by C(T), C or O(1) denote the
generic positive constants depending only on the initial data
and the physical coefficients &, A, but independent of the time
without any confusion. ¢ will always be used to represent
sufficiently small positive constants. L” = L’(R")(1 < p < 00)
denotes usual Lebesgue space with the norm

"f"LP = (IR* f(x)|pdx)1/p, 1<p<oo,
11, = sup |f ()], ®)

and the integral region R* will be omitted without any confu-
sion. H'(I > 0) denotes the usual Ith-order Sobolev space with

the norm
. 1/2
2
- (Zleurt) - ®
=0

where ||| = ||, = IIll > For simplicity, | (-, )| - and || f (-, £),
are denoted by || f(t)Il,» and || f ()|, respectively.

oLf

2.Main Theorems

From asymptotic analysis, it is well known that the first term
u, of (1), decay to zero, ast — 0o, faster than others. Expecting
(v,u)(x,t) = (v,,0),t — og we approximate this by the solu-
tion (v(x, t), u(x,t)) of

v,—u, =0,
Pv)v, = —mth x€R', <0,
(V(X, t)) ﬁ(x) t)) - (V+) 0), v, <0, as x — 400, (10)
ul,y=0 (or v,| _, =0),

Explicitly,
= S -((A+D)?)/(ax(140™))
v(x,t) =v, + e ' (11)

Véxm(1 + )M

where k := (—p'(v,)/a) > 0and 8, is defined by
8, =2VA+ 1(1 (vo(x) = v,)dx — B(O)u+>, (12)
0

B(0) is to be defined later.
Note that 7(00, t) = 0. Hinted by (1), we suppose

u(x,t) — B(tu,, as x — +0o, (13)
where
B e—(a/l_m[(m)l’*-l]) if Ae[o1],
Ao = {(1+t)‘“, if A=1. (14)
We define the auxiliary function (¥, #)(x, t) by
{ V(x,t) = B(t)mo(f)m, 5
a6, 1) = u, B[ smy(y)dy, (15)
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where B(t) = —Jjo[i(r)d'r, and m,(x) is a smooth function
with compact support such that

| Gy =1, suppm <R qe)

Then (¥, 21)(x, t) satisfies

v, —u, =0,

{ﬁr:—ﬁﬁ, xeR", t<0, (17)
Ul =0, (01|00 = (0,1, B(D)).

By direct calculation, we have

Lemma 2.1. For 0<A<1 there exist constants
0<9<1-Xc¢C>0, suchthat for anyt > 0, we have

7 + 19l + [P < ClaJe (18)

Lemma 2.2. The solution v(x,t) of (10) satisfies the following
dissipative estimates

J]Vx(x, 1) dx < C|8, (1 + 1) A2, (19)
J|Vt(x, 1) dx < C[8, ' (1 + 1) W26/, (20)
J|Vxx(x, B dx < Clo, (1 + £ EH2 (o
Im(x, 1) dx < C[8,| (1 + 1) V2012, (22)
J|Vxxx(x, t)’dx < Cl8,[' (1 + ) 7@, (23
J|Vm(x, t)|2dx < C|50|2(1 + 1) CMDOR)] (24)
J|Vn(x, t)|2dx < C|80|2(1 +1) W20, (25)
Jl(p’(n) - P @76 O dx < CJJ, (1 + ) 4V, (26)

j|(( P () = P D) (x, 1) [ dx < Cl8, [ (1 + 1) TH D2,
(27)

Corollary 2.3. The solution v(x,t) of (10) satisfies the
following dissipative estimates

[7.C. )]l < Clog| 1+ )7, (28)
[ )] < ClSo| 1+ 1) H27C, (29)
[P < CIS,[(1 + 1) CH, (30)

[P0 < CI8 (1 + D72 (31)

Combining (1) with (10) and (17), we have

(v-V-9),-(u-u—1), =0, (32)

(u-u- a)t + (p(V) - p(v))x = T (1)
w-u-a)-u+(p'(v,) - pP @)V,

By virtue of (32), and (12),

+00

[ -5 mOn0y = [0 - v ) - BN, - -2 =,
0 0

2V1+A
(33)
and hence we reach the setting of perturbation
{V(x,t) = —jj’(v—v—v)(y,t)dy, (34)
U(x,t) := u(x,t) —u(x,t) — u(x, t).

From (32) and (34), we deduce that (V, U)(x, t) solves the fol-
lowing problem

{Vt—U:O, x€R", t<0,
U+ (plV, +7+7) - p@), + 22U = =, + (p'(v,) - P D)7,

(35)
with the initial data

[ee]

(vo(y) = ¥(5,0) = (. 0))dy,

X

V,U)(x,0) = (V, Up)(x) := (_J

uy(x) — u(x, 0) — ii(x,0)),
(36)

and the boundary condition
U|x:0 = 0’ (37)

or the linearized problem around v

{Vt—U=0, xeRY, t>0,
U+ (P 0)V,), + 35U = F, (38)
where
A A-1
F= Oy, 4 Xy,

~(p(V, +7+79) - p() - p'W)V,), + (p'(v,) - p' )7,
(39)



In this paper, we do not consider the case A = 1. For the case
of 0 < A < 1, from (12), we have

18] = Cllvo0) = v, [l + e, ]): (40)

we obtain the following theorems.

Theorem 2.4 (the case of 0<A<3/5). Suppose that
Vo(x) — v, € L (V,,U,) € H’ x H% both 6 = ||v0(x) - V+||L‘ + |u,
and ||V, ||, + |U,||, are sufficiently small. Then there exists a
unique time-global solution (V,U)(x,t) of (35)-(37) which
satisfies

Ve C'([0,005H™), i=0,1,2,3, (41)

U e C'([0,00: H™), i=0,1,2, (42)

and moreover

i(l + kv ()| +i(1 + )Ry )|
k=0 k=0
+ Jt (i 1+ 9% v + i (1 + 5)3+DiL aj;U(s)”z)ds
0\ j=1 j=0

<oM(IVel} + U, +9)- (43)

Theorem 2.5 (the case of 3/5 < A < 1). Suppose that
vo(x) —v, € L', (V,,U,) € H® x H% both § = |Jvy(x) = v, || + lu,]
and ||V ||, + U, ||, are sufficiently small. Then there exists a
unique time-global solution (V,U)(x,t) of (35)-(37) which
satisfies

V e C([0,00:H™), i=0,1,2,3, (44)

U eC'([0,005H), i=0,1,2, (45)

kZ:,) (1 + ) MORHGID=GA/2) ||a§v(t)l|2

. (A+Dk+(7/2)=(51/2) || 5k 2 (49
+ ;} (1+1) (A6l
< oIVl + L ; +6),
and for any 3 € (3/2 — 31/2,A), we have
¢/ 3
I 0( JZO (1+ DBl ()|’ (47)

2
£ Y (14 )M Ty )| )ds
j=0

< O+ VRV, [T+ U, | +6).

