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Representation of approximation for manifolds of the stochastic Swift-Hohenberg equation with multiplicative noise has been
investigated via non-Markovian reduced system. The approximate parameterizations of the small scales for the large scales are
given in the process of seeking for stochastic parameterizing manifolds, which are obtained as pullback limits of some
backward-forward systems depending on the time-history of the dynamics of the low modes in a mean square sense through the
nonlinear terms. When the corresponding pullback limits of some backward-forward systems are efficiently determined, the
corresponding non-Markovian reduced systems can be obtained for researching good modeling performances in practice.

1. Introduction

Recently, more and more authors have paid attention to con-
sidering the approximation problems of manifolds for the
stochastic partial differential equations (SPDEs). For decades,
various approximating methods have been given to solve
these problems, such as amplitude equations approach
[1–4] and the manifolds-based approaches [5–11].

In this paper, approximation of manifolds for the sto-
chastic Swift-Hohenberg equation with multiplicative noise
will be investigated in Stratonovich sense [12]. It is well
known that there have been some authors to consider
the approximation of manifolds in large probability sense
[1, 2, 13] and they have obtained some results until now.
In addition, approximation in parameterizing manifold for
a stochastic Swift-Hohenberg equation with additive noise
have been investigated by us in [14]. Furthermore, it is
needed to consider the problems in Stratonovich sense. Until
now, there have been few consideration from the point of
view of approximation in parameterizing manifold under
the pathwise sense for the stochastic Swift-Hohenberg equa-
tion with multiplicative noise. The ideas in [14] can be used
to consider the approximation of manifold for some stochas-

tic equations with multiplicative noise. Because the different
difficulties come from different noise terms, there are some
different methods and techniques in studying stochastic
equations with multiplicative noise. Here, we investigate the
corresponding problems for the stochastic Swift-Hohenberg
equation with multiplicative noise with pathwise and obtain
some new results for it. The results obtained in this paper
are different from those in [14], although there are some sim-
ilar sentences in some manuscripts. It is well known that var-
ious noises cause various stochastic processes for stochastic
equations with different noises. The main differences from
results in [14] are given by some formulas with various math-
ematics meanings, in which some different stochastic func-
tions are used. Because the different difficulties mainly
come from various noise terms, there are some new difficul-
ties coming from the multiplicative noise solved in our man-
uscript. So, some different techniques are used in studying
stochastic equations with multiplicative noise.

We will extend the strategy introduced in [5, 6] to the
stochastic Swift-Hohenberg equation [12] with multiplicative
noise and obtain the approximation of parameterizing
manifolds and corresponding non-Markovian reduced sys-
tem. The key idea is mainly based on the approximate
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parameterizations of the small scales for the large scales via
the stochastic parameterizing manifolds. Random manifolds
will improve the partial knowledge of the solutions of SPDEs
in mean square error, when it is compared with its projection
onto the resolved modes. Approximation of parameterizing
manifolds can be obtained by representing the modes with
high wave numbers as the pullback limit depend on the
time-history of the modes with low wave numbers for the
corresponding backward-forward systems. Some conditions
with nonresonance conditions below are given and weaker
than those in the classical stochastic invariant manifold the-
ory (see [7, 15, 16] and references therein). On the base of
these approximations of parameterizing manifolds, when
the corresponding pullback limits of some backward-
forward systems are efficiently determined, the correspond-
ing non-Markovian stochastic reduced systems are given to
reach good modeling performances in practice and take the
form of stochastic differential equations with random coeffi-
cients, which convey memory effects via the history of the
Wiener process and arise from the nonlinear interactions
between the low modes embedded in the noise bath. These
random coefficients show an exponential decay of correla-
tions, whose rate depends explicitly on the gaps of the nonre-
sonance conditions. In fact, it is possible to achieve very good
parameterizing quality for the stochastic Swift-Hohenberg
equation with multiplicative noise from our results. And
the performances from the reduced system can be numeri-
cally assessed for a corresponding optimal or suboptimal
control problem.

