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The phase field crystal (PFC) method is a density-functional-type model with atomistic resolution and operating on diffusive time
scales which has been proven to be an efficient tool for predicting numerous material phenomena. In this work, we first propose a
method to predict viscoelastic-creep and mechanical-hysteresis behaviors in a body-centered-cubic (BCC) solid using a PFC
method that is incorporated with a pressure-controlled dynamic equation which enables convenient control of deformation by
specifying external pressure. To achieve our objective, we use constant pressure for the viscoelastic-creep study and sinusoidal
pressure oscillation for the mechanical-hysteresis study. The parametric studies show that the relaxation time in the viscoelastic-
creep phenomena is proportional to temperature. Also, mechanical-hysteresis behavior and the complex moduli predicted by the
model are consistent with those of the standard linear solid model in a low-frequency pressure oscillation. Moreover, the impact
of temperature on complex moduli is also investigated within the solid-stabilizing range. These results qualitatively agree with
experimental and theoretical observations reported in the previous literature. We believe that our work should contribute to
extending the capability of the PFCmethod to investigate the deformation problemwhen the externally applied pressure is required.

1. Introduction

The phase field crystal (PFC) method has emerged as a com-
putational model with atomistic resolution and diffusive time
scale. The method has an advantage over molecular dynam-
ics (MD) in terms of the time scale that is not restricted by
lattice vibration time; this is due to the specification of the
order parameter as the local-time-average atomic number
density and the evolution of the order parameter through dis-
sipative dynamics. The method also has advantage over the
phase field (PF) method in terms of atomic resolution and
self-consistency; this benefit stems from the free energy func-
tional that can be minimized by the periodic order-parameter
field whereas the free energy functional of the PF method is
formulated by a spatially uniform field which diminishes
numerous physical features that occurs due to the periodicity

of crystalline phases, e.g., spatial symmetry, elastic and plastic
interaction, nucleation, multiple crystal orientations, and
motion of dislocations [1–3]. The PFC method was first
introduced by Elder et al. [1, 2] and has been extensively used
to study material phenomena and behavior ranging from
phase transformation [4, 5] and topological defect dynamics
(vacancy [6], grain boundary [7–9], dislocation [3, 10, 11],
and crack [12]) to elasticity and elastic constants [13–15]
and plasticity [11, 16]. Moreover, the PFC method was also
interpreted and derived according to the classical density
functional theory (CDFT) of the freezing point of view [4].
This derivation provided an additional field variable which
extended the capability of the PFC method to investigate
the material phenomena in a more complex situation such
as phase transformation [4, 17] and segregation-induced
grain-boundary premelting [18] in binary alloys.
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Although there were numerous successful PFC studies on
the mechanical behavior of materials, such as elasticity, plas-
ticity, and phase transformation in pure materials and binary
alloys, the investigation of viscoelastic behavior and the
related properties predicted by the PFC model is still limited
and not thoroughly explored. Thus, it is of interest to study
the capability of the PFC model to predict these phenomena.
Viscoelasticity is the behavior with both viscous and elastic
characteristics; thus, materials with viscoelastic behavior
can return to their original configuration when unloaded
but do so in a time-dependent manner. The viscous property
also leads to the fact that material response depends on the
rate at which it is deformed [19, 20]. Viscoelastic effect has
played significant roles in many materials ranging from
amorphous polymers [21], semicrystalline polymers [22],
biopolymers [23], and bitumen materials [24] to metals at
very high temperature [25]. Furthermore, viscoelasticity gov-
erns many engineering applications in various fields includ-
ing damping material design for noise reduction [26, 27]
and vibration control in engineering structure [28], shape-
memory ceramics and polymers [29], piezoelectric materials
[30], self-healing materials [31], viscoelastic gels in surgery
application [32], low-loss materials [33], and nanoscale reso-
nators [34, 35].

In quantifying the viscoelastic effect, there are three types
of studies: viscoelastic creep, stress relaxation, and mechani-
cal hysteresis. In this work, we not only focus on the visco-
elastic creep but also extend our study to mechanical-
hysteresis behavior and its related parameters in a body-
centered-cubic (BCC) solid (3D case) predicted by the PFC
method, unlike our previous works [36, 37] which were solely
limited to viscoelastic creep in a one-dimensional (1D case)
crystal study; moreover, the mechanical-hysteresis behavior
and its related parameters were not addressed in those works.
Since the studies of viscoelastic creep and mechanical hyster-
esis involve measuring the strain response from an applied
stress, we also need a method to control the applied stress,
and thus, we employ the PFCmodel that is incorporated with
our previously proposed pressure controlled dynamic (PCD)
equation [37]. The use of the PCD equation enables conve-
nient control of deformation using external pressure which
allows studies of experimentally observed phenomena
involving a system under different types of applied pressure;
we will refer to this particular PFC method as the PFC-PCD
model. The PCD equation is similar to the dynamic equation
introduced by Kocher and Provatas [38]. They used their
PCD equation to control internal pressure by specifying
external pressure to investigate the full spectrum of solid-
liquid-vapor transitions; unfortunately, the viscoelastic-
creep and mechanical-hysteresis behaviors which can be pro-
duced from that equation were not the focus area and, of
course, not addressed in their study [38]. The difference
between two PCD versions is due to the different derivation
process in which our version is established regarding the
thermodynamics of a hydrostatically stressed crystal solid
proposed by Larché and Cahn [39] and classical irreversible
thermodynamic frameworks [40–42]. Moreover, the devia-
tion of viscoelastic-creep behavior in 1D crystal between
two PCD versions was also investigated in our previous study

[37]. The advantage of the PCD equation is that it enables the
external pressure to be specified as an input to the simulation,
which allows the system volume, or the strain response, to
be measured; this is in contrast to the conventional PFC
simulations where volume, or grid spacing, is an indepen-
dent variable [43].

For the investigation of viscoelastic behavior, we simu-
late a hydrostatic stress via a BCC solid subjected to two
types of applied pressure: constant pressure for the
viscoelastic-creep study and sinusoidal pressure oscillation
for the mechanical-hysteresis study. We find that, in both
cases, the solid exhibits delayed strain responses from the
applied pressure which is indicative of viscoelasticity, and
the degree of viscoelasticity can be controlled by the
parameter in the PCD equation. Furthermore, the strain
responses from the simulations can be compared with
functional forms of the solutions to the standard linear
solid model to extract viscoelastic quantities and proper-
ties. These properties include relaxation time of viscoelas-
tic creep and the complex moduli from the hysteresis.
The parametric studies show that the relaxation time is
proportional to temperature while the magnitude of defor-
mation at steady-state condition is proportional to both
temperature and atomic density. Also, the dynamic behav-
ior, mechanical hysteresis, and complex moduli predicted
by the PFC-PCD equation under sinusoidal pressure oscil-
lation are consistent with those by a standard linear solid
model at a certain frequency range. However, at high fre-
quency range, the behavior exhibited by the PFC-PCD
model differs from that by the standard linear solid model.
The reason behind this difference is thoroughly analyzed
by conducting Taylor’s expansion on PCD equation in
Appendix C. Moreover, the impact of temperature on
complex moduli is also investigated, and the results well
agree with experimental and theoretical observation. We
are positive that our work should provide the extension
of capability for the PFC method to investigate the defor-
mation problem in a real crystalline solid when externally
applied pressure is necessary.

This paper is organized as follows. In Section II, we
provide the background information on the PFC method,
the pressure-control dynamic equation, and the standard
linear solid model. In Section III, the method of simulation
is presented. The results and discussions are provided in
Section IV, and we conclude the work with the summary
in Section V.

2. Background

2.1. PFCMethod. The PFCmethod is characterized by its free
energy functional and the dynamic equation. The simplest
free energy functional was introduced by Elder and
coworkers [1, 2]:

ℱ =
ð
w ρð Þdr, w ρð Þ ≡ ρ

2 at + λ q20 + ∇2� �2h i
ρ + gt

ρ4

4 ,

ð1Þ
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wðρÞ is the free energy density; at , gt , λ, and q0 are fitting
parameters; and ρ is the atomic number density field. This
PFC free energy functional can be minimized by a constant
ρ profile, representing a liquid phase, and a periodic ρ pro-
file, representing a crystalline solid phase. The density peri-
odic field ϕ can be expressed in terms of Fourier expansion
of the form

ϕ r, �ρð Þ = �ρ +〠
j

Aje
iG j ⋅r + c:c:, ð2Þ

where Gj is a reciprocal lattice vector (RLV), Aj is an
amplitude of the density wave corresponding to Gj, �ρ is
an average atomic number density, and c.c. denotes a com-
plex conjugate. The minimization of F essentially results in
the truncation of the summation in Equation (2) to terms
with small values of jGjj as the terms with higher values
of jGjj have vanishingly small Aj. Consequently, this partic-
ular PFC model (Equation (1)) favors crystal structures that
can be constructed from a single set of RLVs such as stripe,
hexagonal, and BCC structures in one, two, and three
dimensions, respectively. To this end, one can construct
the so-called “one-mode” approximation of the BCC crystal
by limiting the terms in Equation (2) to those correspond-
ing to h110i RLVs or jG jj = 2π√2/La, where La is the lattice
parameter. By assuming that Aj of the terms with the same
jGjj are equivalent, one obtains

ρone = �ρ + 4As cos qar1ð Þ cos qar2ð Þ + cos qar1ð Þ cos qar3ð Þ½
+ cos qar2ð Þ cos qar3ð Þ�,

ð3Þ

where qa = 2π/La and As is the density-wave amplitude.
To simplify the expressions in Equation (1), one can non-

dimensionalize the variables by using the following substitu-
tions [2]:

~r ≡ q0r,

~∈ ≡ −
at
λq40

,

~ρ ≡
ffiffiffiffiffiffiffi
gt
λq40

r
ρ,

~ℱ ≡
gt

λ2q8−d0
ℱ ,

~w ≡
gt
λ2q80

w,

ð4Þ

where the quantities with tildes are nondimensional and
d = 3 is the dimensionality of the problem. The expres-
sions in Equation (1) simplify to

~ℱ =
ð
~w ~ρð Þd~r, ~w ~ρð Þ = ~ρ

2 −~∈ + 1 + ~∇2� �2� �
~ρ + ~ρ4

4 , ð5Þ

where ϵ can be interpreted as the degree of undercooling
which is inversely proportional to temperature. The one-
mode approximation of the BCC crystal becomes

~ρone = ~�ρ + 4~As cos ~qa~r1ð Þ cos ~qa~r2ð Þ + cos ~qa~r1ð Þ cos ~qa~r3ð Þ½
+ cos ~qa~r2ð Þ cos ~qa~r3ð Þ�,

ð6Þ

where ~qa = qa/q0 = 2π/ðLaq0Þ = 2π/~La. The value of ~qa can
be determined from minimization of the free energy den-
sity [44] leading to ~qa = 1/

ffiffiffi
2

p
and, consequently, ~La = 2πffiffiffi

2
p

.
One can also approximate the ranges of ~∈ and ~�ρ where

the BCC solid is stable. This is achieved by calculating the
free energy density of the solids using the one-mode approx-
imations for stripe, hexagonal, and BCC structures and the
free energy of the liquid using a uniform density. Then, the
phase diagram can be determined from the common tangent
construction, and the ranges of ~∈ and ~�ρ where the BCC solid
is stable can be obtained [45].