Theorem 2.6 (the case of A = 3/5). Suppose that vy(x)-v, € L,
(V. Uy) € H x H, both 8 = |[vy(x) = v, | + lu,| and
IVolls + 1T, |, are sufficiently small. Then there exists a unique
time-global solution (V,U)(x, t) of (35)-(37) which satisfies
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Ve C'([0,00% H), i=0,1,2,3, (48)

U e Ci([O, oo);HZ_i), i=0,1,2, (49)

furthermore, we have for any sufficiently small e > 0

v’

3
z 1+ 1.‘)8k/5
k=0

+ J‘t<i (1 + S)(sj/S)_IHaiV(S)"Z + i (1 + s)(Sj/5)+1
o\ ;= Z

<o+t (Vo + U] +9).

a’;V(t)||2 + i (1 + 1) &k/9+2
k=0

aj;U(s)"Z)ds

(50)

Remark 1. For the case of A = 0, the convergence rate shown
in (43) is the same as that in Nishihara and Yang in [29].
In other words, our estimates give a general result by the
elementary method.

Remark 2. All results are obtained under the condition that
any data are small. For large data, the asymptotic behavior of
the solutions of (1) with initial data or initial-boundary data
will be very difficult, and we will consider them later.

3. A Priori Estimates on Finite Time Intervals

Compared with the constant damping, the time-dependent
damping may bring some extra terms. To deal with the terms,
we divide the time interval into two regions, [0, T] and [T, co],
then apply the L’-energy method and the Gronwall’s inequality
to obtain the desired estimates. Much of this section is based
on the paper [33].

We now devote ourselves to the a priori estimates of the
solution (V,U)(x, t) under the a priori assumption

N(T) := sup {Z loval +Y |la,’§U(t)liz} <€, (51)
0<t<T | k=0 k=0

where0 < e < L
By Sobolev inequality and the equation (35), we have

{

which will be used later.

ENY0)
AV,(6)

k=0,1,2,
k=0,1,

w <6
i (52)

o S6

Proposition 3.1. Under the conditions of Theorem 2.4 for
any given T > 0,0 < A < 1, > 0, the solution (V,V,)(x,t) to
the initial-boundary problem (35), (36), (37) on [0,T]

satisfying
t
WIE IV + [Vl IP)s < cn vl + ool o),
(53)

t
Vol + IVl + [ (Il 1) < IV + Ul +6),
(54)
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and

Vol Vil + [ Vil + 1)t
< cm(Ivil: + I +9).

Since it suffices to establish the estimates for sufficiently
smooth solution, the equations in (35), (33) and U] _, = Ogive
the following boundary conditions for higher order
derivatives

V(0,8) =V, (0,) = V,(0,£) = V, (0,1) = O,etc.  (56)

(39) can be rewritten as the problem to the second order wave
of V

txx

Vit (POV,), + Vi = F
[V, V)].eo = (Vi Uy ) (), (57)
VI, = 0.

Step 1. First, multiplying (57), by V and integrating the
resulting equation with respect to x over R", we can get

(jt J [VV T3 (1 ) ]dx + %A J 1+ ) 'V2dx
- JP'(V)dex = JVtde + JFde_ (58)

We now estimate the last term on the right hand of (58), from
(39), we have

J FVdx = J [%p’(m)@, + p'(v.)7,

= (p(V. +7+7) = pD) = P OIV,), + (') ~ P @7, ]V .

(59)

From Lemma 2.2, the Cauchy-Schwarz’s inequality and notic-
ing p'(v) < -C, < 0, we have

A1+ )M

[ O vt = - [ L o, v

(04

C0 2 2A = C0 2 2
sngxdx+Cj(l+t) V.| dxsEJdex+C6,

(60)
and

AL +0)M! A
j Lp'(er)?dex < % J (1+8)'V2dx
o
+C J 1+t 7, [ dx < %/\ J (1+8)™'V%dx + C8°.
(61)
By using Lemma 2.1, Lemma 2.2 and a priori assumption (52),
we have

—_—

(p(V, +7+79) - p(¥) - p'(WV,), Vdx

(p(Vx +7+79) - p(v) - p'(W)V,)V,dx

J
5

[
aO—

: (62)

A

oo|OQ o |

Vidx +C J (19F + [V,]* + 171*)dx

V dx + Cé? Jdex +C8?,

5
and
J / al -A-1
(p'(v,) - p')7,Vdx < —J(1+t) Vidx
C[ (@) - @) 0+ 0 dx
< % J (1+t)'V2dx + CS%. (63)

Substituting (60)-(63) into (58), and noting the smallness of
&, we have

d o A 2] “/\J “A-1y,2
dtJ[VVt+2(1+t) Vo ldx + 2 1+t)"Vidx
C
+ TO ijdx < JVfdx +C8”.
(64)

Next, multiplying (57), by (1 + t)*V,and integrating the result-
ing equation with respect to x over R" and using Lemma 2.2,
we can get

1d e
P J [+ !V -+ p' @)V} ]dx
JV dx = -+ J (1+ 8/ p" @7, V2dx
/\ A-1 1 — 2 A A-1y 2
-EI(Ht) p(v)dex+EJ(l+t) V2dx
+ j (1+8)'FV,dx<C J L+ 6 (V]+ V] )dx
+ J (1 +t)AFthx.

(65)

Now, we estimate the last term in the right hand of (65) as
follows:

21 2A-1
J (1+6)'FV,dx = j [(HTt) P, + %p'(vﬁx

S AQLON
+(1+ )M p'(v4) - p’(V))?x]thx.

-+t (p(V, +7+79) - p(¥)

(66)

By using Lemma 2.1, Lemma 2.2 and a priori assumption (52),
we have

21
[ 7 v < & [ v2ax
«
4

+C J 1+ )7, [ dx < J Vidx +C8,
(67)

2A-1
Jm+t)p( v Vdx < = Jde

iC J (1+ 02y fdx < J Vidx +C8%,
4 (68)



_ J (1 + ) (p(V, + 7 +7) - p(¥) - p@)V,) V,dx
= J 1+ p(V, +7+7) - p(¥) - p' W)V, )V, dx

=1+ N% J (fowp(s)ds - p@V, - % p’(v)vj>dx

) J (140 (p(V, +74+7) = p7) - PGV, - 2" IV? Jridx
- J 1+ p(V, +7 +7)7,dx
d V747 o

<= J 1+ t)/\<J7 p(s)ds — PV, - % p (v)vj>dx

v

-1 J 1+0)" 1<JV p(s)ds — p(W)V, - % p’(V)Vj)dx

v

+Co [ A+ (19l + |V, )dx +C J (1 + )7, |dx

d V +v+v _ 1 '
<= j (1+ t)A<J'7 p)ds = p@V, - - p (v)vj>dx

v

+Ce j (1+ 6" 'V2dx + C8%, (69)
and
J (1+ t)A(p'(v+) -p'(M)v, Vdx
a 2 I —\\— \2
<[ viaxec a0 (@) - P @) dx
<& J V2dx + Co%, (70)
!

