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The circuit-gate framework of quantum computing relies on the fact that an arbitrary quantum gate in the form of a unitary matrix
of unit determinant can be approximated to a desired accuracy by a fairly short sequence of basic gates, of which the exact bounds
are provided by the Solovay–Kitaev theorem. In this work, we show that a version of this theorem is applicable to orthogonal
matrices with unit determinant as well, indicating the possibility of using orthogonal matrices for efficient computation. We
further develop a version of the Solovay–Kitaev algorithm and discuss the computational experience.

1. Introduction

A computer program in the context of classical computing is
an ordered list of instructions, expressible in terms of elemen-
tary operations, readily convertible to the machine language
of a classical computer. A quantum program in quantum
computing could be described analogously. According to
the circuit-gate framework of quantum computing, a quan-
tum algorithm consists of quantum gates acting on quantum
states (qubits) where measuring devices are applied at appro-
priate instances to collapse the wavefunction. Based on the
Heisenberg–Born interpretation of quantum mechanics, this
circuit-gate framework has achieved significant progress up
to date, as the pioneeringmodel of quantum computing. Also,
it is proven to be polynomially equivalent to other quantum
computational frameworks. Accordingly, a quantum pro-
gram can be regarded as the application of several unitary
matrices, together with measurements at certain instances.

In order to implement unitary operations, basic quantum
gates such as Pauli gates, Hadamard gate, and phase gate are
available in the circuit-gate framework, in analogy with basic
gates in classical computing. It is quite natural to ask how
many basic gates are needed to implement an arbitrary uni-
tary operation in a quantum circuit. The remarkable contri-
butions in this regard made independently by Solovay [1]
and Kitaev [2] answered this question, resulting in what is

known today as the Solovay–Kitaev theorem. This theorem
states that it is possible to approximate any 2 × 2 unitary with
unit determinant by a product of Oðlog4ð1/εÞÞ physically
realizable 2 × 2 unitaries (which appear as basic gates) to an
arbitrary accuracy ε [3, 4]. Recall the other quantum compu-
tational frameworks such as quantumwalks, quantum Turing
machines, and adiabatic computing were proven to be poly-
nomially equivalent to the circuit-gate framework [5–7], the
Solovay–Kitaev theorem is widely regarded the theoretical
proof for the supremacy of quantum computers. In addition,
the number of elementary gates needed to implement an arbi-
trary unitary provides an indicator of the capacity and limita-
tions of quantum computers.

This reveals an interesting aspect of unconventional
models of computing. That is, any computational model with
similar speed and limitations would be computationally
equivalent to quantum computing. If physically realizable,
such a model would have the same advantages and limita-
tions as quantum computing. Though little attention has
been paid to this subject in the past, several interesting works
have investigated the possibility of having such models. A
pioneering work was done by Aerts and Czachor in 2007,
proposing geometric algebras instead of unitary matrices
[8]. The authors named this model cartoon computing and
proved its equivalence to quantum computing, demonstrat-
ing a simulation of the Deutsch-Jozsa algorithm. A later work
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investigated entities in cartoon computing equivalent to
elementary gates in quantum computing [9]. In 2008, Fer-
nandez and Schneeberger proposed quaternionic computing,
in which the possibility of adopting quaternions instead of
unitary matrices was proven [10]. In order to show the equiv-
alence to quantum computing, the authors have used the
Bernstein–Vazirani theorem in quantum Turing machine
framework. In [11], Graydon explored quaternionic quan-
tum processes with respect to standard quantum informa-
tion theory. Thus, it is an interesting question to ask what
other algebraic structures would show similar behaviour, if
employed as a computational model.