The evolution equation for ~ρ is the Cahn-Hilliard type
which involves dissipative dynamics and mass conserva-
tion [2].

∂~ρ
∂~t

= ~Lμ~∇
2
~μ, ~μ = 1 − ~∈ð Þ~ρ + ~ρ3 + 2~∇2

~ρ + ~∇4
~ρ, ð7Þ

where ~Lμ is the mobility coefficient and ~μ = δ ~ℱ /δ~ρ is the
diffusion potential. This equation can be used to simulate
evolution of ~ρ under specified (or fixed) temperature
(from the value of ~∈), mass (from the value of ~�ρ), and vol-
ume (from value of grid spacing); typical simulations
under this condition are solidification and microstructural
evolution. One can also vary the grid spacing to simulate
the evolution of the density profile under specified time-
dependent deformation [43]. In the context of the visco-
elastic behavior, this technique would be appropriate for
the stress-relaxation calculation; however, for the
viscoelastic-creep and mechanical-hysteresis studies, where
the system is subjected to specified external stress, an
additional dynamic equation is needed.

2.2. Pressure-Controlled Dynamic Equation. The study of
viscoelastic creep and mechanical hysteresis involves
specifying the external stress, or, in this study, external
pressure, and investigating how the (average) internal
pressure

~�Pint =
1
~V

ð
−~f + ~μ~ρ
� �

d~r, ð8Þ

changes temporally; this requires the dynamic equation
that contains external pressure as an independent vari-
able. Such equation, referred to as the pressure-
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controlled dynamic (PCD) equation, was first introduced
by Kocher and Provatas [38] expressed as

d ~V

d~t
= ~Ldef′ ~�Pint − ~�Pext

� �
, ð9Þ

where ~�Pext is the externally applied pressure and ~Ldef′ is
the mobility coefficient. This equation can be used in
conjunction with Equation (7) to simulate the system

under specified ~�Pext. If the external pressure is higher

(lower) than the internal pressure, or ~�Pext > ~�Pint
ð~�Pext < ~�PintÞ, the value of d ~V/d~t will be negative (positive)
which indicates that the system will undergo compressive
(tensile) deformation.

A slightly modified version of the PCD was recently pro-
posed by Em-Udom and Pisutha-Arnond [37]. The equation
is expressed as

d ~V

d~t
= ~Ldef ~V

~�Pint − ~�Pext
� �

, ð10Þ

where ~Ldef is the mobility coefficient. This equation was
developed using the principle of thermodynamics of a hydro-
statically stressed solid [39, 46] and classical irreversible ther-
modynamic framework [40–42]. The comparison between
results between Equations (9) and (10) shows that the
steady-state behavior obtained from both equations is identi-
cal; however, the nonequilibrium behaviors are different.
This difference is due to the extra volume term (~V) on the
right-hand side of Equation (10). This extra volume term
results in a higher deformation rate in tension (due to
increasing ~V) than the deformation rate in compression
(due to decreasing ~V). Nevertheless, for small deformation,
the numerical difference from Equations (9) and (10) is
unlikely to change the qualitative interpretation of the
results. Despite the fact that we employ Equation (9) in this
work, the choice of the PCD equation is immaterial for this
study. Hereafter, we will refer to the PFC method that incor-
porates the PCD equation as the PFC-PCDmodel. Lastly, the
tilde notation will also be omitted for simplicity. More detail
on the PFC-PCD model is provided in Appendix A.

2.3. Standard Linear Solid Model. We review the standard
linear solid (SLS) model which is a method of modeling vis-
coelasticity using linear combinations of springs and
dampers as shown in Figure 1. The strain response from this
model will be compared with that from the PFC-PCD simu-

lation in order to extract viscoelastic quantities and proper-
ties. The governing differential equation for the SLS model
is [20, 47]

E1 + E2ð Þ de
dt

+ E1E2
η

e = E1
η
σ + dσ

dt
, ð11Þ

where e is the strain response from the applied stress σ. Equa-
tion (11) can be written in simple form as follows:

de
dt

+ Ke = σ′ + τ
dσ′
dt

, ð12Þ

where K = E1E2/ðηðE1 + E2ÞÞ and τ = η/E1. The variable σ′ is
the scaled quantity defined as σ′ = σ/ðτðE1 + E2ÞÞ.

For the creep behavior, we consider the case where the
system (initially at zero stress and strain) is subject to con-
stant stress:

σ′ tð Þ = �σ′: ð13Þ

The corresponding strain is then

e tð Þ = e∞ 1 − exp −
t
τc

	 
� �
, ð14Þ

where e∞ = �σ′/K is the deformation at t =∞ and τc = 1/K is
the relaxation time; the subscript “c” indicates the creep phe-
nomena. The quantity e∞ is the deformation at steady state
while τc relates to the rate at which the system reaches the
steady-state deformation. The plot of the strain response
is shown as an example in Figure 2. For the hysteresis
behavior, we consider the system induced by harmonic
excitation given by

σ′ tð Þ = σA′ sin ωtð Þ, ð15Þ

𝜂 El

E2

Figure 1: Schematic illustration of standard linear solid (SLS)
model.
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Figure 2: Viscoelastic creep under step load at the same e∞ = 2 ·
10−3 condition and τc = 9:0 where t (x-axis) is the time variable
and eðtÞ (y-axis) is the strain response at time t.
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where σA′ is the stress amplitude, ω = 2πf is the angular fre-
quency, and f is the frequency. At steady state, the strain
response yields the following solution (see Appendix B):

e tð Þ = eA sin ωt − δð Þ, ð16Þ

where

eA = σA′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + τωð Þ2
K2 + ω2

s
, ð17Þ

is the strain amplitude. As a result, the amplitude ratio, Ar , is

Ar =
σA′
σA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + τωð Þ2
K2 + ω2

s
: ð18Þ

Also, the loss tangent factor,

δ = arctan 1 − τK
K + τω2

	 

ω

� �
, ð19Þ

defines the phase angle due to time-delayed response. From
the solution, the complex moduli (or dynamic modulus)
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Figure 3: Hysteresis behavior regarding the SLS model. (a) Complex moduli, storage modulus Gstorage′ (solid line on y-axis), loss modulusGloss′
(dashed line on y-axis) and loss tangent factor tan ðδÞ (dense dashed line on y-axis) established by the SLS model at conditions σA′ = 0:00075,
K = 0:3750, and τ = 0:1667 and frequency, f (x-axis), ranges between 0.01 and 100: box area depicts Figure 12(b). (b) Amplitude ratio, Ar (y
-axis), at frequency, f (x-axis), ranges between 0.004 and 10. (c) System response schematic demonstrates the phase lag between the stress or
pressure input at time t, σ′ðtÞ (solid line), and the strain response at time t, eðtÞ (dashed line). (d) Mechanical-hysteresis schematic plot; strain
response at time t, eðtÞ (x-axis), vs. stress or pressure input at time t, σ′ðtÞ (y-axis).
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can be defined from (all derivation details are given in
Appendix B)

Gcomplex′ ≡
σ′
eA

= K + jω
1 + jτω

= Gstorage′ + jGloss′ : ð20Þ

The quantity Gcomplex′ is a property of viscoelastic mate-

rials and can be written further as Gcomplex′ =Gstorage′ + jGloss′ ,

whereGstorage′ is the storage modulus andGloss′ is the loss mod-

ulus. The quantity Gstorage′ measures the stored energy and is

an elastic response of material while Gloss′ measures energy
dissipation and is a viscous response of a material. The
expressions for Gstorage′ and Gloss′ can be obtained from rear-
ranging the last equality in Equation (20), yielding

Gstorage′ = K + τω2

1 + τωð Þ2 ,

Gloss′ = 1 − τKð Þω
1 + τωð Þ2 ⋅

ð21Þ

The loss tangent, tan ðδÞ, is the ratio of storage and loss
modulus or tan ðδÞ =Gloss′ /Gstorage′ ; this quantity is a measure
of damping in the material.

The behavior of the SLS model, a function of excita-
tion frequency, is shown in Figure 3(a). At low frequen-
cies, tan ðδÞ or δ is low, which indicates that the system
behaves in an elastic manner. This is due to fact that the
dashpot in Figure 1 has sufficient time to displace, result-
ing in the stress and strain profiles that are almost in
phase. The value of Gstorage′ is relatively small compared
with that at higher frequencies due to large strain ampli-
tude (Figure 3(b)). At high frequencies, the system also
behaves elastically as seen from small tan ðδÞ; at this con-
dition, the change in stress is too rapid for the dashpot to

operate, and thus, the strain response is in phase with the
stress profile. Due to small strain amplitude, the value of
Gstorage′ is relatively large.