Substituting (67)-(70) into (65), and noting the smallness of
&, we have

%d_ I (1402 =+ 0 @V ]dx + S Ivfdx

<4 I (1+1) (JV p(s)ds — p(F)V, - = '(V)V2>dx

- dt - p X 2p X

+C J A+ )" (V2 + V] )dx + C8”.
(71)

Thus we have (71) x k + (64), and we have

d

dtj Vv, +—(1+t) gz (1+t)

(1 +1)'p' @V} ]
ak - 2
[

<k [avor([7 peds - po, - S pow ax

G,
J(1+t)')‘ W2dx + =2 de +
4 4

+Ck j A+ (V2 + V7 )dx + C8. (72)

Choosing k = 6/a, using Gronwall’s inequality on [0,¢] and
the smallness of €, we have

t
IVIE+ VI + L(lIVxll2 +[ViIF)ds < e (Volly + L] + 6).
(73)

This proves (53).

Step 2. Differentiating (57), with respect to x, one gets
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[e4
Ve + (P 0OV,),, + mth =F. (74)

Multiplying (74) by (1 + t)*V,, and integrating the resulting
equation with respect to x over R", we can get

%% j [+ DMV, - 1+ ' DV, |dx + J VZdx
= &J(l +t)A ledx— &J(l +t)A ! ’(v)V dx
j (1+0)*p" @),V dx - J 1+ p" @7 |V, V,dx

J (1 +t)'p" )7, V.V, dx - J (1+t)'p" @)W,V V,dx
+ J (1+t)'FV, dx = Z L.
=t (75)

By using Cauchy-Schwarz’s inequality, Lemma 2.2, Corollary
2.3 and a priori assumption (51) to address the following
estimates

L+, <C[a+0)"" (V] +V.,)dx, (76)
I, <C8[+0"'V.dx, (77)
I, <& Vidx+C[Q+tp,|'Vidx )
S%IV dx + Ce*8?, (
I, <& [Vidx+C[Q+t' | Vidx, o
S%IV dx + Ce*8%, (79)
and
I, <& [Vidx+C[Q+t)",'Vidx %
< I VZdx + Ce’s’. (80)

Now, we turn to estimate I, as follows:

21 2A-1
,[(1 +t) Fxertd - J [%P,(h ?xxt + /\(1+7t) ( )7xx
1+ (p(V +7+7) - p(v) - PV, )Mc

]V dx _ij

(81)

+(1+0)M(p'(v,) - P @))¥

By using Lemma 2.1, Lemma 2.2, Corollary 2.3 and a priori
assumption (51), we have

J, < %JVftdx+CJ'(l+t)“|vxxt| dx < — JV dx + C8°,
(82)

], < 1_6_[V dx+Cj(1+t)4A‘2|v |dx<—6[V dx + C8%,

(83)
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- P WV,).V,, dx

x = xxt

J, = j(l + )" (p(V, + 7 +7) - p()
<(1+t) E% J (P'(V,+7+7%) - p'(M)V:dx
! J(l +t)M(p' "V, +7+9)(V, +7, +7,) - p" @), V. dx

-p' @V, vV, dx

x " xxt

A+Mp'(V +7+7) - p'(¥

X xxt

J L+t p'(V, +V+9)9,V, dx
4
d

J(l+t ' (V, +v+7) - p'(7)V:dx

NI»—'

-3 j A+ PV, +7+7) - p'(¥)Vdx
+C(T)(e + ) j (1+ )"V dx

-p'WV, vV, dx

A +)Mp'(V, +7+7) - p'(®)

1+t)'p (V. + 7+ 7).V, dx

X xxt

+
_‘_‘

IN

J A +MP'(V, +7+79) - p'(@)V2idx

-
o\|sz SN

J V2dx + C(T)(e + 0) J (1+ V2 dx + C(T)S,

(84)
and

], <

| Vidsec [ @+ ((@0,) - P @)Y

Jv dx + Co2.

<

NERNE

(85)

Substituting (76)—(85) into (75), and noticing ¢, § sufficiently
small, we have

%d— J [+ V2 -+ p )V, ]dx+ Jv dx
<[ (W7 - PPV

iC J (1+ " (V2 + V2 )dx + C(T)S.

(86)
Multiplying (57), by -V, and integrating the resulting equality
with respect to x over R, we have
d

e J [V V. + —(1 + t)"\VxZ]dx

+ %\ j (1+6)'V2dx - Jp'(V)fodx (87)
- J Vi + J P EWVV dx - J FV._dx.

It is easy to see that

J '@ V.V, dx<C2JV dx+CJ|v|de<f2_[V dx + C*8°.
(88)

From (26), we have

e (2, 2020

a O,
= (p(V, +7+7) = p7) = POV, + (P () = P D)7, | Visdlv.
(89)

By using Lemma 2.1, Lemma 2.2, Corollary 2.3 and a priori
assumption (51), we have

J(1+t)
<

c
o JV dx + cj 1+ 027, Pdx

v, v,V dx

< C—§ J V2dx+C8, (90)

A1 +0)M
J ( * ) ( )VxVxxdx (91)
C

<5 Jv dx+C J 1+ )27 'dx

O

JV dx + C8%,
1

j (p(V, +7 +7) - p(3) - p'PIV,).V,.dx
J(p'(V +74+9) - p@)Vidx

PV, +v+9) - p'¥) - p" MV, V.V, dx

XXX

+

+ | (V. +v+9)PpV, _dx

X XX

<C| (V] + V2 dx+(1: JV dx

J
J
J
J (1o +|v|)dx+cj|v|dx

C(£+6)JV dx+C jv dx + C&, (92)

and
J (p,(v+) - p,(v))vxvxxdx
< 2 [vidrec [ (000 - P @)Y dx
C

0 J V2 dx + C6%.
12

(93)

<

Substituting (88)-(93) into (87), and using the smallness of
8, &, we have
d

(04 _
r J [Vme +20+0) AVf]dx

C
+ %\ J (1+6)™'V2dx + 70 JVZ dx

XX

2 2
< Jthdx+C8. o1



Multiplying (86) by h and adding up the resulting inequality
and (94), we get
d

= J [V V, + 7(1 +0)VE 4 g(l +1)'WV2 - g(l + t)*p’(i)vjx]dx

+@J(1+t)'A'1Vfdx+%ijxdx+<a—h—l>JVftdx
2 2 2

A e (V. +7+7) - p )V

—EE ( +)(p(x+V+V)—P(V)) xxOX

+Ch I 1+ (VE, + VS, )dx + C8°. (95)

Taking h = 6/«, using Gronwall’s inequality on [0, t] and (53) ,
we have

Vel + Vil +IO(|| I+ IValP)ds < o[Vl + [ +9).
(96)
This proves (154).

Step 3. Similar calculations to (73) and (96), we can get the
high order estimate (3.5). The details are omitted.

From (53), (54), and (55), by using the continuity tech-
nique, we can Ver1fy the a priori assumption (51) is true pro-

vided ||V, ||3 +|U, ||2 +0 sufficiently small. The proof of
Proposition 3.1 is complete.

4. Decay Rates

The main goal of this section is to obtain the decay rates of the
solution (V,U)(x, t). We devote ourselves to the estimates of
the solution (V, U)(x, t) under the a priori assumption

N,(T) = sup [V ol + A+ VL0l )
@ PG <

where0 < e < 1,0< T < 00.