The paper is organized as follows. In Section 2, we give
our functional framework, some definitions about parame-
terizing manifolds and some properties of some stochastic
processes being used. We have devoted Section 3 to studying
the representation of approximation of parameterizing man-
ifolds as pullback limits of the corresponding backward-
forward systems for a stochastic Swift-Hohenberg equation
with multiplicative noise. In Section 4, on the basis of the
approximation of parameterizing manifolds, the non-
Markovian stochastic reduced systems involving random
coefficients are obtained for the stochastic Swift-Hohenberg
with multiplicative noise.

2. Preliminaries

The functional framework spaces are a pair of Hilbert spaces
(H1, H) such that H1 is compactly and densely embedded in
H. Let A : H1 ⟶H be a sectorial operator [16] such that −A
is stable in the sense that its spectrum satisfies Re ðσð−AÞÞ
< 0. And we consider interpolated spaces Hα between H1
and H with α ∈ ½0, 1Þ along with the perturbations of the
linear operator −A given by a one parameter family Bλ of
bounded linear operators from Hα to H, depending continu-
ously on λ. Define Lλ = −A + Bλ, which maps H1 into H.

A local stochastic Swift-Hohenberg equation with multi-
plicative noise in Stratonovich sense [1] is written as follows:

du = λu − 1 + Δð Þ2u − u3
� �

dt + σu ∘ dWt

≔ Lλu + F uð Þð Þdt + σu ∘ dWt ,
ð1Þ

with Dirichlet boundary conditions uð0, t ; ωÞ = uðl, t ; ωÞ =
0, t > 0 and initial condition uðx, 0 ; ωÞ = u0ðxÞ, x ∈ ð0, lÞ,
where λ is a parameterizing variable, σ is positive, and u0 is
some appropriate initial datum with H = L2ð0, lÞ and H1 =
H4ð0, lÞ ∩H2

0ð0, lÞ; WðtÞ is a standard real valued one-
dimensional Brownian motion [17] with paths in C0ðℝ,ℝÞ;
and Ω being endowed with its corresponding Borel σ-alge-
bra ℱ , its filtration ℱ t , the Wiener measure ℙ.

Let FðuÞ = −u3, which is a continuous triple nonlinear
mapping from Hα into H, where α > ð1/3Þ. Obviously, func-
tion FðuÞ is a mapping from H1 into H. Assume Lλ = −A +
Bλ, where Bλ = λ and A = ð1 + ΔÞ2 is closed self-adjoint linear
operator with dense domain DðAÞ in H = L2ðDÞ. The opera-
tor Lλ is self-adjoint with an orthonormal basis of eigenfunc-
tions fek =

ffiffiffiffiffiffi
2/l

p
sin ðkπx/lÞgk∈ℕ in H with corresponding

eigenvalues fβkðλÞ = λ − ð1 − ðk2π2/l2ÞÞ2gk∈ℕ.
Then, problem (1) can be rewritten as

du = Lλu + F uð Þð Þdt + σu ∘ dWt , ð2Þ

with initial condition uðx, 0 ; ωÞ = u0ðxÞ, x ∈ ð0, lÞ and
Dirichlet boundary conditions uð0, t ; ωÞ = uðl, t ; ωÞ = 0,
t > 0. Now, we investigate the random dynamical systems
of system (2) in the sense of parameterizing manifolds in
[6, 17]. The stochastic parameterizing manifolds are mainly
considered for local stochastic Swift-Hohenberg equation
with multiplicative noise (2). Firstly, a stochastic parame-
terizing manifold M is seen as the graph of a random
function hpm, which is a mapping from Hc to Hα,s and
provides approximation parameterizations of the high part
usðt, ωÞ = Psuðt, ωÞ by using of the low part ucðt, ωÞ = Pcu
ðt, ωÞ. The scalar Langevin equation,

dz + zdt = σdW, ð3Þ

is given. A unique stationary solution zðθtωÞ of this equa-
tion is called the stationary Ornstein-Uhlenbeck (OU)
process. By simply integrating on the both sides of (3),
the identity

ðt
0
zσ θsωð Þds + zσ θtωð Þ = zσ ωð Þ + σWt ωð Þ, ∀t ∈ℝ, ð4Þ

holds, which is important for representation of approximation.