On the other hand, the progress achieved in three-level
quantum systems is noteworthy [12–14]. Instead of qubits
with states j0i and j1i in standard circuit-gate framework,
qutrits having three basis states j0i, j1i, and j2i are used in
these systems. Analogous to the single-qubit quantum gates
in the form of 2 × 2matrices in the special (unit determinant)
unitary group SUð2Þ, the single-qutrit gates are 3 × 3 special
unitaries or the elements in the group SUð3Þ [15–17].
Though the realization of SUð3Þ gates has been the topic of
interest for several previous works [18–20], computational
capacity or theoretical bounds on computing of a three-
level quantum system have not been paid the deserved atten-
tion. Neither Solovay–Kitaev type approximations were
investigated for three-level systems. Nevertheless, a recent
work emphasized the significance of the subgroup SOð3Þ
of SUð3Þ for qutrit-based quantum computation, showing
that any state of a qutrit could be obtained from a one-
parameter family of states through the action of SOð3Þ
[21]. In this regard, one should not ignore the remarkable
relationship between the groups SOð3Þ and SUð2Þ. This
motivates us to check whether the Solovay–Kitaev theorem
is extendable to SOð3Þ and possible to achieve the quantum
speedup in three-level quantum systems, when equipped
with orthogonal operators. In addition to that, once this
question is resolved, one may know exactly whether the 3 ×
3 orthogonal matrices also provide an algebraic structure
suitable for efficient computation, such as geometric algebras
or quaternions.

In this paper, we show that the question is answered pos-
itively. That is, the orthogonal matrices play a role in three-
level quantum systems, equivalent to what the unitaries play
in standard quantum circuit framework. More precisely, we
show that a version of the Solovay–Kitaev theorem is applica-
ble to 3 × 3 orthogonal matrices with unit determinant. Thus,
we indicate the possibility of theoretically replacing the 2 × 2
unitaries in quantum computing by 3 × 3 orthogonals and
qubits by qutrits. Using Cornwell’s two-to-one homomorphic
map from the special unitary group SUð2Þ to special orthogo-
nal group SOð3Þ [22], we prove the possibility of approximat-
ing any 3 × 3 orthogonal with unit determinant by a product
of Oðlog4ð1/εÞÞ elementary 3 × 3 orthogonals of unit determi-
nants to an arbitrary accuracy ε. We further discuss how to
find the sequence of appropriate elementary orthogonals, pro-
viding a version of Solovay–Kitaev algorithm in SOð3Þ.

The remainder of the paper is organized as follows. In
Section 2, our version of the Solovay–Kitaev theorem for
SOð3Þ is proven. An approximation scheme for unit-

determinant orthogonal matrices in accordance with this the-
orem and the standard Solovay–Kitaev algorithm is presented
in Section 3. Computational experience is discussed in Section
4, and we discuss the implications of our work in Section 5
with several remarks on potential future works.

2. Solovay–Kitaev Theorem in SOð3Þ
2.1. Solovay–Kitaev Theorem. Recall the computational
power in the circuit-gate framework is guaranteed by the
Solovay–Kitaev theorem; its main focus is on approximating
a 2d × 2d unitary matrix by basic quantum gates. A set of pos-
sible basic gates is referred to as an instruction set in the con-
text of this theorem. Considering single qubit unitary gates,
an instruction set G is a finite subset of SUð2Þ such that G
contains its own inverse and hGi is dense in SUð2Þ. For
example, the set of gates fH,H†, T , T†gmakes an instruction
set for SUð2Þ, where H and T denote, respectively, Hada-
mard and phase gates in the circuit-gate framework. The
set of all strings that can be made from G without using more
than l elements is denoted by G l. Now, the Solovay–Kitaev
theorem for a d-qubit system can be stated as follows.

Theorem 1 (Solovay–Kitaev). Let G be an instruction set
in SUð2dÞ. Then, for any ε > 0, G l provides an ε–net for
SUð2dÞ where l =Odðlog4ð1/εÞÞ.

The proof of this theorem is highly constructive, and the
algorithmic steps of finding the elements in the instruction
set that approximate a given element in SUð2Þ can be found
from its proof. A comprehensive version of proof can be
found in [4]. An algorithmic version of the theorem with a
procedure for finding those elements can be found in [23].
We now explore how a version of this theorem can be
adapted to SOð3Þ. Primary motivation for this is the distance
relations of the two groups, preserved by a homomorphism
from SUð2Þ onto SOð3Þ.
2.2. Distance Relations. The two-to-one homomorphic map-
ping ρ from SUð2Þ onto SOð3Þ known today as Cornwell’s
mapping is expressible in several ways [22], from which we
adopt the following in [24]. An element U in SUð2Þ is
expressible as