Lemma 4.1. Under the assumptions of Theorem 2.4, if € is
small enough, it holds that

IVIE+ @+ (VI + V) + L(l + ) (VI + [V )as

2 2 3
<OVl + U +8). foro<a<:. o8
For3/5 < A < 1, we have
(1+ DDy 4 (14 )2 (| + |V, )
(99
< C(IVoll; + U, +8),
and
t
[ (a9 W+ e P+ VI s (
10

< C(1+ HF D[y 14 U, +9),
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forany3/2 =312 < B <A

Proof. Multiplying (57), by (1+t)’V and integrating the
resulting equality with respect to x over R", we obtain
4 J [(1 +)PVV, + %(1 + t)/HVz]dx

dt
(- p)
2

= J(l +)PV2dx + g%
B -pB)
55

J (1+ 1V 2dx - I (1+ 1 p(7)V2dx

J 1+ V2dx

1+ V%dx + J (1+t)PFvdx.  (101)

Now, we estimate the last term in the right hand of (101), from
(39), we have

B+A B+A-1
J (1+ t)PFVdx = j [%p’(h)vﬂ + %

), - A+ 0P (p(V, +7+9) - p(3) - p'W)V,)
L1+ 0P ) - p'(V))Vx]de.
(102)

From Lemma 2.2, the Cauchy-Schwarz’s inequality and notic-
ing p'(v) < —-C, < 0, we have

B+A B+A
[ 0 v gw v = - [ 2 v,
o (o4
c,
< §1(1+tﬁv dx+CJ(1+t)ﬁ+M|V| dx
< % J (1+)PV2dx + C8* (1 + t)PreVD-6D,

(103)

and for some constantx > 1,v > 0, which will be determined
below

J AL + 1)

12 —
P (v)v,Vdx

C
<v J 1+ Vidx+ = j (1 + )P 225 |Pdx
(%
2
<o j 1+ Vidx + S (1 4 peran-op  (104)
v

By using Lemmas 2.1, Lemma 2.2 and a priori assumption
(97), we have

- J 1+ (p(V, + v +7) - p() - p'(W)V,), Vdx

1+ (p(V, +7+7) - p(¥) - p W)V, )V, dx

[
O —

0 J(1+t)ﬁV dx+CJ(1+t)ﬁ<|v| AV, + 19 )dx

wlO ],

J (1+)PVZdx + Cée J (1+6)PVZdx + C8%e ™,

(105)
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and

J 1+ (p'(v,) - p' @), Vdx
<o J (1+6)"Vdx

L[ - pP@RTa e o)

2
<v J (1+8)Vdx + Qu + 1)2Pr A6/
v

Substituting (102)-(106) into (101), and noting the smallness
of &, we have

% J [(1 +t)fvv, + %(1 + t)ﬁ—lvz]dx . M J (14 V2 dx

+ % j (1+t)fV2dx < J(l + )PV dx + g%
. 5(12—[5) J

j 1+ 'Vdx
1+PV4x + 20 J (1+8)™Vdx

2
+ C62(1 + t)ﬁ+(3A/2)—(S/2) + Cs (1 + t)2ﬁ+x+(}t/2)—(7/2)
v

cé’ 2B+x-(51/2)~(7/2)
+ 7(1 +1t) . (107)

Next, multiplying (57); by (1 +¢)"""V, and integrating the
resulting equation with respect to x over R", we can get

1d j[a + )V - (1+ 0f ' 9V dx

B+A

a1+ FV2dx = —% j (1+ 0F " (7). V2dx

j(1+t)ﬂ+“ '@)V? dx+ﬁ J(l + )PV dx

_p+A
j(1 + )P FVdx < CJ (1+ )P 1(V + V7 )dx
J (1+ )P FV,dx.

(108)

Now, we estimate the last term in the right hand of (108) as
follows:

B+2A
J 1+ t)ﬁ“\Fthx = j [%P’(%r)vxt + P,(V+)Vx

-1+ P p(V, + 7 +7) - p(@) - pP'W)V,),
+(1+t)ﬁ”( '(v,) - p'M)v, |V,dx.

/1(1 + t)ﬁ+2/\—1

(109)

By using Lemma 2.1, Lemma 2.2 and 4 priori assumption (97),
we have

(1 + t)ﬂ+2/\
[ v

J (1+ 8/ V2dx +C J (1+ F 5 Pdx

IN IA
BIR OBR|R

J (1+6)PV2dx + C8*(1 + )PV (110)

B+2A-1
R (AL

o

<

J (1+1)PVidx+C j (1 + P2y [Pdx

%ISQ 1R

B 2 B+(51/2)-(7/2)
J(1+t)de+C6(1+t) (1)

- J 1+t (p(V, + v +7) - p(¥) - p'(W)V,) V,dx
J(l + )P (p(V, +7+7) - p(@) - p' @V, )V, dx
=(1+ t)ﬁ” ( - Vp(s)ds - pV, - %p’(vwﬁ)dx

- j a+ t)ﬁ**(p(Vx +

- I (1+ 8 p(V, +7 +9)v,dx

v+9) - p(¥) - p'WV, - % p'wV? )thx

V4747
< S avor ([ pods— pv, - Sy ew: Jax
V[ asor ([ s pov. - Lo v )a
=) [aro ([T pds - porv - Lpon? Jas
+co J 1+ 6P (191 + [V, )dx + C j (1+ 07 |dx
V +v+v
< & favor ([ ps- porv - pon? Jas
+Ce+9) J (1+6F™"'V2dx + C8% (1 + t)F™, (112)
j 1+ (p(v,) - P )7V,
<& J(l + 1P V2dx +C j 1L+ M (P'(v,) - P )7, ) dx
< % J 1+ Vidx + C8 (1 + 1) WDE2,

/\

(113)

Substituting (110)-(113) into (108), and noting the smallness
of &, we have

1d I [+

> - VxS [ ofviax

d . V4747 B .
<o J (1+6)f A(L p(s)ds = p(MV, - 5 p (v)vj)dx

+C J A+ )P (V] + V] )dx + CO* (1 + 1) CND0R)
+ C52(1 + t)ﬁ*(l/z)—<s/2)' (114)
Thus we have (114) x h + (107), and we have

% J [(1 +1)fVV, + g(1 + )P 2

h
21 tﬂM
+5(1+1)

0‘()‘2— B) j

(1 + )P p’(V)Vj]dx
(1+ 85V 2dx + % J (1+ 1 V2dx
h B2
+<T_1>J.(l+t) V5odx
<nd j (1+ t)‘***(]vxwp(s)ds - p(W)V, - H p'(V)V2>dx
h - ) x
ﬁ ﬁ(l _ ﬁ) B-2v,2
za j —2 J(l + t) Vodx

+20 J (1+8)*V3dx + Ch J 1+ t)ﬁ”'l(Vj + Vf)dx

+ )P V2dx +

2
+ C8(1 + )PHOMD-B/D Q(l 4 1) 2012
v

2B+x-(51/2)~(5/2)