3. Representation of Manifolds with
Multiplicative Noise

Making use of the method in [6], we investigate the local sto-
chastic Swift-Hohenberg (equation (2)) with multiplicative
noise in Stratonovich sense. One considers the following
backward-forward system associated with SPDE (2).

dû 1ð Þ
c = Lcλû

1ð Þ
c ds + σû 1ð Þ

c ∘ dWs, s ∈ −T , 0½ �, ð5Þ

û 1ð Þ
c s, ωð Þ∣s=0 = ξ ∈Hc, ð6Þ
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dû 1ð Þ
s = Lsλû

1ð Þ
s + PsF û 1ð Þ

c s − T , ωð Þ
� �� �

ds

+ σû 1ð Þ
s ∘ dWs−T , s ∈ 0, T½ �,

ð7Þ

û 1ð Þ
s s, θ−Tωð Þ∣s=0 = 0, ð8Þ

where Lcλ ≔ PcLλ and Lsλ ≔ PsLλ. From system (5), (6), (7),
and (8), we know that the initial value of ûð1Þc is represented
in fiber ω and the initial value of ûð1Þs is prescribed in fiber
θ−Tω.

It is possible to obtain the solution of system (5) and (6)
by using a backward-forward integration procedure due to
the partial coupling between the equations constituting this
system, where ûð1Þc forces the evolution equation of ûð1Þs but

not reciprocally. In addition, since uð1Þc is emanated backward
from ξ in Hc and forces the equation ruling the evolution of
ûð1Þs , thus ûð1Þs depends naturally on ξ. One emphasizes this
dependence as ûð1Þs ½ξ� in the whole paper.

The nonresonance conditions should be given in follow-
ing theorem, under which the pullback limit of ûð1Þs ½ξ� exists.
Now, representation of an analytical description of such
parameterizing manifolds will be provided. In particularly,
it emphasizes the dependence on the part of the noise path
of the manifolds.

Theorem 1. Consider the SPDE (2) in the functional setting
of Section 2, with F assumed to be a trilinear function. Let
ℐ ≔ f1,⋯,mg with m = dim ðHcÞ.

Suppose also βnðλÞ < 0 for all n >m. Furthermore, assume
that the following nonresonance conditions for all ði1, i2, i3Þ
∈ℐ 3, n >m,

if < F ei1 , ei2 , ei3
� �

, en > ≠ 0,
then βi1

+ βi2
+ βi3

− βn > 0
ð9Þ

hold. Then, the pullback limit of the solution ûð1Þs ½ξ�ðT ,
θ−Tω ; 0Þ of (7) and (8) exists and is given by

ĥ
1ð Þ
λ ξ, ωð Þ = lim

T→+∞
û 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þj

=
ð0
−∞

e−L
s
λτ+2σWτ ωð ÞPsF eL

c
λτξ

� �
dτ, ∀ξ ∈Hc, ω ∈Ω,

ð10Þ

where ûð1Þc ðs, ω ; ξÞ is the solution of (5) and (6)

û 1ð Þ
c s, ω ; ξð Þ = eL

c
λs+σWs ωð Þξ: ð11Þ

Moreover, ĥ
ð1Þ
λ has the following analytic expression:

ĥ
1ð Þ
λ ξ, ωð Þ = 〠

∞

n=m+1
〠
m

i1=1
〠
m

i2=1
〠
m

i3=1
ξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ

< F ei1 , ei2 , ei3
� �

, en > en,
ð12Þ

where ξi = <ξ, ei>, i = 1,⋯,m, and

Mi1i2i3
n,λ ωð Þ =

ð0
−∞

eτ βi1
λð Þ + βi2

λð Þ + βi3
λð Þ − βn λð Þ

� �
+ 2σWτ ωð Þdτ:

ð13Þ

Proof. Firstly, from (5), (6), (7), and (8), one introduces

two processes uð1Þc and uð1Þs for ûð1Þc and ûð1Þs as follows:

u 1ð Þ
c s, ω ; ξð Þ = e−zσ θsωð Þû 1ð Þ

c s, ω ; ezσ θsωð Þξ
� �

, 
s ∈ −T , 0½ �, ξ ∈Hc,

u 1ð Þ
s ξ½ � s, θ−Tω ; 0ð Þ = e−zσ θs−Tωð Þû 1ð Þ

s ezσ ωð Þξ
h i

s, θ−Tω ; 0ð Þ, 
s ∈ 0, T½ �:

ð14Þ

Here, via the above transformation processes, the
backward-forward system (5), (6), (7), and (8) is trans-
formed into the following system of random differential
equations:

du 1ð Þ
c

ds
= Lcλu

1ð Þ
c + zσ θsωð Þu 1ð Þ

c , s ∈ −T , 0½ �, ð15Þ

u 1ð Þ
c s, ωð Þ∣s=0 = ξ ∈Hc, ð16Þ

du 1ð Þ
s

ds
= Lsλu

1ð Þ
s + zσ θs−Tωð Þu 1ð Þ

s

+ e2zσ θs−Tωð ÞPsF u 1ð Þ
c s − T , ωð Þ

� �
, s ∈ 0, T½ �,

ð17Þ
u 1ð Þ
s s, θ−Tωð Þ∣s=0 = 0: ð18Þ

Using the variation of constants method, we can formally
obtain the solution of (15) and (16), which is followed by
making use of an integration by parts performed to the
resulting stochastic convolution terms

u 1ð Þ
c s, ω ; ξð Þ = eL

c
λs+
Ð s

0
zσ θrωð Þdrξ: ð19Þ

Similarly, the solution of (17) and (18) can be also
obtained at T , which is formed

u 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þ =

ð0
−T
e−τL

s
λ+2zσ ωð Þdr+2σWτ ωð ÞPsF eτL

c
λξ

� �
dτ,

ð20Þ

where uð1Þc ð⋅ ,ω ; ξÞ is taken as a form of (19). When
T ⟶ +∞, since condition (9), the limit of (20) exists,
which is formed

h 1ð Þ
λ ξ, ωð Þ = lim

T→+∞
u 1ð Þ
s ξ½ � T , θ−Tω ; 0ð Þ

=
ð0
−∞

e−τL
s
λ+2zσ ωð Þdr+2σWτ ωð ÞPsF eτL

c
λξ

� �
dτ:

ð21Þ
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Secondly, one investigates the analysis presentation
of this limit. Propose that

h 1ð Þ
λ ξ, ωð Þ = 〠

∞

n=m+1
h 1ð Þ,n
λ ξ, ωð Þen, ð22Þ

where

h 1ð Þ,n
λ ξ, ωð Þ = 〠

m

i1,i2,i3=1
e2zσ ωð Þξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ

< F ei1 , ei2 , ei3
� �

, en > :

ð23Þ

Here, ij = 1,⋯,m and ξi j = <ξ, eij>, j = 1, 2, 3, and

Mi1i2i3
n,λ ωð Þ =

ð0
−∞

e

〠
3

j=1
β1 j λð Þ−βn λð Þ

 !
s+2σWs ωð Þ

ds: ð24Þ

According to the same assumptions and the inverse
transformation, (11) can be immediately obtained from

(19), and the analytic expression of ĥ
ð1Þ
λ has the form

of (12).

Furthermore, the approximation ĥ
ð1Þ
λ can be provided by

the above theorem, which constitutes a parameterizing man-
ifold function of SPDE (2). Moreover, the random coeffi-
cients Mn,λ have decaying property of correlations when it
is checked by similar calculations performing for the proof
of Lemma 5.1 in [6], which are solutions of auxiliary SDEs

dM = 1 − 〠
3

j=1
βi j

λð Þ − βn λð Þ
 !

M

 !
dt − σM ∘ dWt: ð25Þ

Remark 2. Here, the random coefficients Mi1i2i3
n,λ ðωÞ satisfied

the stochastic equation (25) and are different from Mi in
[14], since the stochastic processes’ transformations are var-
ious for stochastic equations with multiplicative noises. So,
Mi1i2i3

n,λ ðωÞ in this paper and Mi in [14] have different repre-
sentations by formulas. In this paper, the transformations
of stochastic processes are more difficult than those in [14].
So, the random coefficients Mi1i2i3

n,λ ðωÞ are much more com-
plex than those in [14]. Then, these differences hold in the
whole paper.

4. PM-Based Non-Markovian Reduced
System with Multiplicative Noise

In this section, the PM-based non-Markovian reduced
system of problem (2) is investigated in two cases that
are in two subspaces, Hc = spanfe1g or Hc = spanfe1, e2g,
respectively.