At intermediate frequencies, a considerable amount of
phase lag occurs, as shown schematically in Figure 3(c), show-
ing a more viscous behavior, and the stress-strain profiles can
be plotted to exhibit a hysteresis loop as shown in Figure 3(d)
where the area inside the loop represents the energy loss. At
the frequency where tan ðδÞ is maximum, the system exhibits
the highest damping capacity, and in real materials, this
condition is important for damping applications.

3. Method of Simulation

In this section, we describe the setup and method of simu-
lations. In all simulations, we construct a BCC unit cell
under hydrostatic pressure (Figure 4) with a periodic N ×
N ×N grid where N = 16 and the lattice parameter La = 2
π
ffiffiffi
2

p
; this results in the reference grid spacing, Δr0 =

ffiffiffi
2

p
π/8

in all dimensions, and the reference volume V0 = ð2π ffiffiffi
2

p Þ3.
The initial density profile is constructed with the one-mode
approximation in Equation (6), where the reference density,
~ρ0, is specified. The profile is then relaxed using the evolution
equation (Equation (7)), while fixing Δr = Δr0 and �ρ = �ρ0,
until the equilibrium density profile is reached. At this state,
the reference internal pressure, �P0, can be calculated using
Equation (8). Also, the numerical method employed to solve
the evolution equation, and also the PCD equation (Equation
(10)), is the Fourier pseudospectral method where the Fou-
rier transform is used to calculate spatial derivatives and

Pext

Pext

Pext

Pext

Pext

Pext
Z

Y

X

Figure 4: BCC unit cell under hydrostatic pressure schematic using
isosurface construction; σii = �Pext depicts stress in the fiig direction
where all σij components, shear stress components fi ≠ jg, are equal
to zero.

t

0 20

ΔP0 = 0.04

40 60 80
−8

−6

−4

−2

0

2

4

6

8

e (
t)

×10−3

ΔP0 = 0.03

ΔP0 = 0.02

ΔP0 = −0.02

ΔP0 = −0.03
ΔP0 = −0.04

Figure 5: Viscoelastic-creep behaviors, eðtÞ, under different values
of constant pressure, Δ�P0, at conditions j�ρ0j = 0:2600, ϵ = 0:2000,
and Ldef = 1 where t (x-axis) is the time variable and eðtÞ (y-axis)
is the strain response at time t. The results show the capability of
the PCD equation to control e∞ through Δ�P0.
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the forward finite difference scheme is used to discretize the
time derivative (see Appendix A). For the viscoelastic simula-
tions, the PCD equation is employed where different profiles
of �PextðtÞ are specified and the change in the volume is used
to update the grid spacing through the relation

Δr tð Þ = V tð Þ
N3

	 
1/3
: ð22Þ

We note that the grid spacing ΔrðtÞ is identical in all
directions due to the assumption of a crystal under hydro-
static stress. During the simulation, the mass conservation
is imposed by changing the average density through

�ρ tð Þ = �ρ0
V0
V tð Þ : ð23Þ

Also, the mechanical equilibrium is maintained through-
out the deformation process; this is accomplished by relaxing
the system using the evolution equation at every time step of
the time evolution from the PCD equation. The system
response is characterized by the strain defined by

e tð Þ = Δr tð Þ − Δr0
Δr0

, ð24Þ

which is identical in all directions. The profiles of eðtÞ and
�PextðtÞ are then used to quantify the viscoelastic behavior pre-
dicted form the PFC-PCD method.

Two types of �PextðtÞ are used in this study. For the visco-
elastic creep simulation, the applied pressure is set to

�Pext tð Þ = �P ext, ð25Þ

where �P ext is a constant. The values of �P ext are chosen such
that the pressure deviation from the reference pressure

Δ�P0 ≡
�P0 − �P ext

�P0
, ð26Þ

is positive or negative; the former leads to tensile deforma-
tion while the latter results in compressive deformation.
The quantities e∞ and τc are numerically extracted from
the strain response, eðtÞ, where e∞ is the values of eðtÞ at
large t and τc is the value of t at eðτcÞ = e∞ð1 − exp ð−1ÞÞ ≈
0:6321e∞ (see Equation (14) and Figure 2).

For the hysteresis simulation, the applied pressure is
set to

�Pext tð Þ = �P0 − �PA sin ωtð Þ, ð27Þ

where �PA is the pressure amplitude. The pressure devia-
tion from the reference pressure will then be

Δ�P0 tð Þ ≡
�P0 − �Pext tð Þ

�P0
=
�PA
�P0

sin ωtð Þ: ð28Þ

With this type of pressure function, the system is
then allowed to evolve temporally until the steady-state
strain response is reached. The strain response profile at
steady state will exhibit the sinusoidal behavior similar
to Figure 3(a), and we can numerically measure the strain
amplitude eA in order to calculate the amplitude ratio
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Figure 6: Viscoelastic-creep behaviors, eðtÞ, under different values
of Ldef at conditions j�ρ0j = 0:2600, ϵ = 0:2000, and Δ�P0 = 0:03
where t (x-axis) is the time variable and eðtÞ (y-axis) is the strain
response at time t. The results demonstrate the capability of the
PCD equation to control the relaxation time, τc, through Ldef .

0.175 0.18 0.185
𝜖

0.19 0.195 0.2
13.5

14

14.5

15

15.5

|𝜌0| = 0.248

|𝜌0| = 0.254
|𝜌0| = 0.26

c

Figure 7: Viscoelastic-creep parametric study under step pressure;
influence of temperature, ϵ (x-axis); parameter on relaxation time,
τc (y-axis); parameter at ϵ parameter ranges between 0.175 and
0.200 with three different atomic density, j�ρ0j, values. All
numerical experiments are based on step pressure input
(Δ�P0 = 0:02). It should be noted that the ϵ parameter is inversely
related to temperature.
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Ar = eA/�PA. When plotting the hysteresis loop as in
Figure 3(d), the complex moduli and loss tangent can
be calculated by numerically identifying the values of A
(pressure value at zero strain), B (pressure value at max-
imum strain), and C (maximum strain value). Then, we
evaluate the expressions G′storage = B/C, G′loss = A/C, and

tan ðδÞ =G′loss/G′storage. We note that in all hysteresis
simulations, �PA is set to 0:02�P0.

Finally, the values of �P0 and ϵ in all simulations are
restricted to the range of (−0.248, −0.260) and (0.175,
0.200), respectively. These values of �P0 and ϵ ensure the
stability of the bcc crystal as shown in the phase diagram
in Ref. [43].

4. Results and Discussions

4.1. Viscoelastic-Creep Behavior. In this part, we show the
viscoelastic-creep behavior exhibited by the PFC-PCDmodel
and demonstrate the dependence of this behavior on Δ�P0 and
Ldef . In Figure 5, we aim to show the strain response from dif-
ferent values of Δ�P0. The graphs show the strain, initially at
zero, increase or decrease gradually until the steady-state
values (denoted as e∞) are reached. These delayed responses
obtained from the simulations are indicative of the
viscoelastic-creep behavior; this means that the PFC model
combined with the PCD equation is capable of modeling vis-
coelastic behavior. Also, depending on the values of Δ�P0,
either tensile or compressive deformations are realized.
When Δ�P0 > 0, or �P ext < �P0, tensile deformation is obtained
while Δ�P0 < 0, or �P ext > �P0, results in compressive deforma-

tion. The magnitudes of e∞ (steady-state deformation) also
scale with the magnitudes of Δ�P0, as expected from the elastic
effect in the PFC model (Equation (1)).

Next, Figure 6 shows how viscoelastic behavior is
affected by Ldef . From the figure, the increase in Ldef
results in eðtÞ approaching e∞ at a faster rate, or smaller
τc; this means that the increase in Ldef leads to the faster
strain response or higher degree of elasticity. This result
demonstrates that Ldef can be used to adjust the degree
of viscoelasticity ranging from highly viscous to highly
elastic. The capability to control the degree of viscoelastic
creep can be used to tune the PFC-PCD model to different
types of materials.

The degree of viscoelasticity is also affected by ϵ (inverse
of temperature), as shown in Figure 7. From the figure, the
values of τc decreases as the values of ϵ increases for the range
of �P0 where the solid is stable. Since ϵ is inversely propor-
tional to temperature, this indicates that the system responds
faster, or becomes more elastic, as temperature decreases; this
prediction agrees with the experimental observation where
relaxation time in creep phenomena decreases with
temperature.