2
+%(l+t) (115)
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Case 1 (0 <A < 3/5). Itis easy to know that1 < 5/2 — 51/2.
Therefore, we can take 8 = A, v = 1/2,and there exist constant
x satisfying 1 < x < min{5/2 —5A/2,A/2 +3/2,2 — A}. Then,
we have

% J [(1 +0'VV, + 9V2 + E(1 + 1V - (1 1P @)V, ]

+ S J(1+t) de+<Th—l)J(l+t)AVfdx

V +v+v
;t J(1 + t)“(L p(s)ds — p(@)V, - % p’(V)Vj)dx
/1 d A-1 /1(1 - /\) A-2y,2
2d J(1+t) Vidx +TJ(1+t) Vadx

+ J (1+18)™V?dx +Ch j a+ t)M'I(Vf + Vf)dx

+COY(1 + £ OMD-0ID | 0§2(1 4 gy~ ND-(512) (116)
Let T, be sufficiently large such that if t > T, it holds
Ch(1+1)* < S,
{Ch(ut)A P<i(eog), (117)
2a+ptt gL

Fixing h = 12/a, from (116) and (117) we have

iH(t)+—I(l+t) de+(7h—1)j(1+t)*vfdx

VAv+v
< C% J 1+ t)“(L pls)ds — p@V, - % p'(V)Vf)dx

+%%J(1+t)“v24x +Cj(1+t) ”de+c J(1+t) Vidx

1
+ E(%h - 1) J (1+ 6)'V2dx + C8*(1 + )< OV

+ C82(1 + t)K_(/VZ)_(S/Z), (1 18)

where

HEt) ~ [VIP+ A+ )2V [P+ A +0? V.| (19)

Forany t € [T, +00), we have

d G, ah Ay 2
CTH(t)+ZJ'(1+t) Vd +2<I—1>J(1+t)ﬂdx

d V. vV _ 1 PN
<C— J 1+ t)M(Jf p()ds = p(MV, = S p' W)V, )d"

v

+zj j(1+t)A Wldx + C(1 + t) ™ H(t)

+ C62(1 + t)K+(5/\/2)—(7/2) + C82(1 + t)x—()L/Z)—(S/Z).

Using (117) and Gronwall’s inequality on [T,,t], noting
1 <k <min{5/2 - 5A/2,A/2 +3/2},0 < A < (3/5), we have

(120)

zfa)+<:jT(1+-g*th”2+|th)ds

V +v+v 1
<C J 1+ t)“(L p(s)ds — p(V)V, - 3 p’(v)vj>dx

14

L J (1+t)"'V?dx + C(H(T,) + )

<CsJ(1+t)“|V| dx +—JV dx + C(H(T,) +9),
(121)

Advances in Mathematical Physics
which together with (73) and Proposition 3.1 deduce (98) in
view of the smallness of €.

Case 2 (3/5<A<1). In this case, it is easy to know
that A > (3/2) — (3A/2). Therefore, we can take
3/2-3A2<B<Ak=A-f+1, and v=a(A-)/8>0.
Then, from (115), we have

d o
a B « B-Ay 72
dtj[(l+t) VVt+2(l+t) \%

h
Z(1 tﬁ+/\
+2( +1t)

+au;mj

V- 2(1 +1)Ph p’(V)vj]dx

c,
Vi 22 J(1+t)ﬂde

oh B2
+<Z_1>J(l+t) Vi dx

V Av+v
< h% j (1+ t)ﬁJrA(ji p(s)ds - p(H)V. - % p’(v)vj>dx

+ g% J (1+ ) 'V2dx + M J 1 +6)?Vidx

+ Ch J (L+ P (V2 4+ V2)dx + CO (1 + VD61

(122)
Let T, be sufficiently large such that if t > T}, it holds
Ch(1+1)"" <&,
Ch(1+t)*" < 2(& -1), (123)
B -1 _ 1
(1 +1)"7 < e
Fixing h = 12/a, from (112), we have
dH (t)+—[(1 +6)PV2dx + 2("% - 1)[(1 +1)PV7dx
(/\ - ﬁ) B-A-1y,2 d B+A
+7J(l+t) dest—J(1+t)
VA9
. (jf p(s)ds — p(MV, - 7p "BV, )dx N J 1+ t)F'V2dx
. B(1-p) [(1 + 0PV 2dx + C(1 + 1) OVD-61D),
2
(124)

where

Hy(t) ~ 1+ ) VIE+ 0+ F V| + 1+ v
(125)

Then, from (124), we know

d

o+ (1) + =2 J(1 +1)PV? dx+CJ(1 +1)PVidx

C j (1+)PV2idx < c% J (1+ )P

V. Av+v

([ pods—pov. - 3 g2 Jax
Bd J p1y2

+ > 1+t Vidx

+ C(1+ ) 7 H (t) + C8*(1 + £)FHENV2-6/2)
(L+)7"H,(t) (1+1) (126)
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foranyt € [T}, 00).
Using Gronwall’s inequality on [T, ], (123) and noting
B+3A/2-5/2>-1,3/5< A < 1, we have

H@+ C[ [ UV + ) + (09 IviEas

<C J 1+ t)ﬁ”“fxmp(s)ds - PV, - %P'(V)Vf}dx

v

+ [; J (1+6)P'V2dx + H (T,) + C8*(1 + t)FteV/2-6/2

1
< Ce J 1+ t)ﬁ”lVX|2dx *3 J 1+ V2idx

+ H,(T,) + C8*(1 + 1) OW2-61), (12)

which together with (73) and Proposition 3.1 deduce (99) and

(100), in view of the smallness of eand 8 + 31/2 — 3/2 > 0.
Hence, we complete the proof of Lemma 4.1.
Furthermore, we can get the better decay rate of the func-

tions V, and V, as follows. O

Lemma 4.2. Under the assumptions of Theorem 2.4, if € is
small enough, it holds that

t
@+t (VI + V) + | e olvfPas

2 2 3 (128)
< C(IVoll; + 10l +8), for 0<A< 2.
For3/5 < A < 1, we have
7= (VI V) = c(vill Ul +). - 129
and
J W+ 9PV Fds < ca+ 0 33 ([, [} + Ul +9),
(130)

forany3/2-(31)/2 < B <A

Proof. Multiplying (117) by (1+¢)'™, for the case of
0 < A < 3/5, and noting 5 = A, we have

;jt J [(1 +t)1+A

d 1+ V AV+V B 1 .
< dr J (I+¢) A(J, p(s)ds — p(MV, — 5P (V)sz)dx

v

-1+ )P @V ]dx+C J (1+ 1)V} dx

—(1-) J 1+1) (JV p(s)ds — p(WV, - %p'(V)Vf)dx
C J (A +'V -1+ p @)V} )dx
+C J (1+)'V2dx + C8*(1 + £)MD762 4 €82 (1 + 1) WD=G2),
(131)

Integrating the above inequality in ¢ over (0, t), using (98), we
get

t
1+ t)*“(||vt||2 + ||Vx||2) + Jo(l + s)||Vt||2ds < C(||VO||T + ||U0||2 + 6),
(132)

11

for0 < A < 3/5.