U =

α β

−�β �α

0
BB@

1
CCA, ð1Þ

where α, β ∈ℂ and jαj2 + jβj2 = 1 and its image is given by

ρ Uð Þ =

Re α2 − β2� �
Im α2 − β2� �

−2 Re αβð Þ
Im α2 − β2� �

Re α2 + β2� �
2 Im αβð Þ

2 Re α�β
� �

2 Im α�β
� �

αj j2 − βj j2

0
BBBBB@

1
CCCCCA:

ð2Þ
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In order to measure the distances, as in the proof of the
standard Solovay–Kitaev theorem, we too use the metric
induced by the trace norm for consistency. It is customary
to use the operator norm in quantum computation according
to the matrix formulation of quantum mechanics. However,
the standard proof of the Solovay–Kitaev theorem uses trace
norm, as it helps to make the proof more comprehensive by
incorporating a special property of the trace norm at some
point. Since our intention is finding an analogous version
in SOð3Þ, it is more appropriate to consider the trace norm
for matrices in SOð3Þ as well.

Lemma 2 illustrates how the mapping ρ preserves dis-
tances to an order OðεÞ in SOð3Þ with respect to trace norm.

Lemma 2. For any two U , V ∈ SUð2Þ, if kU −Vk < ε, then
kρðUÞ − ρðVÞk <OðεÞ.

Proof. Due to unitary invariance of the trace norm, it suffices
to show that I − ρðUÞ <OðεÞ whenever I −U < ε. We use the
fact that any elementU in SUð2Þ can be expressed as in equa-
tion (1) and the mapping ρ given by equation (2). Then,

ρ Ið Þ − ρ Uð Þ =

Re 1 − α2 + β2� �
Im 1 − α2 − β2� �

2 Re αβð Þ
−Im 1 − α2 + β2� �

Re 1 − α2 − β2� �
−2 Im αβð Þ

−2 Re α�β
� �

2 Im α�β
� �

1 − αj j2 − βj j2

0
BBBBB@

1
CCCCCA,

ð3Þ

from which we derive

ρ Ið Þ − ρ Uð Þk k2 = 1 − α2 + β2�� ��2 + 1 − α2 − β2�� ��2
+ 4 αβj j2 + 4 α�β

�� ��2 + 1 − αj j2 + βj j2� �2
:

ð4Þ

Supposing kI −Uk < ε, it is not difficult to see that the left
side of equation (4) is bounded by Oðε2Þ as follows.

kI −Uk2 = 2ðð1 − αÞ2 + β2Þ < ε2. Accordingly, j1 − αj <
ðε/ ffiffiffi

2
p Þ and jβj < ðε/ ffiffiffi

2
p Þ. Also, jαj < ðε/ ffiffiffi

2
p Þ + 1. Therefore,

j1− jαj2j≤ j1 − α2j = j1 − αjj1 + αj < ðε/2Þðε + 2
ffiffiffi
2

p Þ. Similarly,
j1 − α2 + β2j ≤ j1 − α2j + jβ2j < εðε + ffiffiffi

2
p Þ. Substituting these

in equation (4), kρðIÞ − ρðUÞk2 < 3ðεðε + ffiffiffi
2

p ÞÞ2 + 2ðεðε + 2ffiffiffi
2

p ÞÞ2. Therefore, kρðIÞ − ρðUÞk <OðεÞ.
2.3. Instruction Sets in SOð3Þ. In the context of single qubit
unitary gates, an instruction set G is a finite subset of SUð2Þ
such that G contains its own inverse and hGi is dense in
SUð2Þ. It is possible to adopt the same definition for instruc-
tion sets in SOð3Þ. Interestingly, the image of an instruction
set in SUð2Þ under the homomorphism ρ becomes an
instruction set in SOð3Þ. Lemmata 3 and 4 prove this claim.

Lemma 3. Let X and Y be metric spaces, and let A be a dense
subset of X. If f : X⟶ Y is continuous and surjective,
then f ðAÞ is dense in Y .

Proof. Let K = f −1ð �f ðAÞÞ. Then, A ⊆ K and since f is contin-
uous, K is closed. This implies �A ⊆ K . On the other hand,
since A is dense in X, �A = X. Thus, K = X, and therefore,
f ðAÞ = f ðKÞ = f ðXÞ = Y .