We note that the results from Figures 6 and 7 assume that
Ldef and ϵ are independent from one another. Nevertheless,
since both Ldef and ϵ affect the viscoelasticity behavior, it is
likely that Ldef and ϵ (or temperature) are related. From the
derivation in [37], Ldef originates from linear phenomenolog-
ical law in the classical irreversible thermodynamic frame-
work. Therefore, the dependence of Ldef on temperature
could be introduced by considering a more rigorous treat-
ment of this phenomenological law.
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Figure 8: Viscoelastic-creep parametric study under step pressure. (a) Influence of the temperature, ϵ (x-axis), parameter on e∞ (y-axis) at
the ϵ parameter ranges between 0.175 and 0.200 with three different j�ρ0j values. (b) Influence of the atomic density, �ρ0 (x-axis), parameter on
e∞ (y-axis) at the j�ρ0j parameter ranges between 0.248 and 0.260 with three different ϵ values. All numerical experiments are based on step
pressure input (Δ�P0 = 0:02). It should be noted that the ϵ parameter is inversely related to temperature.
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Figure 9: Influence of frequency, f , on system response; sinusoidal pressure input Δ�P0ðtÞ (solid line on y-axis) and strain response eðtÞ
(dashed line on y-axis) established by the PCD equation: (a) f = 0:004, (b) f = 0:0232, and (c) f = 100 at conditions j�ρ0j = 0:2600, ϵ =
0:1750, and Ldef = 1; sinusoidal input σ′ðtÞ (solid line on y-axis) and strain response eðtÞ (dashed line on y-axis) established by the SLS
model regarding equation (16): (d) f = 0:004, (e) f = 0:0232, and (f) f = 100 at conditions σA′ = 0:00075, K = 0:3750, and τ = 1:6670.
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Lastly, we report how the stiffness changes with ϵ and �ρ0.
This is shown in Figures 8(a) and 8(b), where the values of e∞
are plot as functions of ϵ and �ρ0, respectively. Since Δ�P0 is the
same in all simulations, lower e∞ values indicate higher stiff-
ness and vice versa. From Figure 8(a), e∞ decreases as ϵ
increases while, from Figure 8(b), e∞ increases as j�ρ0j
increases. This indicates that the stiffness is higher at lower
temperature and lower atomic densities. These results are

qualitatively consistent with the theoretical framework
[13, 48] and experimental observation [49–51]. We note
that stiffness is not a viscoelastic property and the consis-
tency of the stiffness variation with ϵ and �ρ0 originates
from the PFC free energy (Equation (1)), not the PCD
equation. Nevertheless, these stiffness results demonstrate
the application of the PCD equation since it allows conve-
nient calculation of e∞ from specified values of Δ�P0.
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Figure 10: Influence of frequency, f (x-axis), on the amplitude ratio, Ar (y-axis), parameter under sinusoidal input (a) PCD equation and (b)
SLS model, at conditions j�ρ0j = 0:2600 and ϵ = 0:1750.
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Figure 11: Influence of frequency, f on mechanical-hysteresis behavior. (a) Mechanical hysteresis established by the PCD equation at
conditions j�ρ0j = 0:2600 and ϵ = 0:1750 and (b) mechanical hysteresis established by the SLS model at conditions σA′ = 0:00075, K = 0:3750,
and τ = 1:6670 where eðtÞ (x-axis) is the strain response at time t whereas Δ�P0ðtÞ (y-axis) and σ′ðtÞ (y-axis) are the pressure input at time t
established by the PCD equation and SLS model, respectively.
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4.2. Hysteresis Behavior. In this part, we report the hysteresis
behavior exhibited by the PFC-PCD model and demonstrate
the dependency of this behavior on f (pressure-oscillation
frequency), Ldef (PCD parameter), and ϵ (inverse of temper-
ature). The steady-state strain response from the PFC-PCD
model is shown in Figures 9(a)–9(c) while the strain response
from the SLS model is shown in Figures 9(d)–9(f) for com-
parison. For the f = 0:004 and f = 0:0232, the PFC-PCD
model shows the phase lag between the strain and pressure
profiles and also the increase in the phase lag with increasing
frequencies; these results qualitatively agree with the result
from the SLS model. However, the phase lag from the PFC-
PCD model does not decrease at high frequency as in the
SLS model as shown for f = 100; the strain response from
the PFC-PCD model still shows significant phase lag, while
for the SLS model, both the stress and strain profiles are in
phase. The results indicate that the PFC-PCD model does
not exhibit elastic behavior at very frequency. This suggests
that even though the PFC-PCD model is capable of exhibit-
ing viscoelastic response (or phase lag) from the oscillating
pressure, the applicability of these phenomena is still limited
to the low-frequency excitation.

Another comparison between the PFC-PCD and the SLS
model can be shown in Figure 10 where the amplitude ratios
are shown. Both the PFC-PCD and the SLS model show
reducing amplitudes with increasing frequencies and both
amplitude ratios exhibit qualitatively similar functional
forms. However, the amplitude ratio from the PFC-PCD
model is vanishingly small at high frequencies while the
amplitude ratio from the SLS model remains at finite values.
The values of the amplitude ratio can also be seen from the
hysteresis loop in Figure 11 where the results in Figure 9
are plotted on stress/pressure-strain axes. As the frequency

increases, the hysteresis loop rotates counter-clockwise, indi-
cating smaller strain amplitude (or amplitude ratio). At f =
100, the hysteresis loop from the PFC-PCD model almost
forms a vertical line due to an essentially zero amplitude ratio
while the hysteresis loop from the SLS model remains tilted
away from the y-axis. This extremely small amplitude ratio
indicates that the system produces almost zero strain from
the input pressure, which leads to unnaturally large values
of the moduli (G′storage and G′loss). Therefore, the application
of the PFC-PCD method to model dynamic viscoelastic
behavior should be limited to low-frequency excitation. Nev-
ertheless, at the low frequency, the prediction of G′storage,
G′loss, and tan ðδÞ is in good agreement with the results
from the SLS model as shown in Figure 12.

To further investigate into the difference between the
results from the PFC-PCD and those from the SLS model,
we expand the PCD equation in terms of strain and perform
Taylor’s expansion to the first order with respect to the strain;
the details of the derivation are shown in Appendix C. Com-
pared with the SLS equation, the transformed PCD equation
lacks the term with the time derivative of stress. This analysis
indicates that the PCD equation is more similar to the
Kelvin-Voigt model than the SLS model. The Kelvin-Voigt
model consists of a spring and a dashpot in parallel and is
capable of reproducing the creep phenomena, but not the
stress relaxation. This similarity between the PCD and the
Kelvin-Voigt models explains why the PFC-PCD model can
reproduce creep phenomena, but not the dynamic behavior
similar to the SLS model. We note that the lack of similarity
to the SLS model not only applies to our recently proposed
PCD equation [36] but also applies to the PCD equation pro-
posed by Kocher and Provatas [38] since the functional
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Figure 12: Influence of frequency, f (x-axis), on complex moduli (y-axis); G′storage (storage modulus), G′loss (loss modulus), and tan ðδÞ (loss
tangent factor); (a) complex moduli (y-axis) established by the PCD equation at conditions j�ρ0j = 0:2600 and ϵ = 0:1750; (b) complex moduli
(y-axis) established by the SLS model at conditions σA′ = 0:00075, K = 0:3750, and τ = 0:1667 and f ranges between 0.01 and 0.18.
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forms of both equations are the same. Nevertheless, this anal-
ysis suggests the possibility of improving the PFC-PCD
model by modifying the PCD equation in such a way that
the effect of the term with the time derivative of stress is
present.

Similar to the result from the viscoelastic-creep study,
the PCD parameter Ldef can be used to control the degree
of viscoelasticity. Figures 13(a) and 13(b) show the strain
response with different values of Ldef at a fixed pressure-
oscillation frequency. The hysteresis loops from these
results are also shown in Figure 14. The results show that

decreasing the value of Ldef leads to higher phase lag
(Figure 13) and higher damping capacity (Figure 14). This
indicates that lowering the Ldef value leads to the system
having a more viscous response. The opposite is also true
where increasing Ldef leads to a more elastic response
from the system.

The influence of ϵ onG′storage,G′loss, and tan ðδÞ is shown
in Figure 15. Figure 15(a) shows that an increase in ϵ
(decrease in temperature) leads to an increase in G′storage
and a decrease inG′loss. As tan ðδÞ =G′loss/G′storage, the values
of tan ðδÞ decrease with increasing ϵ, as shown in
Figure 15(b). The results show that as temperature decreases,
the system behaves in a less viscous manner and with reduc-
ing damping capacity. These trends qualitatively agree with
polymeric materials below glass transition [52] and metals
such as aluminum alloy [53].

It should be noted that the particular form of the PFC free
energy (Equation (1)) is applicable to crystalline materials
such as metals [45]; therefore, it might seem that the results
from this work only pertain to these types of materials. Nev-
ertheless, since the viscoelastic behavior originates from the
PCD equation, not the PFC free energy, an alternative form
of PFC free energy (Equation (1)) can be used and the mod-
ified PFC-PCD model should still exhibit similar viscoelastic
behavior as well as similar dependence of viscoelastic proper-
ties on the PFC-PCD model parameters. The capability to
generalize the PFC free energy allows modeling of viscoelas-
tic behavior in different types of materials such as polymeric
materials where viscoelasticity is much more pronounced
than that in metals.

5. Conclusion

In this study, we aim to show the capability and the limita-
tion of the PFC-PCD model which was first employed to
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Figure 13: Influence of the Ldef parameter on system response; sinusoidal pressure input Δ�P0ðtÞ (solid line on y-axis) and strain response eðtÞ
(dashed line on y-axis) at time t (x-axis); (a) Ldef = 10 and (b) Ldef = 1, at j�ρ0j = 0:2600, ϵ = 0:1750, and f = 0:02.
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investigate the viscoelastic-creep and mechanical-hysteresis
behaviors in a BCC (3D case) unit cell under hydrostatic
pressure. To achieve our goal, we implement two types of
pressure profiles in our analysis: constant pressure input
for viscoelastic-creep study and sinusoidal pressure oscilla-
tion for mechanical-hysteresis study where all PFC param-
eters, temperature and atomic density parameters, are
established in a solid stable region. The conclusions for
each analysis are summarized as below:

1. In the viscoelastic-creep study, we first investigate
the influence of two PCD parameters: magnitude
of pressure input and mobility coefficient on
viscoelastic-creep behavior. Regarding the results,
we find the magnitude of pressure input scales with
that of deformation at steady-state time both tensile
and compressive loads. The mobility coefficient can
be used to control the degree of viscosity of defor-
mation in that higher mobility results in higher
elasticity as well as lower mobility leads to higher
viscosity. This evidence suggests that we can
control both the magnitude of deformation and
the degree of viscoelasticity through PCD parame-
ters. Second, we study the impact of PFC parame-
ters: temperature on relaxation time and the
magnitude of deformation at steady-state condition
as well as atomic density parameter on the magni-
tude of deformation at steady-state condition.
Regarding the results, we find that the system
response is faster and has less relaxation time, less
deformation, and more stiffness, at lower tempera-
ture which is generally consistent with theoretical
framework and experimental observation. Also, the
system exhibits larger deformation and less stiff-
ness, at higher atomic density that shows an agree-
ment with previous work

