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We present errors of quadrature rules for the nearly singular integrals in the momentum-space bound-state equations and give the
critical value of the nearly singular parameter. We give error estimates for the expansion method, the Nyström method, and the
spectral method which arise from the near singularities in the momentum-space bound-state equations. We show the relations
amongst the near singularities, the odd phenomena in the eigenfunctions, and the unreliability of the numerical solutions.

1. Introduction

The momentum-space bound-state equations are of great
importance, such as the Schrödinger equation, the Dirac
equation, the Klein-Gordon equation, the spinless Salpeter
equation, the quadratic form of the spinless Salpeter-type
equation, the Bethe-Salpeter equation, and so on. Except for
the simplest cases, these integral equations should be solved
by numerical methods. When employing a numerical method,
reliability, the analysis of the error in the computed results,
is undoubtedly the foremost consideration and the most
important issue. Error estimates and error bounds are related
obversely to the reliability of the yielded solutions. Odd phe-
nomena mentioned seldom are related reversely to the reli-
ability, which often appear in unexpected ways. The odd
phenomena (In this paper, the considered odd phenomena
arise not from the intrinsic properties of the discussed system
but from the inappropriate treatment of the momentum-
space bound-state equations.) usually connect with the unre-
liability of the computed results and serve as an indicator of
the unreliability, such as Runge’s phenomenon [1, 2], the
Gibbs phenomenon [3, 4], the furcation phenomenon in
the numerical eigenfunctions [5–7], and the abnormal con-
vergence direction of calculated eigenvalues [8].

Unlike the common singularities which are explicit and
known to us, the near singularities [9–11] or numerical sin-

gularities [5–8] are prone to being neglected. Although the
discussed problems are not singular analytically in the
domain, the near singularity will impair the accuracy of the
numerical solutions, sometimes even destroys the reliability
of the results. We often fall into the illusion that the yielded
numerical results are reliable and with expected accuracy.
The illusion is reinforced when we find the numerical solu-
tions are stable as we adjust the numerical and physical
parameters. The odd phenomena emerging in the calculated
results remind us that the numerical results are questionable.

The paper is organized as follows. In Section 2, the dis-
cussions on the error estimates for the nearly singular inte-
grals and nearly singular momentum-space bound-state
equations are presented. The relations between the near sin-
gularities and the reliability of the numerical solutions are
discussed. The conclusions are in Section 3.

2. Near Singularity and Error Estimates

In this section, we at first present the definition of the near
singularity. Then, we give the errors of quadrature rules for
the nearly singular integrals. Finally, we discuss errors arising
from the near singularities in the momentum-space bound-
state equations and the relations amongst the near singulari-
ties, the odd phenomena in the numerical eigenfunctions,
and the unreliability of the obtained solutions.
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2.1. Near Singularity. Let f ðp ; β ≠ βsÞ ∈ C½a, b�, where β is a
parameter and βs is the critical value. Let ps, p ∈ ½a, b�. If

lim
p→ps
β→βs

f p ; βð Þ = ±∞, ð1Þ

f ðp ; βÞ is nearly singular in the neighborhood of ps as 0 <
jΔβj≪ 1 where Δβ = β − βs. ps is the nearly singular point.
β is the nearly singular parameter. If β = βs, the near singu-
larities become common singularities. The nearly singular
function f ðp ; βÞ has a near singularity at ps of order k if
k > 0 satisfies

lim
p→ps

f p ; βsð Þ p − psð Þk = c, ð2Þ

where c is a nonzero number. The orders of the nearly
singular functions are analogous to the orders of poles.