Lemma 4. If G is an instruction set in SUð2Þ, then hρðGÞi is
an instruction set in SOð3Þ.

Proof. Let G be an instruction set in SUð2Þ. Then, ρðGÞmust
contain its own inverse and is finite as ρ is a homomorphism.
Since ρ is continuous and hGi is dense in SUð2Þ, by Lemma 3
ρðhGiÞ is dense in SOð3Þ. Clearly, since ρ is a homomorphism,
we have hρðGÞi = ρðhGiÞ. Therefore, hρðGÞi is an instruction
set in SOð3Þ.
2.4. Solovay–Kitaev Theorem in SOð3Þ. With the results we
derived above, it is now possible to establish a version of
the Solovay–Kitaev theorem for SOð3Þ.

Theorem 5. Let G be an instruction set in SUð2Þ. Then, ρðGÞ
is an instruction set for SOð3Þ such that for any ε > 0, ρðGÞl
provides an ε–net for SOð3Þ where l =Oðlog4ð1/εÞÞ.

Proof. From Lemma 4, ρðGÞ is an instruction set. Let V ∈ S
Oð3Þ. Then, there exists some U ∈ SUð2Þ such that V = ρðUÞ.
The Solovay–Kitaev theorem guarantees the existence of U1,
U2,⋯,Ul ∈ G such that kU −U1U2 ⋯Ulk < ε such that
l =Oðlog4ð1/εÞÞ. By Lemma 2, kρðUÞ − ρðU1U2 ⋯UlÞk <
OðεÞ. Since ρ is a homomorphism, ρðU1U2 ⋯UlÞ = ρðU1Þ
ρðU2Þ⋯ ρðUlÞ. That is, kV − ρðU1ÞρðU2Þ⋯ ρðUlÞk <O
ðεÞ, where l =Oðlog4ð1/εÞÞ.

3. Approximations in SOð3Þ
Now we describe how an arbitrary unit-determinant orthog-
onal matrix can be approximated by ρðGÞ, where G is an
instruction set in SUð2Þ. Recall the proof of the Solovay–
Kitaev theorem is highly constructive; it provides essential
ingredients for finding the sequence of elements from the
instruction set approximating the given unitary to a given
accuracy ε. As implied by Theorem 5, our algorithmic ver-
sion for SOð3Þ too is based on the steps in finding those ele-
ments as in the proof of the original theorem.

For completion, we first describe the algorithm for find-
ing the approximations in SUð2Þ. We follow the procedure
given by Dawson and Nielsen [23] in this regard.

3.1. Solovay–Kitaev Algorithm. As described in [23], the
Solovay–Kitaev algorithm is explainable using the following
lemma.

Lemma 6 [23]. Suppose V ,W, ~V , and ~W are unitaries such
that kV − ~Vk, kW − ~Wk < Δ, and also kI − Vk, kI −Wk < δ.
Then,

VWV†W† − ~V ~W ~V
† ~W

†��� ��� < 8Δδ + 4Δδ2 + 8Δ2 + 4Δ3 + Δ4:

ð5Þ
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The algorithm in SUð2Þ can be expressed in pseudocode as
follows.

The algorithm is a function which takes two inputs: U is
an arbitrary element in SUð2Þ which we desire to approxi-
mate by G , and n a nonnegative integer which controls the
accuracy of the approximation. This function returns
sequence elements from an instruction set G in SUð2Þ which
approximates U to an accuracy of εn, a strictly decreasing
function of n. The Solovay–Kitaev algorithm is recursive
and the recursion terminates when n = 0.

if n = = 0ð ÞReturn Basic ApproximationU : ð6Þ

In this step, we find an ε0 approximation to U . To find
such an approximation, we have to assure that we have con-
structed an ε0-net: a set containing elements from hGi such
that for any unitary matrix we can find an ε0 approximation
from it. Since ε0 is a constant and hGi is dense in SUð2Þ, we
can build a gate net by enumerating and sorting a large
number of elements from G l0

for sufficiently large but fixed
positive integer l0 and creating a search algorithm to find
the closed approximation. If n ≠ 0, then we find an εn−1
approximation to U :