This completes the proof of (128). For the case of
3/5 < A < 1, we can use the similar method to obtain (129)
and (131).

Next, we will derive decay rates on the higher derivatives
of the global solution V'(x, t). O

Lemma 4.3. Under the assumptions of Theorem 2.4, if € is
small enough, it holds that

A+ 2Vl + Vi)
t
+ JO((I + s)’m" t|| +(1+ s)”“”Vxx"Z)ds

<C(Vill + Uil +8). for 0<A<Z (139
For3/5 < A < 1, we have
A+ 07 (VP + 1VlF) = CIVGlE + UG +6). - 139)
and .
[ (@ e 2y s
<CA+ D4 U] +6), (135)

forany3/2-(31)/2 < B < A

Proof. Multiplying (74) by (1+t)*"*V,, and integrating
the resulting equation with respect to x over R, by using
integrations by parts, we can get

1d

2dtj[(ut)“”v -1+ p' @V |dx

Joc(l +0PV2dx = @ J (1+ 6P V2 dx
_BrA J (1+ )P p' @)V dx - % J (1 + ) p" @)W, V2 dx
J 1+ 0P p" @7 |V, V,dx - I (1 + ) p" )7, V.V, dx

(1+ 8 " B9 V.V, dx + J (1+ PV, dx = Z L,

(136)

By using the Cauchy-Schwarz’s inequality, Lemma 2.2 and
Corollary 2.3 to address the following estimates

L,+L,<C J A+ N(VE+VE)dx,  (137)
L,<Cé J (1 + t)PrV-CRIV2 gy (138)

L,< 1“—6 J (1+t)fV2idx+C J 1+t |'Vidx
o (139)

<& j (1+ V2 dx + Co* J (1+ 22y,

Lis o J (1+/Vidx+C J (1+ 0Py, PVidx

ﬁ B 2 B-A-3y 2

16J(1+1‘) thx+C6 J(l+t) V. dx, (140)
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and
L¢< 1‘x_6 J 1+ t)ﬁVjtdx +C J 1+ t)ﬁ+u|7x|2V)fxdx
106—6 J 1+ t)ﬁV dx + Ccs? J 1+ t)ﬁﬂijdx. (141)

Now, we turn to estimate L, as follows:
B+21 B+2A-1
= ,[(1 + t)ﬁMFxthdx = J [% (v, )P + A+
o o
P07 = A+ 07 (p(V, +749) = p3) = POV,
Jr(lthﬂM1 (P( +)7P’ X]Vx[d'x _ZMk

(142)
- J 1+ 0P (p(V, +7 +7) - p(@) — pTIV,).V,dx

1d
<1+
D &
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By using Lemma 2.1, Lemma 2.2, Corollary 2.3 and a priori
assumption (97), we have

IN

sl als F= 5=

M, j (1+1fV2dx +C j (1+ 8y [Pdx

(1 + )P V2dx + C8*(1 + t)f eV~ (143)

IN

=
IN

IN

j (1+0fV2dx +C J (1+ P25 Pdx

2 2 31/2)-(9/2
1+t Vidx + CO* (1 + )P OV gy

j (P'(V, +7+7) - p'(¥))V:2dx - % J A+ )P "V, +7+9)(V, +7, +7,) - p"(#)7,) V2 dx

+ J 1+ )PP (V, +7+7) - p'®@) - p' W)V, )7,V dx + J 1+ (V. +7+9)9 V,, dx

1d
2dt

I/\

J 1+ )PP (V, +7+7) - p'(3)V2dx - ﬁT” J (1+ )P (P (V, + 7 +7) - p'(¥)) V2 dx

+C(e+9) J (1+6)PV2 dx - J A+t Vv, (p' (V. +v+7) - p'(¥) - p" WV, )dx

J(1+tﬁ“\ v, (p"(V.+v+79) -

J 1+ )PV 59 p"(V, +7 +7)dx - J A+ )PV 5 p"(V, +7+7)(V,, + 7 +7)dx

- J 1 +t)f"v o p' (V. +7 +7)dx

1d
2dt

(7))Vydx - J (1 + )22V, (p"(V, + 7 +7) - p" ) - p"' W)V, )dx

(145)

< - j(1+t)ﬁ”(p(V +V+7) - p'W)V dx+—j(l+t)ﬁthx

£ Ce+0) j (1+ F V2 dx + C5? J (1+ £ 2V2dx + CEX(1 + 1)FrOV2-012),

and

«
16
+C J 1+ P2 ((p'(v,) - P @)7,) dx

< % J (1+6)PVZ2idx + CO*(1 + )P CH2-0/2),

M, < J (1 +t)fV2dx

(146)

Substituting (137)-(146) into (136), and noticing &,8
sufficiently small, we have

li J [( t)ﬁﬂ\

B+A 1
T —(1L+ P W)V, |dx

%J(l +1)PV2idx
4

< J 1+ )PP (V, + 7 +7) - p'(¥))V2.dx

NI»—A

dt
+C J 1+ (V2 + VE )dx

+C&? j (1+1)P?V2dx
+C82(1 " t)ﬁ+(3)t/2)—(9/2) +C82(1 n t)ﬁ—(3/\/2)—(7/2)‘ (147)

Multiplying (57), by —(1 + t)’V,_, and integrating the resulting
equality with respect to x over R", we have

i J [(1 +t)BVx

1+ ) v ]
7 2( +t) dx

M J (1+ ) V2dx - I 1+ 6 p' @)V, dx

:J(Ht)ﬁv dx+§—J(1+t)ﬁ y2gx

+ P (12_ ) J (1+ )P ?VZ2dx + J 1+t p"@)w V.V, dx

- J (1+t)’FV,_dx. (148)
It is easy to see that
B o [
1+t p' (v, V.V, dx<1—0 (1+t)de
C,
+cj(1+t)ﬁ|v|vczx< J(1+t)f’v dx
(149)

+C8? J (1+ P22V 2dx.
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a+pf

A
B+A-1
Ao, 0V, 74 9) - ) - P VL),

FrJom (39), we have

(1+ 0 FV_dx = 7J [ “

o

+(1+0P(p'(v,) - p'(?))?x]vxxdx.