We concentrate on the momentum-space bound-state
equations, but the conclusions will be general. Without loss
of generality, the radial eigenvalue integral equation can be
written as

Eϕ pð Þ =
ð
K p, q, βð Þϕ qð Þq2dq, ð3Þ

where β represents all the other parameters. The usual near
singularities (or numerical singularities) are logarithmic near
singularity in the screened Coulomb potential and the alge-
braic near singularity in the screened linear potential and
the screened Cornell potential [5–8]:

K p, q, βð Þ ∼ ln p − qð Þ2�
+ β2�, p − qð Þ2 + β2� �s′ , s′ = −1, βs = 0:

ð4Þ

The numerical solutions of Equation (3) behave badly
as β which is in the vicinity of βs because the kernel Kðp, q,
βÞ is not well treated in numerical integration which leads
to a large error when the numerical method is employed to
solve Equation (3).

2.2. Errors of Quadrature Rules. Consider the nearly singular
integral:

I pð Þ =
ð1
−1
K p, q, βð Þdq: ð5Þ

Applying the Newton-Cotes quadrature rules directly to
IðpÞ in which p can be regarded as a constant, we have

Qn Kð Þ = 〠
n

i=0
wiK p, qið Þ, ð6Þ

where h = 2/n, qi = −1 + ih for i = 0, 1,⋯, n, and wi are
weights.

Although for large n a Newton-Cotes quadrature rule will
sometimes suffer from catastrophic Runge’s phenomenon,

we want to discuss the error of the Newton-Cotes quadrature
rules [12]:

Rn fð Þ = I fð Þ −Qn fð Þ =
C1
nh

n+2 f n+1ð Þ ζð Þ, for odd n,

C2
nh

n+3 f n+2ð Þ ζð Þ, for even n,

(

ð7Þ

where ζ ∈ ½a, b�, h = ðb − aÞ/n, and

C1
n =

1
n + 1ð Þ!

ðn
0
μ μ − 1ð Þ⋯ μ − nð Þdμ,

C2
n =

1
n + 2ð Þ!

ðn
0
μ2 μ − 1ð Þ⋯ μ − nð Þdμ:

ð8Þ

After calculation, we have

C1
n ∼ C2

n ∼
n

n + 1ð Þ!
n
2

� �
!

h i2
: ð9Þ

Consider the nearly singular kernel which takes the form

K p, q, βð Þ = 1
p − qð Þ2 + β2 : ð10Þ

The maximum norm of the derivative of the kernel (10)
[13] reads

K 2nð Þ
���

���
∞
= K 2nð Þ q, qð Þ
���

��� = 2nð Þ!
β2n+2 : ð11Þ

If the nearly singular kernel is logarithmic

K p, q, βð Þ = ln p − qð Þ2 + β2� �
, ð12Þ

the maximum norm of the derivative of the kernel (12) reads

K 2nð Þ
���

���
∞
= K 2nð Þ q, qð Þ
���

��� = 2nð Þ!
nβ2n : ð13Þ

Using Equations (11), (13), and (7), we show that the
error arising from the near singularities (Equations (10)
and (12)) will dominate the error RnðKÞ as β is small. That
is, small β results in the unreliability of the numerical results.

Using Equations (9), (11) (or (13)), and Stirling’s for-
mula,

n! =
ffiffiffiffiffiffi
2π

p
nn+1/2 exp −n + θ

12n

	 

  n > 0, 0 < θ < 1ð Þ, ð14Þ

finite error of Equation (7) demands

β ≥ βc, βc ≈
1
e
= 0:368, ð15Þ
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where βc is a critical value. As β > βc, the integral (5)
becomes the usual integral while β < βc, the integral (5)
is nearly singular.