2. In dynamic behavior study, we first focus on studying
the impact of excitation frequency on strain response,
amplitude ratio, mechanical hysteresis, and complex
moduli. The results predicted by the PFC-PCD model
indicate that the system displays more phase lag
between sinusoidal pressure oscillation and strain
response with reducing amplitude ratio at increased
frequency which qualitatively agrees with that of the
SLS model. However, at high frequency range, the
results exhibited by both models are inconsistent. This
finding can also be observed in the mechanical-
hysteresis loop. The hysteresis loop exhibited by PFC-
PCDbecomes a vertical line which indicates the system
produce almost zero strain. This finding produces
unusually large values of complex moduli unlike the
SLS model prediction. Furthermore, we show that the
mobility coefficient can also be used to control the
degree of viscoelasticity in dynamic behavior under
sinusoidal pressure oscillation. The impact of tempera-
ture on complex moduli predicted by the PFC-PCD
model is also in good agreement with experimental
observation

Finally, we show that the PCD model is more similar to
the Kelvin-Voigt model than the SLS model regarding Tay-
lor’s expansion in Appendix C. This deviation does not seem
to cause any difference in viscoelastic-creep behavior, but the
mechanical-hysteresis behavior tends to differ from the SLS
model at high frequency range. However, the prediction of
the model agrees well with the SLS model at the low-
frequency range. Therefore, the application of the PFC-
PCDmethod to predict dynamic viscoelastic behavior should
be limited in some certain frequency region. This analysis
provides the possibility of enhancing the PFC-PCD model
by modifying the PCD equation in a more proper way which
might be addressed in future improvement.
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Appendix

A. PFC-PCD Equations and Their
Numerical Scheme

The PFC-PCD equation consists of two governing equations:
Cahn-Hilliard- (CH-) type equation and the pressure-
controlled dynamic (PCD) equation. The first equation is
involved in dissipative dynamics and a mass conservation
equation [2] formulated in partial differential equation
(PDE) with four independent variables ð~t,~r1,~r2,~r3Þ; the time
variable with three spatial coordinate variables

∂~p
∂~t

= ~Lμ~∇
2 δ ~ℱ
δ~ρ

, ðA:1Þ

where ~ρ ≡ ~ρð~t,~r1,~r2,~r3Þ is a density field variable in three-

dimensional space. ~Lμ is the mobility coefficient. ~∇2ð⋅Þ =
∂2ð⋅Þ/∂~r21 + ∂2ð⋅Þ/∂~r22 + ∂2ð⋅Þ/∂~r23 is a three-dimensional
Laplacian operator.

δ ~ℱ /δ~ρ ≡ ~μ is the variational derivative of ~ℱ / by ~ρ which
defines a chemical potential ~μ. The free energy functional
~ℱ / can be expressed

~ℱ =
ð
~ρ

2 −~∈ + 1 + ~∇2� �2� �
~ρ + ~ρ4

4 d~r, ðA:2Þ

or in alternative form

~ℱ =
ð
~w ~ρð Þd~r,  ~ℱ =

ð
1 − ~∈ð Þ2~ρ + ~ρ

2
~∇4
~ρ

� �
d~r, ðA:3Þ

where ~∇4ð⋅Þ = ∂4ð⋅Þ/∂~r41 + ∂4ð⋅Þ/∂~r42 + ∂4ð⋅Þ/∂~r43 + 2∂4ð⋅Þ/∂~r21∂
~r22 + 2∂4ð⋅Þ/∂~r21∂~r23 + 2∂4ð⋅Þ/∂~r22∂~r23.

The free energy density variable, ~wð~ρÞ, can be expressed
in expansion form as

~w ~ρð Þ = 1 − ~∈ð Þ ~ρ2 + ~ρ

4 + ~ρ
∂2~ρ
∂~r21

+ ~ρ
∂2~ρ
∂~r22

+ ~ρ
∂2~ρ
∂~r23

+ ~ρ

2
∂4~ρ
∂~r41

+ ~ρ

2
∂4~ρ
∂~r42

+ ~ρ

2
∂4~ρ
∂~r43

+ ~ρ
∂4~ρ

∂~r21∂~r
2
2
+ ~ρ

∂4~ρ
∂~r21∂~r

2
3
+ ~ρ

∂4~ρ
∂~r22∂~r

2
3
:

ðA:4Þ

Denote that ~wð~ρÞ ≡ ~f ð~ρ, ~ρ~r1~r1 , ~ρ~r2~r2 , ~ρ~r3~r3 , ~ρ~r1~r1~r1~r1 , ~ρ~r2~r2~r2~r2 ,
~ρ~r3~r3~r3~r3 , ~ρ~r1~r1~r2~r2 , ~ρ~r1~r1~r3~r3 , ~ρ~r2~r2~r3~r3Þ where each independent

variable of ~f is defined by

~ρ~r1~r1 =
∂2~ρ
∂~r21

,

~ρ~r2~r2 =
∂2~ρ
∂~r22

,

~ρ~r3~r3 =
∂2~ρ
∂~r23

,

~ρ~r1~r1~r1~r1 =
∂4~ρ
∂~r41

,

~ρ~r2~r2~r2~r2 =
∂4~ρ
∂~r42

,

~ρ~r3~r3~r3~r3 =
∂4~ρ
∂~r43

,

~ρ~r1~r1~r2~r2 =
∂4~ρ

∂~r21∂~r
2
2
,

~ρ~r1~r1~r3~r3 =
∂4~ρ

∂~r21∂~r
2
3
,

~ρ~r2~r2~r3~r3 =
∂4~ρ

∂~r22∂~r
2
3
: ðA:5Þ

To solve Equation (A.1), the ~μ variable must be reformu-
lated as a function of ~ρ and its derivative. Therefore, we need
to find δ ~ℱ //δ~ρ by using the functional derivative definition

δ ~ℱ
δ~ρ

= ∂~f
∂~ρ

+ ∂2

∂~r21

∂~f
∂~ρ~r1~r1

 !
+ ∂2

∂~r22

∂~f
∂~ρ~r2~r2

 !
+ ∂2

∂~r23

∂~f
∂~ρ~r3~r3

 !

+ ∂4

∂~r41

∂~f
∂~ρ~r1~r1~r1~r1

 !
+ ∂4

∂~r42

∂~f
∂~ρ~r2~r2~r2~r2

 !

+ ∂4

∂~r43

∂~f
∂~ρ~r3~r3~r3~r3

 !
+ ∂4

∂~r21~r
2
2

∂~f
∂~ρ~r1~r1~r2~r2

 !

+ ∂4

∂~r21~r
2
3

∂~f
∂~ρ~r1~r1~r3~r3

 !
+ ∂4

∂~r22~r
2
3

∂~f
∂~ρ~r2~r2~r3~r3

 !
:

ðA:6Þ

Evaluate each derivative term on the right-hand side of
Equation (A.6):

δ~f
δ~ρ

= 1 − ~∈ð Þ~ρ + ~ρ3 + ∂2~ρ
∂~r21

+ ∂2~ρ
∂~r22

+ ∂2~ρ
∂~r23

+ 1
2

∂4~ρ
∂~r41

+ ∂4~ρ
∂~r42

+ ∂4~ρ
∂~r43

+ 2 ∂4~ρ
∂~r21∂~r

2
2
+ 2 ∂4~ρ

∂~r21∂~r
2
3

 

+ 2 ∂4~ρ
∂~r22∂~r

2
3

!
∂2

∂~r21

∂~f
∂~ρ~r1~r1

 !
= ∂2~ρ

∂~r21
, ∂2

∂~r22

∂~f
∂~ρ~r2~r2

 !

= ∂2~ρ
∂~r22

, ∂2

∂~r23

∂~f
∂~ρ~r3~r3

 !
= ∂2~ρ

∂~r23
, ∂4

∂~r41

∂~f
∂~ρ~r1~r1~r1~r1

 !

= 1
2
∂4~ρ
∂~r41

, ∂4

∂~r42

∂~f
∂~ρ~r2~r2~r2~r2

 !
= 1
2
∂4~ρ
∂~r42

, ∂4

∂~r43

∂~f
∂~ρ~r3~r3~r3~r3

 !

= 1
2
∂4~ρ
∂~r43

, ∂4

∂~r21∂~r
2
2

∂~f
∂~ρ~r1~r1~r2~r2

 !
= ∂4~ρ
∂~r21∂~r

2
2
, ∂4

∂~r21∂~r
2
3

∂~f
∂~ρ~r1~r1~r3~r3

 !

= ∂4~ρ
∂~r21∂~r

2
3
, ∂4

∂~r22∂~r
2
3

∂~f
∂~ρ~r2~r2~r3~r3

 !
= ∂4~ρ
∂~r22∂~r

2
3
:

ðA:7Þ
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Substitute each term of Equation (A.7) into Equation (A.6).
Then, the chemical potential ~μ is literally obtained

~μ = 1 − ~∈ð Þ~ρ + ~ρ3 + 2~∇2
~ρ + ~∇4

~ρ: ðA:8Þ

Finally, Equation (A.1) becomes

∂~ρ
∂~t

= ~Lμ 1 − ~∈ð Þ~∇2
~ρ + ~∇2

~ρ3 + 2~∇4
~ρ + ~∇6

~ρ
h i

, ðA:9Þ

where ~∇6ð⋅Þ = ∂6ð⋅Þ/∂~r61 + ∂6ð⋅Þ/∂~r62 + ∂6ð⋅Þ/∂~r63 + 3∂6ð⋅Þ/∂~r21∂
~r42 + 3∂6ð⋅Þ/∂~r21∂~r43 + 3∂6ð⋅Þ/∂~r22∂~r43 + 3∂6ð⋅Þ/∂~r41∂~r22 + 3∂6ð⋅Þ/∂
~r41∂~r

2
3 + 3∂6ð⋅Þ/∂~r42∂~r23 + 6∂6ð⋅Þ/∂~r21∂~r22∂~r23. It is obvious that

Equation (A.9) is the sixth-order nonlinear partial differential
equation (6OD-NPDE) which can be expressed in a full
description as

∂~ρ
∂~t

= ~Lμ 1 − ~∈ð Þ ∂2~ρ
∂~r21

+ ∂2~ρ
∂~r22

+ ∂2~ρ
∂~r23

 !
+ ∂2~ρ3

∂~r21
+ ∂2~ρ3

∂~r22
+ ∂2~ρ3

∂~r23

 !"