(150)

By using Lemma 2.1, Lemma 2.2, Corollary 2.3 and a priori
assumption (97), we have

~ J (1+1t)F

_ C
» (v, ),V dx < 1—00 J (1+t)fV2 dx

c
iC J (140 fdx < 20 J (1+ 1PV dx

+ C62(1 + t)ﬁ+()t/2)f(7/2)’ (151)

X XX

~ J AL + )P

C,
! V..d
——p(n)7 x<1

J(1 +t)PV2 dx

+cj(1+t)’*+“ 27, fx < 22 J(Ht)ﬁv dx

+CoM1 + t)ﬁ+<A/2)—<7/2>’ (152)

[ @t pv.+7+9) - p3) - POV, Verdx
— Wt [P (V47 47) - P P)VEdx

+(1+1)f J (P'(V,+v+9) = p'®) - p" W)V, )7, V,, dx

10 J PV 47499V, dx <C J (1 + OF(|V.] + [9)V2.dx

+ % J (1+0)PV2 dx + I A+ 0° [ | (197 +|v, |4)dx

iC J (1 + 07, Pdx < Cle + ) J (1+1)PV2 dx J (1+ V2 dx

+ 08 J (1+ 0 'V2dx + C8¥(1 + t)ﬁ*““)‘"“), (153)
and

[ a0/ ) - P @)V

<& J (1+0PV2 dx

+C [+t (p(v) - P )7 dx
C—O J (1+0PV2dx + C8*(1 + p)f V262 (154)

Substituting (149)-(154) into (158), and using the smallness
of 8, &, we have

4 J [(1 +)PV. v,

dt
L d0-p)
2

< J (1+6)PVZidx + l;% J (1+t)P'V2dx
B(1-B)
el

—(1+t)‘8 A ]dx

c
J (10 Vi 22 j (1+ V2 dx

(1+ )P ?V2dx + C&* J (1+6)f'V2dx

+ CO(1+ 1P D0 C(1 4 1) VD62 (155)
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Multiplying (147) by h and adding up the resulting inequality
and (155), we get

4 J [(1 A

o A2
—1+tfv,
7 2( )V

(1 +1)PV2

+aM;MJ

(1 PV ]dx

C
(1+ )P V2dx + 70 J (1+1)PV2 dx

+ (%h - 1>J(1 +1)PV2dx
hd
T 2dt

Bd

+Ed_J(1+t)ﬁ 1de+CJ(1+t)‘BA 'W2dx

[ a9 - P m)Vids

+Ch J 1+ (V2 + VE )dx
+ CO(L + D0 a1 4 pFC6ID (156

Multiplying (157) by (1 + t)**, we have

% I [(1 MV Y+ g(1 +1)fy?

¥ ﬁ(l +t)ﬁ+2/\+l 2

L a0-p)
2

(1 L V2 ]dx

J (1+ 6 V2dx + =2 3 J (1+tF™V2 dx

+ (@ - 1) J (1 + 6™ v2dx
2

< %dg J’ 1+t (p'(V, + 7 +79) - p'(¥))VEidx

P4
2d

+Ch J (1 + 0P (V2 4V )dx + CO (1 + 1) V26

J (1+)F"V2dx + C J (1+6)fV2dx

+CO* (1 + )P VD=6 4 ¢ J 1+t (p'(V, +7 +7) - p'(@))VE dx.

(157)

Case 1 (0<A<3/5). B=Ah=6/a. There exists
constant T, >0, such that for any t>T, it holds
Ch(1 + )™ v < min{C,/4, 1/2(ah/2 — 1)}. Therefore, ift > T,
from (157), we have

d +
SO +C J A+t (V2 + VE )dx

gdi j A+t (p'(V, +v+7) - p'(¥))V2dx

A
+ 5% J (1+6)*V2dx+C J (1+0)'V2dx
+ C82(1 + t)(S)L/z)—(S/Z) + C82(1 + t)fwz)f(a/z)) (158)
where
Hy(t) ~ (1 + VI + (1 + )V P+ ()2 [V [

(159)

Integrating (158) on [T, t] with respect to the time t and using
(98), (126),0 < A < 3/5, we have
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U O IVl Il + [ 9 (Vo V)t

< C(H,(T,) + Vol + U, +0)-

(160)
From (160), (53) and (54), we have for any ¢ > 0

t
1+ t)””("Vxx”2 + ||th||2) + Jo(l + s)ZMI(HVm"2 + ||th||2)ds
< C(IVoll; + U] + 6).
(161)
Multiply (147) by (1 + t)? with B = A, we have

J (14 PV2 - (1 + PP P @)V, ]dx

[¢
J (1+ )" V2idx 1d J 1+ (p'(V, + 7 +7) - p'(@)VEdx

2
CJ (+ P (V2 + V2 )dx+c52 J (1+6'V2dx
+C8° (162)

(1 +t)(5/\/2) (5/2) +CO(1+1)” (A/2)-G12)

Integrating (162) on (0, t), using (98), (161) and 0 < A < 3/5, we
have (133).

Case2(3/5 < A < 1). Inthiscase, wetake3/2-31/2< B < A
There exists constant T, > 0, such that for any t > T;, it
holds Ch(1 + t)* ! < mln{ o/4,1/2((ah)/2 — 1)}, where we
choose h = 6/a. Therefore ift > T, from (157), we have

diH t)+C J A+ *(VE + V2 )dx+C J (1+t)PV2dx

gdi J 1+ )PP (P (V, +7+7) - p'(®)VEidx
gd— j (1+ P "V2dx 4 C J (1+ 1P V2dx

+Co1 +t)/s+(3/\/2) (5/2) (163)

where

Hy(t) ~ (1+ PV, * + @+ 0P (VI + Vi)

(164)

Integrating (163) on [T, t] with respect to the time ¢ over
[T, t] and using (98), (128),3/5 < A < 1, we have

H3(t)+J U+ P (Vi + [Vl )l

< HI) 4 GO+ PO U ),

which, together with (51), (52), and S+3A/2-3/2>0,
yields

A+ PPV + WValP) + [ 0 (IVell? + IVl s

< CU+ F VTRV T+ U, ] + ).
(166)
Finally, multiplying (147) by (1 + t)°, we have
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% [(1+F2VE - (1+ 02 p )V, |dx

N =

1+ 6)P?V2dx ; J 1+ P2 (P (V, + 7 +7) - p'(9)V2dx

OC

5

e J (L F(V2, 4 V2 )dx + C J (1+0)fV2dx
+C&? 1+ t)ﬁ+(3/\/2)—(5/2) +C8(1 + t)ﬂ—(S/\/Z)—G/Z)_ (167)

Integrating the above inequality over (0,t) and using (99),
(100), and (166), we get

e (A e A Y P T

<CL+0)f375( (168)

Voll + U [ +6),

which combining with (166) gives (134) and (135). This com-
pletes the proof of Lemma 4.3.

Similar calculations to Lemma 4.3 yield the following
lemma, the proof of which is omitted. O

Lemma 4.4. Under the assumptions of Theorem 2.4, if € is
small enough, it holds that

™ (Ve + Vo)
t
o R L R mn ")

<C(IVoll; + Ul + ), for 0< < g

(169)

For3/5 < A < 1, we have

SRRl (o o AW Yo (VA R O )

(170)

and

t
[[(0 9P 08

<CO+pFEOD (s oy B +o), 7D

forany3/2-3A/2 < B <A

With Lemmas 4.1-4.4 in hand, by the Sobolev inequality,
it is easy to know that if 0 < A < 3/5,

[V Olle = €y D, + Ul +8) <,
(172)

[V Ol < €A+ XD+ U, +8) < S +0)7,
(173)
and

VoDl < €O 07V + Uyl +87°)

€ ~(A+1/2)
< —(1+t .
<10 (174)

Andif3/5 < A < 1, we get

[V Ol < CA+ 2 (Vo + U, +67) < 5. 175)

€
2
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Va0l < €0+ 07 (ol + Ui, +6) < S0+ 7,

(176)

and

Vi Dll i = CA+ 07 (IVoll + Ul +82) < S0 5y
(177)

provided |V, |, + |U||, + 8 < 1. Up to now, we thus close a
priori assumption (97) about (V,,V,,,V, ) from Lemmas
4.1-4.4.