As employing the composite trapezoidal rule and com-
posite Simpson’s rule, the theoretical error of the nearly sin-
gular integral (5) reads

R2 fð Þ = −
h2

6 f 2ð Þ ζð Þ,

R3 fð Þ = −
h4

90 f
4ð Þ ζð Þ,

 ζ ∈ −1, 1½ �,

ð16Þ

respectively. For the algebraic near singularity, using Equa-
tions (11) and (16), we have

R2 Kð Þj j ∼ h2

3
1
β4 ,

R3 Kð Þj j ∼ h4

45
12
β6 :

ð17Þ

For not too small β, the same accuracy as the common
integral can be obtained by decreasing the step size to hβ2

and hβ3/2 for the composite trapezoidal rule and composite
Simpson’s rule, respectively. For the logarithmic near singu-
larity, using Equations (13) and (16), we have

R2 Kð Þj j ∼ h2

3
1
β2 ,

R3 Kð Þj j ∼ h4

45
6
β4 :

ð18Þ

The same accuracy as the common integral can be
obtained by decreasing the step size to hβ for both the com-
posite trapezoidal rule and composite Simpson’s rule as β is
not too small.

In case of the Gauss-Legendre quadrature rule, the inte-
gral (5) can be approximated by

Qn Kð Þ = 〠
n

i=1
wiK p, qið Þ, ð19Þ

where the nodes qi are the roots of the nth Legendre polyno-
mial PnðqÞ for i = 1, 2,⋯, n,

wi =
2

1 − q2i
� �

Pn+1′ qið Þ
h i2 : ð20Þ

In the above equation, prime stands for the derivative.
The theoretical error formula for the Gauss-Legendre rule
on the interval ½−1, 1� reads [14].

Rn fð Þj j ≤ 22n+1 n!ð Þ4
2n + 1ð Þ 2nð Þ!½ �3 f 2nð Þ

���
���
∞
: ð21Þ

Using Equations (11) and (14), Equation (21) reduces to

Rn Kð Þj j ≤ 2π
2βð Þ2n+1 exp θ

4n

	 

: ð22Þ

Evidently, finite error demands

β ≥ βc, βc =
1
2 , ð23Þ

as n⟶∞. The same result can be obtained for the logarith-
mic near singularity. Equation (23) is different from the
asymptotic error estimate for β≪ 1 given through the con-
tour integral [15]:

Rn Kð Þj j<~
2π
β

exp −2βnð Þ, n⟶∞: ð24Þ

In practice, small β will impair the accuracy as n is finite.

2.3. Errors Arising from the Near Singularities in the
Momentum-Space Bound-State Equations. In case of the
approximation method, we can have the matrix equation
from Equation (3):

ENMa = La, EN ≡
aTLa
aTMa

, ð25Þ

where

ψ pð Þ ≈ ψN pð Þ = 〠
N

i=1
aihi pð Þ, ð26Þ

a = fai,⋯, aNg, and

Lij =
ð
h†i pð ÞK p, p′

� �
hj p′
� �

p2p′2dpdp′,

Mij =
ð
h†i pð Þhj pð Þp2dp:

ð27Þ

If the set fhig is orthonormal,M becomes the identity. In
the Nyström method case, we have from Equation (3)

F ψN� �
= ψN , KψN
� �
ψN , ψNð Þ =

∑N
i,j=1cicjψ

N
i Kijψ

N
j

∑N
i=1ciψ

N
i ψ

N
i

, ð28Þ

where ψN
i = ψNðpiÞ, Kij = Kðpi, pjÞ, ci is the weight for the

chosen quadrature rule multiplied by p2i . Setting

∂F
∂ψN

m
= 0, m = 1, 2,⋯,N , ð29Þ
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we can obtain

ψN
m ∑N

i,j=1cicjψ
N
i Kijψ

N
j

� �
− ∑N

i=1ciψ
N
i Kmi

� �
∑N

i=1ciψ
N
i ψ

N
i

� �

∑N
i=1ciψ

N
i ψ

N
i

� � = 0,

ð30Þ

if the matrix Kij is symmetric; that is,

ENψN
m = 〠

N

i=1
ciKmiψ

N
i : ð31Þ

The above equation is just the matrix equation yielded
by discretizing the integral Equation (3). For the spectral
method, the matrix equation obtained from Equation (28)
can be written also in the form of Equation (31).