+ 2 ∂4~ρ
∂~r41

+ ∂4~ρ
∂~r42

+ ∂4~ρ
∂~r43

 !#
+ ~Lμ 2 2 ∂4~ρ

∂~r21∂~r
2
2
+ 2 ∂4~ρ

∂~r21∂~r
2
3

 "

+ 2 ∂4~ρ
∂~r22∂~r

2
3

!
+ ∂6~ρ

∂~r61
+ ∂6~ρ

∂~r62
+ ∂6~ρ

∂~r63

 !#
+ ~Lμ 3 ∂6~ρ

∂~r21∂~r
4
2

 "

+ 3 ∂6~ρ
∂~r21∂~r

4
3
+ 3 ∂6~ρ

∂~r22∂~r
4
3
+ 3 ∂6~ρ

∂~r41∂~r
2
2
+ 3 ∂6~ρ

∂~r41∂~r
2
3

+ 3 ∂6~ρ
∂~r42∂~r

2
3
+ 6 ∂6~ρ

∂~r21∂~r
2
2∂~r

2
3

!#
:

ðA:10Þ

In order to solve Equation (A.10) numerically, there are
two options which can be employed: finite difference method
(FD) and Fourier spectral method (FSM). In this study, not
only is the periodic boundary condition governed but also
the equation itself has a very high derivative order in spatial
coordinates which demands a lot of numerical expense if the
FD scheme is used. Therefore, the FSM method is more
appropriate than FD in terms of numerical accuracy and
numerical expense to solve Equation (A.10). To employ the
FSM scheme, we begin with Equation (A.9). If we apply
the Fourier transform both sides, we obtain

db~ρ
d~t

= ~Lμ − 1 − ~εð Þ Kj j2b~ρ − Kj j2~ρ∧3 + 2 Kj j4b~ρ − Kj j6b~ρh i
:

ðA:11Þ

Then, the 6OD-NPDE is literally reduced to an empiri-
cal ordinary differential equation which depends on time

constraint only, where b~ρ ≡ b~ρðK,~tÞ is the Fourier transform

of ~ρ. ~ρ∧3 ≡ ~ρ∧3ðK,~tÞ is the Fourier transform of ~p3 which
can be described as follows:

b~ρ K,~t
� �

=
ð+∞
−∞

~ρ ~r,~t
� �

e−jK⋅~rd~r,

~ρ∧3 K,~t
� �

=
ð+∞
−∞

~ρ3 ~r,~t
� �

e−jK⋅~rd~r:
ðA:12Þ

K ≡Kðk~r1 , k~r2 , k~r3Þ is a vector in Fourier space, and
each Fourier wave vector component k~ri is defined by

k~ri =
2π
L~ri

0, 1, 2,⋯,
N~ri

2 − 1,−
N~ri

2 ,−
N~ri

2 + 1,−
N~ri

2 + 2,⋯,−1
� �

,

 ∀i ∈ 1, 2, 3f g,
ðA:13Þ

where L~ri is the lattice parameter along the ~ri direction and

our study uses L~ri = 2π
ffiffiffi
2

p
for ∀i ∈ f1, 2, 3g. N~ri

is the
number of grid points along the ~ri direction in which we
employ ~ri = 16 for ∀i ∈ f1, 2, 3g. It should be noted that

Kj j2 = k2~r1 + k2~r2 + k2~r3 ,

Kj j4 = k4~r1 + k4~r2 + k4~r3 + 2k2~r1k
2
~r2
+ 22~r1k

2
~r3
++22~r2k

2
~r3
,

Kj j6 = k6~r1 + k6~r2 + k6~r3 + 3k2~r1k
4
~r2
+ 3k2~r1k

4
~r3
+ 3k2~r2k

4
~r3
+ 3k4~r1k

2
~r2

+ 3k4~r1k
2
~r3
+ 3k4~r2k

2
~r3
+ 6k2~r1k

2
~r2
k2~r3 :

ðA:14Þ

We employ a semi-implicit scheme [54] to solve Equa-
tion (A.11). The forward difference approximation for the
time derivative term is given as

db~ρ
d~t

= ~ρ∧n+1 − ~ρ∧n

Δ~t
, ðA:15Þ

where ~ρ∧n+1 and ~ρ∧n denote b~ρ at time ~t + Δ~t and ~t,
respectively. Substitute Equation (A.15) in Equation (A.11)

~ρ∧n+1 − ~ρ∧n

Δ~t
= ~Lμ − 1 − ~εð Þ Kj j2~ρ∧n+1 − Kj j2~ρ∧3n�

+ 2 Kj j4~ρ∧n+1 − Kj j6~ρ∧n+1�,
ðA:16Þ

where ~ρ∧n+1 and ~ρ∧3n are b~ρ at time ~t + Δ~t and ~ρ∧3 at
time ~t, respectively. Rearranging the above equation, we
obtain

1 + Δ~t~Lμ 1 − ~εð Þ Kj j2 − 2 Kj j4��
+ Kj j6��~ρ∧n+1 = ~ρ∧n − Δ~t~Lμ Kj j2~ρ∧3n,

ðA:17Þ
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and it yields

~ρ∧n+1 =
~ρ∧n − Δ~t~Lμ Kj j2~ρ∧3n

1 + Δ~t~Lμ 1 − ~εð Þ Kj j2 − 2 Kj j4 + Kj j6� �� � : ðA:18Þ

Finally, the ~ρ∧n+1 variable which is in reciprocal space
can be converted into the real space variable by using
inverse Fourier transform

~ρn+1 ~rð Þ = 1
2πð Þd

ð+∞
−∞

~ρ∧n+1 Kð ÞejK⋅~rdK, ðA:19Þ

where d is dimensionality of the problem. This variable will

be used to calculate ~�Pint in the pressure-controlled dynamic
equation further. Next, the second important equation is the
PCD equation which was developed regarding the thermo-
dynamics of the hydrostatically stressed crystal solid [39]
and classical irreversible thermodynamic frameworks [40–
42]. The advantage of this equation is that it allows creating
the deformation in the PFC model by specifying the exter-
nal pressure as an input variable unlike the conventional
PFC simulations where the volume, or grid spacing, is an
input variable [43]. This equation is given as follows:

d ~V

d~t
= ~Ldef ~V

~�Pint − ~�Pext
� �

: ðA:20Þ

To solve the PCD equation, we use the forward differ-
ence scheme for the time derivative term.

d ~V

d~t
=

~V
n+1 − ~V

n

Δ~t
: ðA:21Þ

Then, Equation (A.20) becomes

~V
n+1 − ~V

n

Δ~t
= ~Ldef ~V

n ~�P
n

int − ~�P
n

ext
� �

, ðA:22Þ

where ~V
n+1

and ~V
n
are the volume at time ~t + Δ~tand ~t,

respectively. Also, ~�P
n

int and ~�P
n

ext are ~�Pint and ~�Pext at time
~t, respectively. Then, Equation (A.22) yields

~V
n+1 = ~V

n + Δ~t~Ldef ~V
n ~�P

n

int − ~�P
n

ext
� �

: ðA:23Þ

Finally, we literally obtain a new volume value at the
next time step as we required. It should be noted that
~�P
n

int is

~�P
n

int =
1
~V
n

ð
−~f

n + ~μn~ρn
� �

d~r, ðA:24Þ

where

~f
n = 1 − ~∈ð Þ ~ρ

2n

2 + ~ρ4n

4 + ~ρn ~∇2
~ρ

h in
+ ~ρn

2
~∇4
~ρ

h in
,

~μn = 1 − ~∈ð Þ~ρn + ~ρ3n + 2 ~∇2
~ρ

h in
+ ~∇4

~ρ
h in

:

ðA:25Þ

All superscripts, n, regarding Equation (A.25) which
appear in all ð⋅Þn represent those physical quantities, ð⋅Þ,
at time ~t.

B. Standard Linear Solid Model

In this appendix, we aim to derive the expressions for the
complex modulus and strain response from the SLS model
under harmonic excitation. First, we derive complex modu-
lus under dynamic excitation. Consider a more general form
of the stress (scaled quantity):

σ′∗ tð Þ = σA′ exp j ωt + δð Þ½ �,
σ′∗ tð Þ = σ′∗A exp jωtð Þ,

ðB:1Þ

where σA′ is the amplitude, ω is the angular frequency and
σ′∗A is the complex amplitude defined by σ′∗A ≡ σA′ exp
ðjδÞ = σ′∗A cos ðδÞ + jσ′∗A sin ðδÞ. At steady state, the
strain response will also exhibit a harmonic function with
the same frequency; therefore, one can postulate the func-
tional form of the strain as an input function [20]:

e∗ tð Þ = eA exp jωtð Þ, ðB:2Þ

where eA is the strain amplitude. Substituting Equations
(B.1) and (B.2) into Equation (12), we obtain

σ′∗A
eA

≡
σA′
eA

cos δð Þ + j
σA′
eA

sin δð Þ = K + jω
1 + jτω

: ðB:3Þ

This equation defines G′complex =G′storage + jG′loss where
each of σA′ cos ðδÞ/eA and σA′ sin ðδÞ/eA is G′storage and G
′loss, respectively. Therefore, we literally obtain

G′storage =
K + τω2

1 + τωð Þ2 ,

G′loss =
1 − τKð Þ

1 + τωð Þ2 ω:
ðB:4Þ

To derive the solution expression, we consider stress as
an input function

σ′∗ tð Þ = σA′ exp jωtð Þ, ðB:5Þ
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and propose the strain function be written as

e∗ tð Þ = e∗A exp jωtð Þ: ðB:6Þ

Substituting Equations (B.5) and (B.6) into Equation
(12) to obtain

e∗ tð Þ = 1 + jτω
K + jω

� �
σA′ exp jωtð Þ,

e∗A =
1 + jτω
K + jω

� �
σA′ :

ðB:7Þ

For a particular case where σ′ðtÞ = σA′ sin ðωtÞ = Im
½σ′∗ðtÞ�, therefore, the strain response corresponding
to this case can be obtained by

e tð Þ = Im e∗ tð Þ½ �, ðB:8Þ

that yields

e tð Þ = σA′ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + ω2

p sin ωt − ϕð Þ + τσA′ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + ω2

p cos ωt − ϕð Þ,

ðB:9Þ

where ϕ = arctan ðω/KÞ, which can be reduced to

e tð Þ = eA sin ωt − δð Þ, ðB:10Þ

where

eA = σA′
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + τωð Þ2
K2 + ω2

s
,

δ = arctan 1 − τK
K + τω2

	 

ω

� �
:

ðB:11Þ

It should be noted that eA = je∗Aj.