For the decay rates of U =
lemmas.

V., we give the following two

Lemma 4.5. Under the assumptions of Theorem 2.4, if € is
small enough, it holds that

1+t UI + @+ (Ju ] + U, )
+ Jt((l UL + (1 UL )ds
0

< C(IVoll + U +8), for 0<A< g

(178)
For3/5 < A < 1, we have
(1+ 7P DGR 1 (1 4+ P2 (|, + U, )

< C(IVollz + Ul +6),

(179)
and ,
[ 9o+ @ s 9o s
0 (180)
< CL+ 0 CCR(I [+ U, [ +6),
forany (3/2) — (3A/2) < B < A.
Proof. Differentiating (57), with respect to t, we get
A
U, +(pOV,), + ——U = —2 _U+EF
POV O g U (181)

Multiplying (181) by (1 +t)’**U, and integrating the
resulting equality in x over R", and after tedious calculations,
we have

1d B+Arr2 B+A 1 =y 72 o 812
55“(1”) Uy —(1+1) p(v)Ux]dx+5J(1+t) Uldx

%di J L+ 0P (P (V, +7+79) - p'@)U2dx + C J (1+ 020

+C J (1+6yf™'U2dx + ﬁ% I (1 + P 'Uldx
+Co? I (1+ FV2dx

+ C&* J 1+ t)ﬁ*Z)rZijdx +C8(1 + t)’S*(S”Z)*(H .

(182)

Similarly, multiplying (181) by (1 + t)ﬁ U, from Lemma 4.2 and
after complicated calculations, we have
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d o
B «a B-Ay 72
o I [(1 +1)PUU, + 2(1 +t)" U ]dx

a(A - B) B-A-1 G, B
s I +HF MRy 4 20 J(1+t)de
< J(1+t)ﬁdex+§%

ﬁ(lz— B) J

J 1+ Udx

(1 + )P U%dx

#CO [ (140 2Vidx + CO(1+ OV,
(183)

Multiplying (172) by h and adding up the resulting inequality
and (173), we get

d B @ B-Ar 12 h B+A
dtj[(l+t)UUt+2(1+t) U+2(1+t) U

- 2(1 +1)Prh p’(v)Uj]dx

oc(Az— B) J

C,
1+ U%dx + - J (1+)PU2dx

ah B2 Eij pra
+<2 1>J(1+t)Utdx 57 1+1)

PV +7+9) - p'(¥)U2dx + g% J (1+ )P 'Udx
+C J 1+ U%dx+C J 1+ t)ﬁ”’l(Ui + Uf)dx

+C8? I (1+ 1 2V2dx + C6? J (1+ P22 gy

" C52(1 + t)ﬁ+(3l/2)*(9/2).
(184)

Case 1 (0 < A < 3/5). In this case, we take = A, h =6/
Multiplying (184) by (1 + t) L1+ 1) 2 ,(1+1)° respec-
tively, then integrating the resulting equations and (4.88)
with respect to t over [0, t] respectively, we have

+[u.lP)

t
o [ e 92 (U + Ul )as
< (vl + Uil +6).

1+ 02U + (1 + (||’

(185)

Multiplying (182) by (1 + £)*™, and integrating the resulting
equation with respect to ¢ over [0, t], we have

t
A+t (W +Jud)+ | @9 lu s

186
<C(IVill + U, +0). (159

Combining (183) and (184), we get (178).

Case2(3/5 < A < 1). Inthiscase,wetake3/2 - 31/2 < B < A,
h =6/a. There exists constant T; > 0, such that for any
t>T, it holds C(1+t)*" < min{C,/4,1/2((«h/2) - 1)}.
Multiplying (184) by (1 + ), we have
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jt J- [(1 +)PPUU, + 2(1 + )P0 4+ (1 +t)Fy?
- 2(1 +1)FHAe p’(v)Ui]dx

C
+ 7" J (1+6)P?U2dx + (%h - 1> J (1+)PUldx

< gdi J 1+ P2 (P (V, + 7 +7) - p'(#)UZdx
gd Ju L PR dx+CJ(1 + P MU dx

+C[ e (U4 U)dx+ €8 [ (14 0 Vids
+Cs° J (1 + 6)2MV2 dx + C8*(1 + P62,
(187)

Ift > T, integrating (187) over (T, t), using (99), (100), (127),
(128), (132) and (135), we get

t
O+ [ @+ (U + Ul )ds (189)
< Hy(T) + 1L+ 0P O (V4 U, [} +8),

where

Hy(t) ~ (1 + P2 U + (1 + 0F2(|U, | + |U.).
(189)
Next, if 0 < t < T, from (187), we know

d

ZHs(t) +C J (1+t)?Udx +C J (1+t)PUldx

S%J’(l+tﬁ+“2( 'V, +v+7) - p'(v)Uldx
+C(1 + 1) Hy(t) + C& j (1 +t)fV2dx

+C&° J (1+6)PPAV2 dx + CS* (1 + £)FOVIC2),
(190)

Then using Gronwall’s inequality, (99), (100), (134), and (135),
and noting that § + 31/2 > 3/2, we get

@)+ (10 9P (U + U s

<C(1+ t)ﬁ*<“/2>*(3/2>(||v0||§ +]|u, |} + 8), foranyt € (0,T].
(191)
From (191) and (188), we have
t
H(0+ | @9 (Ul + U )ds
<C(1+ t)ﬁ+(3)”/2)7<3/2)(||V0||2 +|u|? + 6), forany ¢ € (0, 00).

(192)

Multiplying (182) by (1 + t)*™*, and integrating the resulting
equation with respect to ¢ over [0, t], we have
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t
@t (U + )+ | @ s
0

< CL+ P ORIV + U+ 0) (13)

Combining (192) and (193), we get (179) and (180). Therefore
we completed the proof of Lemma 4.5.

Similar to the proof of Lemma 4.5, we can get the following
estimates. d

Lemma 4.6. Under the assumptions of Theorem 2.4, if &, are
small enough, it holds that

™ (U + Ul) + J(HS)MII P+ @ 9 U )

3
C(IVoll + Ul +0), for 0<A< 2.

(194)

For3/5 < A < 1, we have

A+ 0O+ ) < C(VolE + Uil + ),
(195)
and
t
1+ u_|I° + 1 +s)P™*|U
Jlas oo e e flas

< CU+ P ER(V 7+ U, +0),

forany3/2-3A/2 < B <A

Recalling Lemmas 4.1-4.6, we completed the desired decay
estimates (42), (43), and (44).

Bytaking f = A =1/7,v = landk = 1lin Lemmas 4.1-4.6,
Theorem 2.6 can be shown by slightly modifying the proof of
Theorem 2.4, and therefore, we omit its proof here.
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