SetUn−1 = Solovay –Kitaev U , n − 1ð Þ: ð7Þ

If ~Δ is an εn approximation to Δ =UU†
n−1, then by the

unitary invariance of the norm,

U − ~ΔUn−1

��� ��� = UU†
n−1 − ~Δ

��� ��� = Δ − ~Δ
��� ��� < εn: ð8Þ

Thus, finding an εn approximation to Δ with εn < εn−1
allows us to find an improved approximation (i.e., εn < εn−1)
to U . To find such an approximation, first we decompose Δ
=UVW†V†, where U , V are unitaries with kI −Vk, kI −Uk
< k1

ffiffiffiffiffiffiffiffi
εn−1

p
, where k1 is positive constant:

SetV ,W = GC −Decompose UU†
n−1

� �
: ð9Þ

This decomposition is known as the balance group com-
mutator. To find such a decomposition, we use the fact that
any arbitrary unitary can be represented as a rotation in the
Bloch sphere. If Δ is a rotation by an angle θ about some axis
n on the Bloch sphere, consider α satisfying

sin
θ

2
= 2 sin2

α

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − sin4

α

2

r
,

α = sin−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ/2ð Þ4

p
ffiffiffi
24

p
 !

:

ð10Þ

Then, if ~V is a rotation by α about the x axis and ~W is a

rotation by α about the y axis, on the bloch sphere, then N =
~V ~W ~V

† ~W
†
is conjugate to Δ (i.e., Δ = SNS†) for some uni-

tary S. Since N and Δ are unitary matrices, they are diago-
nalizable; moreover, they have the same eigenvalues. Thus,

by diagonalizing N and Δ, we find a diagonal matrix D and
two unitary matrices SΔ and SN such that

M = SΔDS
†
Δ,

N = SNDS
†
N :

ð11Þ

Now, letting S = SΔS
†
N , we have V = S~VS† and W = S ~WS†

satisfying

Δ =UVW†V†: ð12Þ

Also, for sufficiently small εn−1, V and W satisfy

I −Vk k, I −Wk k < k1
ffiffiffiffiffiffiffiffi
εn−1

p ð13Þ

for some positive constant k1.
Now, we find εn−1 approximations to both V and W:

SetVn−1 = Solovay – Kitaev V , n − 1ð Þ,
SetVn−1 = Solovay –Kitaev V , n − 1ð Þ:

ð14Þ

By replacing Δ by εn−1 and δ by k1
ffiffiffiffiffiffiffiffi
εn−1

p
in Lemma 6, the

group commutator of Vn−1 andWn−1 turns out to be a k2ε
3/2
n−1

approximation to Δ for some positive constant k2. Now, if
ð1/k22Þ < εn−1, then k2ε

3/2
n−1 < εn−1. Hence, εn = k2ε

3/2
n−1 pro-

vides an improved approximation for U . Accordingly,
the value of ε0 is determined by this constant k2; i.e., for
this construction to guarantee that ε0 > ε1 >⋯, the value
of ε0 must be strictly less than 1/k22 (i.e., ε0 < ð1/k22Þ). This
algorithm concludes by returning the sequences of elements
in G that approximate the group commutator as well as
Un−1.

3.2. Solovay–Kitaev Algorithm in SOð3Þ. In light of the algo-
rithmic steps described, now it is possible to provide the
algorithmic version for SOð3Þ as follows.

This algorithm is a function which takes two inputs: S: an
arbitrary element in SOð3Þ which we intend to approximate
and n: a nonnegative integer which controls the accuracy
of the approximation. This function returns a sequence
of elements from an instruction set ρðGÞ ⊂ SOð3Þ, where
G is an instruction set in SUð2Þ, which approximates S

function Solovay–Kitaev(Gate U , depth n)
if (n == 0)

Return Basic Approximation U
else

Set Un−1 = Solovay–Kitaev(U , n − 1)
Set V ,W = GC-Decompose(UU†

n−1)
Set Vn−1 = Solovay–Kitaev(V ,n − 1)
Set Wn−1 = Solovay–Kitaev(W,n − 1)
Return Un = Vn−1Wn−1V

†
n−1W

†
n−1

Pseudocode 1
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to an accuracy of εn, where εn is a decreasing function of
n, i.e, εn ⟶ 0 as n⟶∞.