In Equations (25) and (31), the common errors arising
from the numerical methods are not given. We concentrate
on the errors resulting from the near singularities. For sim-
plicity, Equations (25) and (31) are rewritten as

εnϕni = 〠
N

j=1
Kijϕnj: ð32Þ

When the near singularities are treated and then the
eigenvalue integral Equation (3) becomes less nearly singular
or free of near singularities [5–8, 16–18], the obtained matrix
equation corresponding to Equation (32) reads

εn′ϕni′ = 〠
N

j=1
Kij′ϕnj′ , Kij′ = Kij −Mij, ð33Þ

whereMij are the additional errors arising from the near sin-

gularities. In this section, ϕni and ϕni′ are the unnormalized
eigenfunctions belonging to the nth eigenvalues εn and εn′,
respectively. We can assume that the solutions, ϕn′ and εn′, to
(33) are well behaved and are good approximations of the
actual solutions while the solutions, ϕn and εn, to the nearly
singular Equation (32) are an approximation to ϕn′ and εn′
and may be be bad with low accuracy. If Equation (3) is free
of near singularities, Mij = 0, εn = εn′, and ϕni = ϕni′ .

Let i = n, ϕnn′ = 1, and we have from Equation (33) [7, 19]

εn′ = 〠
N

j=1
Knj′ ϕnj′ : ð34Þ

Let i ≠ n; then, we obtain components of the nth eigen-
function:

ϕnn′ = 1,

ϕni′ =
∑j≠iKij′ϕnj′
εn′ − Kii′

:
ð35Þ

The same procedure applied to Equation (32) yields the
results:

εn = εn′ + 〠
N

j=1
Knj′ Δnj

+ 〠
N

j=1
Mnj Δnj + ϕnj′

� �
, Δnj = ϕnj − ϕnj′ ,

ð36Þ

ϕnn = 1,

ϕni =
εn′ϕni′ +∑N

j=1Kij′Δnj +∑i≠jMijϕnj
εn −Mii

,
ð37Þ

where we have used Equation (33). Equations (34)–(37) are
exact results. As the Nyström method is employed, Mij will
be diagonal. If the elements of M are small, we have from
Equations (36) and (37)

εn = εn′ +Mnn + 〠
N

j=1
Knj′ Δnj, ð38Þ

ϕnn = 1,

ϕni =
εn′ +∑N

j=1Kij′Δnj/ϕni′
εn −Mii

ϕni′ :
ð39Þ

From Equations (32)–(39), we can see thatMij are related
directly with the near singularities in the integral equation
and they result in errors in the eigenvalues and the corre-
sponding eigenfunctions. Mnn or Mnn/En can be used as
crude error estimate and a sign whether the original Equation
(3) can be solved straightforwardly by numerical method. If
Mnn are large, Equation (3) should be handled to weaken or
remove the near singularities in it.

Formulas (37) and (39) can be applied to explain why the
furcation phenomenon emerges in the obtained eigenfunc-
tions [5–7]. The alternate wobble of the weights leads to the
alternate wobble of Mii which results in the wobble of the
point of the yielded eigenfunction—that is, the furcation with
branches emerges. Equations (36) and (38) give the relation
between the furcation phenomenon and error resulting from
the near singularities in the obtained eigenvalues. As the fur-
cation phenomenon becomes stronger,Mii will be larger and
the integrand is more nearly singular; then, the errors will
increase. The furcation phenomenon in the numerical eigen-
functions indicates not only the unreliability of the numerical
results but also the bad behavior of the integral Equation (3).

3. Conclusions

We present errors of quadrature rules for the nearly singular
integrals in the momentum-space bound-state equations.
Then, the critical value of the nearly singular parameter is
given. We give error estimates for the expansion method,
the Nyström method, and the spectral method which arise
from the near singularities in the momentum-space bound-
state equations. We show that the relations amongst the near
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singularities, the odd phenomena in the eigenfunctions, and
the unreliability of the numerical solutions.
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