When one projects (2) into the subspace Hc, it yields that

duc = Lcλuc + PcF uc + usð Þð Þdt + σu ∘ dWt , ð26Þ

where uc = Pcu with Pc being the canonical projector on
subspace Hc. By replacing usðt, ωÞ = Psuðt, ωÞ with (12),

the pullback limit ĥ
ð1Þ
λ ðξ, θtωÞ, one yields the following

reduced system

dξ = Lcλξ + PcF ξ + ĥ
1ð Þ
λ ξ, θtωð Þ

� �� �
dt + σξ ∘ dWt , ð27Þ

which provides an approximation of the SPDE dynamics
projected onto the low modes.

From (12), the random coefficients of eiðxÞði = 1, 2,⋯Þ
contained in the expansion of ĥ

ð1Þ
λ exhibit the decaying

property of correlations. Therefore, extrinsic memory
effects in the Stratonovich sense are conveyed by the drift
part of (27), making such reduced systems be non-
Markovian (see [18, 19]).

The analytic form of ĥ
ð1Þ
λ from (12) can be used. The non-

linear interactions Fi1i2i3
n = <Fðei1 , ei2 , ei3Þ, en>, have the fol-

lowing form. When m = 1,

Fi1i2i3
3 = 1

2l , n = 3,

Fi1i2i3
n = 0, n = 2 or n ≥ 4:

ð28Þ

When m = 2,

Fi1i2i3
n = 1

2l , when i1 + i2 + i3 = n or i1 − i2 − i3 = n,

Fi1i2i3
n = −

1
2l , when i1 + i2 − i3 = n or i1 − i2 + i3 = n,

Fi1i2i3
n = 0, n ≥ 7:

ð29Þ

Firstly, we investigate the system in case m = 1. Since
approximation of parameterizing manifolds have been
obtained in Section 3, then one yields that

ĥ
1ð Þ
λ ξ, ωð Þ = 1

2l ξ
3
1M

111
3,λ ωð Þe3, ð30Þ

where ξ1 = <ξ, e1>, and

M111
3,λ ωð Þ =

ð0
−∞

e 3β1 λð Þ−β3 λð Þð Þs+2σWs ωð Þds: ð31Þ

In this case, the approximation is simple. However, it is
not enough to present the performances of the corresponding
dynamics. Furthermore, parameterizing manifolds in two-
dimensional case for low mode are considered, which per-
form more dynamics than in the above case.

Secondly, when m = 2, then one can obtain the more
complex results than in the case of m = 1.
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Here,

ĥ
1ð Þ
λ ξ, ωð Þ = 〠

∞

n−m+1
〠
m

i1,i2,i3=1
ξi1ξi2ξi3M

i1i2i3
n,λ ωð Þ < F ei1 , ei2 , ei3

� �
, en > en

= 1
2l ξ31M

111
3,λ − 3ξ1ξ22M122

3,λ

� �
e3 +

3
2l ξ

2
1ξ2M

112
4,λ e4

+ 3
2l ξ1ξ

2
2M

122
5,λ e5 +

1
2l ξ

3
2M

222
6,λ e6,

ð32Þ

where ξ1 = hξ, e1i, ξ2 = hξ, e2i, and

M111
3,λ ωð Þ =

ð0
−∞

e 3β1 λð Þ−β3 λð Þð Þs+2σWs ωð Þds,M122
3,λ ωð Þ

=
ð0
−∞

e β1 λð Þ+2β2 λð Þ−β3 λð Þð Þs+2σWs ωð Þds,

M112
4,λ ωð Þ =

ð0
−∞

e 2β1 λð Þ+β2 λð Þ−β4 λð Þð Þs+2σWs ωð Þds,

M122
5,λ ωð Þ =

ð0
−∞

e β1 λð Þ+2β2 λð Þ−β5 λð Þð Þs+2σWs ωð Þds, M222
6,λ ωð Þ

=
ð0
−∞

e 3β2 λð Þ−β6 λð Þð Þs+2σWs ωð Þds:

ð33Þ

However, it is complex to use directly the analytic for-

mula of ĥ
ð1Þ
λ to obtain the vector PcFðξ + ĥ

ð1Þ
λ ðξ, θtωÞÞ as ξ is

various in Hc in spite of any case in fact. So, we can use ûð1Þs

½ξðt, ωÞ�ðt + T , θTω ; 0Þ to take the place of ĥ
ð1Þ
λ ðξ, θtωÞ on

the fly along a trajectory ξðt, ωÞ of interest, where ûð1Þs is given
by integrating on both sides of the backward-forward system
(5), (6), (7), and (8), when T is chosen sufficiently large [6].
Then, it is natural to study the reduced system as follows:

dξt = Lcλξt + PcF ξt + û 1ð Þ
s ξ t, ωð Þ½ � t + T , θTω ; 0ð Þ

� �� �
dt

+ σξt ∘ dWt , ξ 0, ωð Þ = ϕ, t > 0,
ð34Þ

where ϕ is appropriately chosen according to the SPDE initial
datum and ûð1Þs ½ξðt, ωÞ� is given from the following system:

dû 1ð Þ
c = Lcλû

1ð Þ
c ds + σû 1ð Þ

c ∘ dWs, û 1ð Þ
c s, ωð Þ∣s=t = ξ t, ωð Þ,

 s ∈ t − T , t½ �,
dû 1ð Þ

s = Lsλû
1ð Þ
s + PsF û 1ð Þ

c s − T , ωð Þ
� �� �

ds + σû 1ð Þ
s ∘ dWs−T ,

 û 1ð Þ
s s, θ−Tωð Þ∣s=t = 0, s ∈ t, t + T½ �:

ð35Þ

Now, we give the corresponding non-Markovian systems
from the above system. Investigating them in two casesm = 1
and m = 2.

Firstly, when m = 1, one denotes ξ1ðt, ωÞ = ξ1ðt, ωÞe1,
with ξ1ðt, ωÞ = <ξðt, ωÞ, e1 > . Then, the system can be
written as in coordinate form

dξ1 = β1 λð Þξ1 −
3
2l ξ31 − ξ21y

1ð Þ
3 + ξ1 y 1ð Þ

3
h i2� �

dt + σξ1 ∘ dWt ,

 t > 0,
ð36Þ

with ξ1ð0, ωÞ = hϕ, e1i, where ξt = ξ1ðt, ωÞe1 and yð1Þj , j = 2,⋯,
are given from the following system:

dy 1ð Þ
1 = β1 λð Þ 1ð Þ

y1
ds + σy 1ð Þ

1 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
2 = β2 λð Þy 1ð Þ

2 ds + σy 1ð Þ
2 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
3 = β3 λð Þy 1ð Þ

3 + 1
2l y 1ð Þ

1 s − T , ωð Þ
h i3� �

ds + σy 1ð Þ
3 ∘ dWs−T , 
s ∈ t, t + T½ �,

dy 1ð Þ
j = βj λð Þy 1ð Þ

j ds + σy 1ð Þ
j ∘ dWs−T , s ∈ t, t + T½ �, j = 4,⋯,

ð37Þ

with yð1Þ1 ðs, ωÞ∣s=t = ξ1ðt, ωÞ, yð1Þj ðs, θ−TωÞ∣s=t = 0, j = 2⋯:

Secondly, when m = 2, one denotes ξðt, ωÞ = ξ1ðt, ωÞe1 +
ξ2ðt, ωÞe2, with ξiðt, ωÞ = <ξðt, ωÞ, ei>, i = 1, 2. Then, for
t > 0, the corresponding system can be written as in coordi-
nate form

dξ1 = β1 λð Þξ1 −
3
2l ξ

3
1 −

3
l
ξ1ξ

2
2 +

3
2l ξ21 − ξ22

� �
y 1ð Þ
3

�	

+ 2ξ1ξ2y
1ð Þ
4 + ξ22y

1ð Þ
5
�
+ 3ξ1

l
y 1ð Þ
3 y 1ð Þ

5 + y 1ð Þ
4 y 1ð Þ

6

�

− 〠
6

i=3
y 1ð Þ
i

h i2�
+ 3ξ2

l
y 1ð Þ
3 y 1ð Þ

6 − 〠
6

i=4
y 1ð Þ
i−1y

1ð Þ
i

 !