C. Dynamic Similarity between PCD Equation
and SLS Model

In this appendix, we demonstrate how dynamic similarity
between the PCD Equation (10) and the SLS model Equation
(12) can be established using Taylor’s expansion [55] at infin-
itesimal deformation around the reference state. First, we
begin with PCD equation

dV
dt

= LPV �Pint − �Pext
� �

, ðC:1Þ

where �Pint =
Ð
VPintdV/V and Pext represents the average

internal pressure and external applied pressure with VðtÞ =
LðtÞ3 where L is the crystal length parameter. If we denote

that

φ Vð Þ =
ð
V
PintdV , ðC:2Þ

and V represents a current volume. It should be noted that
dV = dx1dx2dx3 where all dx1 are spatial coordinates in the
Eulerian description. The integration boundary for each
coordinate is x1 = 0 to x1 = LðtÞ where LðtÞ = L0½1 + eðtÞ�
and eðtÞ = ðLðtÞ − L0Þ/L0. Equation (C.2) becomes

φ eð Þ =
ðL0 1+e tð Þ½ �

0

ðL0 1+e tð Þ½ �

0

ðL0 1+e tð Þ½ �

0
Pintdx1dx2dx3: ðC:3Þ

If we assume infinitesimal deformation, small strain can
be written as eðtÞ = e0 + Δe where e0 = 0 and Δe = eðtÞ − e0.
Therefore, Equation (C.3) can be written in expansion form
[55]:

φ e0 + Δeð Þ = φ e0ð Þ + dφ
de






e=e0

Δe + 1
2!
d2φ

de2







e=e0

Δe2 + R3 Δe3
� �

,

ðC:4Þ

where φðe0Þ represents
Ð
VPdV at e = e0 and represents a

higher order derivative term as a function of Δe3. In case of
infinitesimal deformation, the higher order term, Δen where
n ≥ 2, can be truncated, then Equation (C.4) is reduced to

φ eð Þ ≈ φ e0ð Þ + ψe=e0Δe, ðC:5Þ

where ψe=e0 = dφ/deje = e0. Also, �Pext can be written as

�Pext = �P0 − Δ�Pext, ðC:6Þ

where �P0 represents average reference pressure calculated
under an undeformed state

�P0 =
φ e0ð Þ
L30

,

V0 = L30,
ðC:7Þ

and Δ�Pext represents the deviation part of �Pext from �P0. Since
V ≡VðLðeÞÞ is a composite function, therefore, the time
derivative regarding Equation (C.1) can be expressed by the
chain rule

dV
dt

= dV
dL

⋅
dL
de

⋅
de
dt

, ðC:8Þ

where dV/dL = 3L2 and dL/de = L0. Substitute Equation
(C.5)–(C.8) into Equation (C.1), we obtain

3L0L2
de
dt

= LPL
3 φ e0 + Δeð Þ

L3
− �P0 + Δ�Pext

� �
, ðC:9Þ
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that yields

de
dt

= LP
3 1 + eð Þ

φ e0ð Þ + ψe=e0Δe

L30 1 + eð Þ3 − �P0 + Δ�Pext

" #
: ðC:10Þ

Note that Δe = e. This equation can be reduced to

de
dt

= LP
3

φ e0ð Þ
L30

1 + eð Þ−2 + ψe=e0e

L30
1 + eð Þ−2

�
− �P0 1 + eð Þ + Δ�Pext 1 + eð Þ

�
:

ðC:11Þ

Regarding binomial expansion, we know that ð1 + eÞ−2
≈ 1 − 2e for the first term approximation if 0 ≤ e<<1. Equa-
tion (C.11) becomes

de
dt

= LP
3

φ e0ð Þ
L30

−
2φ e0ð Þ
L30

e +
ψe=e0
L30

e −
2ψe=e0
L30

e2
�

− �P0 − �P0e + Δ�Pext + Δ�Pexte
�
:

ðC:12Þ

If we neglect e2 and Δ�Pexte and use the fact that φðe0Þ/
L30 = �P0, Equation (C.12) turns into

de
dt

= LP
3 −3�P0e +

ψe=e0
L30

e + Δ�Pext

� �
: ðC:13Þ

Then, Equation (C.13) finally yields the simplified model of
PCD equation as

de
dt

+ LP
3 3�P0 −

ψe=e0
L30

� �
e = LP

3 Δ�Pext ðC:14Þ

which obviously has structure like a Kelvin-Voigt model:

de
dt

+ Ke = σ′, ðC:15Þ

where K ≡ LPð3�P0 − ψe=e0 /L
3
0Þ/3 and σ′ ≡ LPΔ�Pext/3. Equa-

tion (C.15) is slightly different from the SLS model Equation
(12) in that the τdσ′/dt term is introduced on the right-hand
side in the SLS model. This deviation does not cause the dif-
ference in viscoelastic-creep behavior produced by both the
PCDmodel and the SLS model solution under constant pres-
sure. However, in case of the mechanical hysteresis, although
this behavior produced by the PCD equation is deviated with
that of the SLS model and behaves like the Kelvin-Voigt
model at an elevated frequency range, it consistently predicts
similar results with the SLS model at low frequency. This can
be described by the solution obtained from both models
under the sinusoidal load, σ′ðtÞ = σ′A sin ðωtÞ. According
to Equation (B.9), the strain solution produced by the
SLS model is eðtÞ = σA′ sin ðωt − ϕÞ/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + ω2

p
+ τσ′A ω cos

ðωt − ϕÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + ω2

p
. However, if 0 ≤ ω<<1, the solution will

converge to eðtÞ = σA′ sin ðωt − ϕÞ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 + ω2

p
which is

almost identical to that of a simplified model of the
PCD equation.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by theNational Science and Tech-
nology Development Agency (NSTDA)-University-Industry
Research Collaboration (NUI-RC) program under Grant No.
NUI-RC-M33-22-59-001D; the Thailand Research Fund
(TRF) under Grant No. TRG5880008; the New Researcher
Scholarship of Coordinating Center for Thai Government Sci-
ence and Technology Scholarship Students,Ministry of Science
and Technology Grant No. FDA-CO-2561-840g-TH; King
Mongkut’s Institute of Technology Ladkrabang Research Fund
under Grant No. KREF046103; and the High Performance
Computing Services from (Thailand) National Electronics
and Computer Technology Center (NECTEC). The authors
are also indebted to Dr. Sasawat Mahabunphachai for his help-
ful discussion and encouragement on the research.

References

[1] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant,
“Modeling elasticity in crystal growth,” Physical Review
Letters, vol. 88, no. 24, article 245701, 2002.

[2] K. R. Elder and M. Grant, “Modeling elastic and plastic defor-
mations in nonequilibrium processing using phase field crys-
tals,” Physical Review E, vol. 70, no. 5, article 051605, 2004.

[3] J. Berry, M. Grant, and K. R. Elder, “Diffusive atomistic
dynamics of edge dislocations in two dimensions,” Physical
Review E, vol. 73, no. 3, article 031609, 2006.

[4] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,
“Phase-field crystal modeling and classical density functional
theory of freezing,” Physical Review B, vol. 75, no. 6, article
064107, 2007.

[5] T. Pusztai, G. Tegze, G. I. Tóth et al., “Phase-field approach to
polycrystalline solidification including heterogeneous and
homogeneous nucleation,” Journal of Physics: Condensed Mat-
ter, vol. 20, no. 40, article 404205, 2008.

[6] P. Y. Chan, N. Goldenfeld, and J. Dantzig, “Molecular dynam-
ics on diffusive time scales from the phase-field-crystal equa-
tion,” Physical Review E, vol. 79, no. 3, article 035701, 2009.

[7] T. Hirouchi, T. Takaki, and Y. Tomita, “Effects of temperature
and grain size on phase-field-crystal deformation simulation,”
International Journal of Mechanical Sciences, vol. 52, no. 2,
pp. 309–319, 2010.

[8] J. Berry, K. R. Elder, and M. Grant, “Melting at dislocations
and grain boundaries: a phase field crystal study,” Physical
Review B, vol. 77, no. 22, article 224114, 2008.

[9] J. Mellenthin, A. Karma, and M. Plapp, “Phase-field crystal
study of grain-boundary premelting,” Physical Review B,
vol. 78, no. 18, article 184110, 2008.

18 Advances in Mathematical Physics



[10] P. Stefanovic, M. Haataja, and N. Provatas, “Phase-field crys-
tals with elastic interactions,” Physical Review Letters, vol. 96,
no. 22, article 225504, 2006.

[11] P. Y. Chan, G. Tsekenis, J. Dantzig, K. A. Dahmen, and
N. Goldenfeld, “Plasticity and dislocation dynamics in a phase
field crystal model,” Physical Review Letters, vol. 105, no. 1,
article 015502, 2010.