SetU = SO3ToSU2 Sð Þ: ð15Þ

In this step, we find U∈SUð2Þ such that ρðUÞ = S,
where ρ is the homomorphic mapping from SUð2Þ to S
Oð3Þ, so that we can find a Solovay–Kitaev approximation
for U in SUð2Þ (SKð:, :Þ is the Solovay–Kitaev function in
SUð2Þ):

Set ~U = SK U , nð Þ: ð16Þ

Supposing that for a given depth m the SK function
approximates any unitary matrix V ∈ SUð2Þ to accuracy
km, we find a kn approximation ~U to U . Next, we find
ρð~UÞ:

Set ~S = SUToSO3 Sð Þ: ð17Þ

By Lemma 2, ~S turns out to be an εn = ckn approxi-
mation for S, for some positive constant c. Since ~U is a
sequence of elements from G , there are U1,U2,⋯Un ∈
G such that ~U =U1U2 ⋯Un. Then, ~S = ρð~UÞ = ρðU1U2
⋯UnÞ = ρðU1ÞρðU2Þ⋯ ρðUnÞ, because ρ is a homomor-
phism. Thus, ~S is a sequence of elements from ρðGÞ
which approximates S to an accuracy εn. For a given
depth m, km is approximation error associated with the
Solovay–Kitaev approximations in SUð2Þ. Therefore, we
can ensure that k0 > k1 >⋯, which implies ε0 > ε2 >⋯.
Finally, this function returns a sequence of instructions
from ρðGÞ which approximates S to an accuracy of kn.

4. Computational Experience

One challenge encountered in the computation is that ρ−1

fails to exist as the map is not one to one. This however was
overcome using the fact that for given A ∈ SOð3Þ it is possible
to find U ∈ SUð2Þ such that ρðUÞ = A, for which the follow-
ing construction was used. Any element in SOð3Þ can be rep-
resented by a real number θ, the angle of rotation, and a
rotation axis a = ðax, ay, azÞ, which is a 3-dimensional unit
vector, denoted by RaðθÞ. The corresponding matrix RaðθÞ
can be expressed explicitly by

Ra θð Þ = I + sin θNa + 1 − cos θð ÞNa
2, ð18Þ

where

Na =

0 −az ay

az 0 −ax
−ay ax 0

0
BBBBB@

1
CCCCCA: ð19Þ

For a given rotational matrix RaðθÞ, define

U =

cos
θ

2
− i az sin

θ

2

� �
−ay sin

θ

2
− i ax sin

θ

2

� �

ay sin
θ

2
− iax sin

θ

2
cos

θ

2
+ i az sin

θ

2

� �
0
BBBBB@

1
CCCCCA:

ð20Þ

One can verify that U ∈ SUð2Þ and ρðUÞ = RaðθÞ. There-
fore, for an element A ∈ SOð3Þ, in order to find an element
U ∈ SUð2Þ such that ρðUÞ = A, under this construction, we
need to find a unit vector a ∈ℝ3 and a real number θ such
that RaðθÞ = A.

Let A ∈ SOð3Þ, and suppose A is the corresponding rota-
tional matrix of RaðθÞ (i.e., A = RaðθÞ). If v is any vector par-
allel to a, then it must satisfy Av = v, because the rotation of v
around the axis of rotation must result in a. Since A ∈ SOð3Þ,
we can always find an eigenvalue A which is equal to 1, from
which it immediately follows that a is an eigenvector which
corresponds to the eigenvalue 1. So by diagonalizingA, we find
the unit vector a′ which is parallel to each other a. Now, since
both a and a′ are unit vectors, we must have a = a′ or
a′ = a. By equation (18), the trace of the matrix A reduces
to TrðAÞ = 1 + 2 cos θ, which immediately results in θ =
cos−1ððTrðAÞ − 1Þ/2Þ: Now, by defining α ∈ℝ such that
jαj = jθj and choosing the right sign for α to match the rota-
tional axis a′ (i.e., aθ = a′α), we get Ra′ðθÞ = RaðαÞ = A.