−
1
l

y 1ð Þ
3

h i2
y 1ð Þ
5 + 2y 1ð Þ

3 y 1ð Þ
4 y 1ð Þ

6

� �

−
1
2l y

1ð Þ
3 y 1ð Þ

3 y 1ð Þ
5 + y 1ð Þ

4 y 1ð Þ
6

� �

dt + σξ1 ∘ dWt ,

dξ2 = β2 λð Þξ1 −
3
l
ξ21ξ2 −

3
2l ξ

3
2 +

3
2l ξ21y

1ð Þ
4

�	

+ 2ξ1ξ2 −y 1ð Þ
3 + y 1ð Þ

5
� �

+ ξ22y
1ð Þ
6

�

+ 3ξ1
l

y 1ð Þ
3 y 1ð Þ

6 − 〠
6

i=4
y 1ð Þ
i−1y

1ð Þ
i

 !
−
3ξ2
l
〠
6

i=3
y 1ð Þ
i

h i2

−
3
2l y 1ð Þ

3
h i2

y 1ð Þ
4 + 2y 1ð Þ

3 y14y
1ð Þ
5 + y 1ð Þ

3 y 1ð Þ
5 y 1ð Þ

6

�

+ y 1ð Þ
4

h i2
y 1ð Þ
6

�

dt + σξ2 ∘ dWt ,

ð38Þ
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with ξ1ð0, ωÞ = hϕ, e1i, ξ2ð0, ωÞ = hϕ, e2i, where ξt = ξ1ðt, ωÞ
e1 + ξ2ðt, ωÞe2 and yð1Þj , j = 3,⋯, are given from following
system

dy 1ð Þ
1 = β1 λð Þy 1ð Þ

1 ds + σy 1ð Þ
1 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
2 = β2 λð Þy 1ð Þ

2 ds + σy 1ð Þ
2 ∘ dWs, s ∈ t − T , t½ �,

dy 1ð Þ
3 = β3 λð Þy 1ð Þ

3 + 1
2l y 1ð Þ

1 s − T , ωð Þ
h i3��

− 3y 1ð Þ
1 s − T , ωð Þ y 1ð Þ

2 s − T , ωð Þ
h i2��

ds

+ σ3y
1ð Þ
3 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
4 = β4 λð Þy 1ð Þ

4 + 3
2l y 1ð Þ

1 s − T , ωð Þ
h i2

y 1ð Þ
2 s − T , ωð Þ

� �
ds

+ σy 1ð Þ
4 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
5 = β5 λð Þy 1ð Þ

4 + 3
2l y

1ð Þ
1 s − T , ωð Þ y 1ð Þ

2 s − T , ωð Þ
h i

2
� �

ds

+ σy 1ð Þ
5 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
6 = β6 λð Þy 1ð Þ

6 + 1
2l y 1ð Þ

2 s − T , ωð Þ
h i3� �

ds

+ σy 1ð Þ
6 ∘ dWs−T , s ∈ t, t + T½ �,

dy 1ð Þ
j = βj λð Þy 1ð Þ

j ds + σy 1ð Þ
j ∘ dWs−T , s ∈ t, t + T½ �, j = 7,⋯,

ð39Þ

with yð1Þ1 ðs, ωÞjs=t = ξ1ðt, ωÞ, yð1Þ2 ðs, ωÞjs=t = ξ2ðt, ωÞ, yð1Þj ðs,
θ−TωÞjs=t = 0,  j = 3,⋯:.

From the above equations, the representations of
approximation for manifold and the corresponding reduced
non-Markovian systems for stochastic Swift-Hohenberg
equation with multiplicative noise are obtained. And the
performances given by the above non-Markovian reduced
system should have approximate dynamics on the Hc modes
in modeling of the pathwise SPDE (2). It is more important
that one should give partial dynamics in approximation
sense on the Hc modes in modeling of the pathwise SPDEs
in practice. The performances from the reduced system
may be numerically assessed for a corresponding optimal
or suboptimal control problems in the deduced processes.
The numerical results will be further shown in the future.
The processes deduced in this manuscript offered an idea
in order to further investigate the approximation of stochas-
tic manifold for some quantum stochastic equations with
multiplicative noise.
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