[12] S. Hu and S. Wang, “The influences of crystal orientation and
crack interaction on the initiation of growth and propagation
mode of microcrack: a phase-field-crystal study,” Physica B:
Condensed Matter, vol. 552, pp. 104–109, 2019.

[13] N. Pisutha-Arnond, V. Chan, K. Elder, and K. Thornton, “Cal-
culations of isothermal elastic constants in the phase-field
crystal model,” Physical Review B, vol. 87, no. 1, article
014103, 2013.

[14] Z.-L. Wang, Z.-F. Huang, and Z. Liu, “Elastic constants of
stressed and unstressed materials in the phase-field crystal
model,” Physical Review B, vol. 97, no. 14, article 144112, 2018.

[15] W. Zhou, J. Wang, Z. Wang et al., “Elastic strain response in
the modified phase-field-crystal model,” Chinese Physics B,
vol. 26, no. 9, article 090702, 2017.

[16] P. Stefanovic, M. Haataja, and N. Provatas, “Phase field crystal
study of deformation and plasticity in nanocrystalline mate-
rials,” Physical Review E, vol. 80, no. 4, article 046107, 2009.

[17] M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas,
“Modeling structural transformations in binary alloys with
phase field crystals,” Physical Review B, vol. 84, no. 6, article
064104, 2011.

[18] Y.-L. Lu, T.-T. Hu, G.-M. Lu, and Z. Chen, “Phase-field crystal
study of segregation induced grain-boundary premelting in
binary alloys,” Physica B: Condensed Matter, vol. 451,
pp. 128–133, 2014.

[19] L. S. Roderic, Viscoelastic Solids, CRC press, Boca Raton, FL,
USA, 1998.

[20] W. N. Findley and F. A. Davis, Creep and Relaxation of Non-
linear Viscoelastic Materials, Courier Corporation, North
Chelmsford, MA, USA, 2013.

[21] J. D. Ferry, Viscoelastic Properties of Polymers, John Wiley &
Sons, Hoboken, NJ, USA, 1980.

[22] A. D. Drozdov and J. C. de Christiansen, “Viscoelasticity and
viscoplasticity of semicrystalline polymers: structure-property
relations for high-density polyethylene,” Computational mate-
rials science, vol. 39, no. 4, pp. 729–751, 2007.

[23] E. Frey, K. Kroy, and J. Wilhelm, Viscoelasticity of Biopolymer
Networks and Statistical Mechanics of Semiflexible Polymers,
Elsevier, JAI, New York City, NY, USA, 1999.

[24] H. Di Benedetto, F. Olard, C. Sauzéat, and B. Delaporte, “Lin-
ear viscoelastic behaviour of bituminous materials: from
binders to mixes,” Road Materials and Pavement Design,
vol. 5, supplement 1, pp. 163–202, 2004.

[25] I. Ritchie, K. Sprungmann, and M. Sahoo, “Internal friction in
sonoston - a high dampingMn/Cu-based alloy for marine pro-
peller applications,” Le Journal de Physique Colloques, vol. 46,
no. C10, pp. C10–409, 1985.

[26] J. Kim and J.-Y. Choi, “Performance test for transmitted noise
reduction of smart panels using piezoelectric shunt damping,”
Smart Materials and Structures, vol. 14, no. 4, pp. 587–593,
2005.

[27] R. Fan, G. Meng, J. Yang, and C. He, “Experimental study of
the effect of viscoelastic damping materials on noise and vibra-

tion reduction within railway vehicles,” Journal of Sound and
Vibration, vol. 319, no. 1-2, pp. 58–76, 2009.

[28] S. Elias and V. Matsagar, “Research developments in vibration
control of structures using passive tuned mass dampers,”
Annual Reviews in Control, vol. 44, pp. 129–156, 2017.

[29] K. Otsuka and C. M. Wayman, Shape Memory Materials,
Cambridge university press, Cambridge, UK, 1999.

[30] C. Rosen, B. V. Hiremath, and R. Newnham, Piezoelectricity,
Springer Science & Business Media, Berlin, Germany, 1992.

[31] S. R.White, N. Sottos, P. Geubelle et al., “Autonomic healing of
polymer composites,” Nature, vol. 409, no. 6822, pp. 794–797,
2001.

[32] R. O. St, C. Weiss, J. L. Denlinger, and E. A. Balazs, “A prelim-
inary assessment of Na-hyaluronate injection into “no man’s
land” for primary flexor tendon repair,” Clinical Orthopaedics
and Related Research, vol. &NA;, no. 146, p. 269???275, 1980.

[33] V. B. Braginsky, V. Mitrofanov, and V. I. Panov, Systems with
Small Dissipation, University of Chicago Press, Chicago, IL,
USA, 1985.

[34] H. G. Craighead, “Nanoelectromechanical Systems,” Science,
vol. 290, no. 5496, pp. 1532–1535, 2000.

[35] R. Lifshitz and M. L. Roukes, “Thermoelastic damping in
micro- and nanomechanical systems,” Physical Review B,
vol. 61, no. 8, pp. 5600–5609, 2000.

[36] E. Jatupon and P. Nirand, “Investigation on viscoelastic-creep
behavior of the phase-field crystal method,” IOP conference
series: materials science and engineering, vol. 361, article
012009, 2018.

[37] J. Em-Udom and N. Pisutha-Arnond, “Pressure-controlled
dynamic equation for the phase-field crystal method,” IOP
conference series: materials science and engineering, vol. 361,
article 012006, 2018.

[38] G. Kocher and N. Provatas, “New density functional
approach for solid-liquid-vapor transitions in pure mate-
rials,” Physical Review Letters, vol. 114, no. 15, article
155501, 2015.

[39] F. Larché and J. W. Cahn, “Eine Lineare theorie des thermody-
namischen Gleichgewichts von festkorpern unter spannung,”
Acta metallurgica, vol. 21, no. 8, pp. 1051–1063, 1973.

[40] S. R. De Groot and P. Mazur, Non-Equilibrium Thermody-
namics, Courier Corporation, North Chelmsford, MA, USA,
2013.

[41] Y. Mishin, J. Warren, R. Sekerka, andW. Boettinger, “Irrevers-
ible thermodynamics of creep in crystalline solids,” Physical
Review B, vol. 88, no. 18, article 184303, 2013.

[42] G. Lebon, D. Jou, and J. Casas-Vázquez, Understanding Non-
Equilibrium Thermodynamics, Springer, Berlin, Germany,
2008.

[43] T. Hirouchi, T. Takaki, and Y. Tomita, “Development of
numerical scheme for phase field crystal deformation simula-
tion,” Computational Materials Science, vol. 44, no. 4,
pp. 1192–1197, 2009.

[44] N. Provatas and K. Elder, Phase-Field Methods in Materials
Science and Engineering, John Wiley & Sons, Hoboken, NJ,
USA, 2011.

[45] K.-A. Wu and A. Karma, “Phase-field crystal modeling of
equilibrium bcc-liquid interfaces,” Physical Review B, vol. 76,
no. 18, article 184107, 2007.

[46] P. Voorhees and W. C. Johnson, Solid State Physics-Advances
in Research and Applications, vol. 59, Academic Press Inc,
Cambridge, MA, USA, 2004.

19Advances in Mathematical Physics



[47] R. S. Lakes, Viscoelastic Materials, Cambridge University
Press, Cambridge, UK, 2009.

[48] J. Wachtman Jr., W. Tefft, D. Lam Jr., and C. Apstein, “Expo-
nential temperature dependence of Young's modulus for sev-
eral oxides,” Physical review, vol. 122, no. 6, pp. 1754–1759,
1961.

[49] P. M. Sutton, “The variation of the elastic constants of crystal-
line aluminum with temperature between 63°K and 773°K,”
Physical Review, vol. 91, no. 4, pp. 816–821, 1953.

[50] W. Chancellor, A. Wolfenden, and G. Ludtka, “Temperature
dependence of Young's modulus and shear modulus in
uranium-2.4 wt% niobium alloy,” Journal of Nuclear Mate-
rials, vol. 171, no. 2-3, pp. 389–394, 1990.

[51] R. Bruls, H. Hintzen, G. De With, and R. Metselaar, “The tem-
perature dependence of the Young's modulus of MgSiN2, AlN
and Si3N4,” Journal of the European Ceramic Society, vol. 21,
no. 3, pp. 263–268, 2001.

[52] D. I. Jones, Handbook of Viscoelastic Vibration Damping, John
Wiley & Sons, Hoboken, NJ, USA, 2001.

[53] L. Licitra, D. D. Luong, O. M. Strbik III, and N. Gupta,
“Dynamic properties of alumina hollow particle filled alumi-
num alloy A356 matrix syntactic foams,” Materials & Design,
vol. 66, pp. 504–515, 2015.

[54] L. Q. Chen and J. Shen, “Applications of semi-implicit Fourier-
spectral method to phase field equations,” Computer Physics
Communications, vol. 108, no. 2-3, pp. 147–158, 1998.

[55] G. B. Arfken and H. J. Weber, Mathematical Methods for
Physicists, AAPT, Baltimore, MA, USA, 1999.

20 Advances in Mathematical Physics


	Investigation of Viscoelastic-Creep and Mechanical-Hysteresis Behaviors of Hydrostatically Stressed Crystal Using the Phase Field Crystal Method
	1. Introduction
	2. Background
	2.1. PFC Method
	2.2. Pressure-Controlled Dynamic Equation
	2.3. Standard Linear Solid Model

	3. Method of Simulation
	4. Results and Discussions
	4.1. Viscoelastic-Creep Behavior
	4.2. Hysteresis Behavior

	5. Conclusion
	Appendix
	A. PFC-PCD Equations and Their Numerical Scheme
	B. Standard Linear Solid Model
	C. Dynamic Similarity between PCD Equation and SLS Model
	Data Availability
	Conflicts of Interest
	Acknowledgments