Accordingly, we implemented our algorithm in SOð3Þ to
find the Solovay–Kitaev approximates to several special uni-
tary matrices. The computational experiment was conducted
in accordance with the algorithmic steps mentioned and the
bound was obeyed as in Theorem 5. We implemented with
different instruction sets and the implementation with the
instruction set fS1, S2, S3, S1†, S2†, S3†g in SUð2Þ where

S1 =
1ffiffiffi
5

p
1 + 2i 1

1 1 − 2i

0
BB@

1
CCA,

S2 =
1ffiffiffi
5

p
1 2i

2i 1

0
BB@

1
CCA,

S3 =
1ffiffiffi
5

p
1 2

−2 1

0
BB@

1
CCA

ð21Þ

function Solovay–Kitaev(S,depth n)
Set U = SO3ToSU2ðSÞ
Set ~U = SKðU , nÞ
Set ~S = SU2ToSO3ð~SÞ

Return ~S

Pseudocode 2
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resulted in much shorter length for a given ε than the
others. It would be an interesting future work to identify
any classes or subgroups of matrices that can be approxi-
mated best by each instruction set, perhaps with a compari-
son of different instruction sets.

5. Discussion

Unconventional computing with different algebraic struc-
tures had been the topic of interest for a few previous works
for which the primary motivation was quantum computing.
Based on the fact that the circuit-gate framework of quantum
computing relies on the Solovay–Kitaev theorem, we investi-
gated the possibility of deriving a version of this theorem for
SOð3Þ on a three-level quantum system, indicating the poten-
tial of using orthogonal matrices for efficient computation.

Three-level quantum systems and relevant operators had
already been a topic of interest. In analogy with standard
circuit-gate framework, it was customary to use the elements
in the unitary group SUð3Þ as the operators in these systems.
Despite the recent experimental achievements, theoretical
bounds, capacity, and other related questions on three-level
quantum systems were seldom explored. With our version
of the Solovay–Kitaev theorem, it is now known that efficient
computation is possible with the orthogonal subgroup SOð3Þ
of SUð3Þ. This is a noticeable distinction when compared
with the subgroup SOð2Þ of SUð2Þ. Being an Abelian group,
it is impossible to perform Solovay–Kitaev type approxima-
tions on SOð2Þ. Thus, an instruction set in standard quantum
computation enforces the inclusion of T (the phase gate), T2,

or T†2, the nonorthogonal gates. However, the fault-tolerant
implementation of the phase gate T is much more compli-
cated than the orthogonal gates [25]. Therefore, quantum
speedup only using orthogonals is beyond feasibility in stan-
dard circuit-gate framework, though desired. In contrast to
this, as our results indicate, quantum speedup with orthogo-
nals is theoretically feasible in a three-level quantum system.

It is worthwhile to consider our version of the Solovay–
Kitaev theorem in the context quantum compilation [26,
27] in which the conversion of a nonfault-tolerant circuit into
a fault tolerant one is investigated. A recent paper introduced
several efficient methods for quantum compilation using
physical machine descriptions, which included one method
based on the Solovay–Kitaev approximations [28]. Although
compilation and optimization of three-level quantum circuits
have been the subject of a few other works [19, 20, 29], none
is based on the Solovay–Kitaev theorem. It would be an inter-
esting future task to investigate whether efficient compila-
tions are possible for a three-level system with orthogonals.
This would be possible by constructing a Solovay–Kitaev-
based compilation method analogous to the one in [28], for
which our algorithm in Section 3.1 would be helpful.

Our aim was particularly on exploring the approximation
power of special orthogonal matrices. Therefore, we confined
our study to a particular form of instruction sets in SOð3Þ;
that is, the images of instruction sets in SUð2Þ. A closer
inspection reveals that an arbitrary instruction set in SOð3Þ
behaves similarly, resulting in the same length for a given

accuracy. Therefore, it is an immediate consequence of The-
orem 5 that slightly different versions of the Solovay–Kitaev
theorem and algorithm for SOð3Þ can be established. How-
ever, the applicability of the Solovay–Kitaev theorem to other
Lie groups than SOð3Þ still remains a nontrivial and theoret-
ically interesting topic, which has not been investigated in
literature. It would be a potential future task to see if the the-
orem is extendable to those groups.
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