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The purpose of this paper is to illustrate the theory and methods of analytical mechanics that can be effectively applied to the
research of some nonlinear nonconservative systems through the case study of two-dimensionally coupled Mathews-
Lakshmanan oscillator (abbreviated as M-L oscillator). (1) According to the inverse problem method of Lagrangian mechanics,
the Lagrangian and Hamiltonian function in the form of rectangular coordinates of the two-dimensional M-L oscillator is
directly constructed from an integral of the two-dimensional M-L oscillators. (2) The Lagrange and Hamiltonian function in the
form of polar coordinate was rewritten by using coordinate transformation. (3) By introducing the vector form variables, the
two-dimensional M-L oscillator motion differential equation, the first integral, and the Lagrange function are written. Therefore,
the two-dimensional M-L oscillator is directly extended to the three-dimensional case, and it is proved that the three-
dimensional M-L oscillator can be reduced to the two-dimensional case. (4) The two direct integration methods were provided
to solve the two-dimensional M-L oscillator by using polar coordinate Lagrangian and pointed out that the one-dimensional M-
L oscillator is a special case of the two-dimensional M-L oscillator.

1. Introduction

Nonlinear systems are not only the traditional research fields
of mechanical physics and engineering science but also the
research fields of other natural science and many social
science [1, 2]. Since the middle of the last century, many
researchers have been conducting research about it; they
use nonlinear differential equations to simulate nonlinear
dynamic system and use a variety of methods such as theory
of inverse problem of variational method and conservative
quantity theory to solve these equations [3–8]. As a result,
the analytical mechanics theory and method in solving
nonlinear differential equation have been widely used, and
significant research results are achieved [9–20].

Some theoretical studies of nonlinear dynamic systems
require the derivation of Lagrange functions and Hamilto-
nian functions corresponding to these equations and even

require accurate analytical solutions. For example, in 1974,
Mathews and Lakshmanan obtained a M-L oscillator subsys-
tem by deformation of the linear conservative oscillator
subsystem, which is a nonlinear nonconservative oscillator
subsystem, but has a strictly controlled periodic solution
[21, 22]. Li and Ding constructed the Lagrange function of
L = _x2/2ð1 + λx2Þ + ω0

2/2λð1 + λx2Þ in four ways [23].
This article will systematically use analytical mechanics

theory and methods to study two-dimensional M-L oscilla-
tors. First, after obtaining two integrals with clear physical
meanings of the oscillator equation, a two-dimensional M-L
oscillator Lagrangian function and Hamiltonian function are
constructed directly from an integral according to the theory
and method of Lagrangian mechanics inverse problems. And
the Lagrange function and Hamiltonian function in the form
of plane polar coordinates are derived by using variable
transformation [24–26]. Second, the vector of position is
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introduced from the rectangular coordinates of x and y, and
the two-dimensional M-L oscillator equation and the derived
grange function were written in vector form and vector
variable form, respectively, thereby generalizing the two-
dimensional M-L oscillator to three-dimensional happening.
Finally, several issues were discussed, such as the use of
Lagrange functions in polar form, two methods are used to
directly integrate the two-dimensional oscillator, and the
Hamiltonian function can be used to further discuss the
quantization of the oscillator. In this paper, by studying the
analytical mechanics of the two-dimensional M-L oscillator,
it is demonstrated that the methodology of analytical mechan-
ics is of unique value in the study of some nonlinear noncon-
servative systems. Of which the construction of nonlinear
nonconservative systems of Lagrange function and Hamilto-
nian function is important links.

2. Construction of the Lagrange Function of the
Two-Dimensional M-L Oscillator

2.1. Integral of the Two-Dimensional M-L Oscillator. In 1974,
Mathews and Lakshmanan introduced a one-dimensional
M-L vibrator:

€x −
λ _x2

1 + λx2
x + α2

1 + λx2
= 0: ð1Þ

The one-dimensionalM-L oscillator (1) is a nonlinear non-
conservative system, but it has a strictly controlled periodic
solution [21, 22]. In literature [23], its Lagrange function is con-
structed in four ways: L = _x2/2ð1 + λx2Þ + ω0

2/2λð1 + λx2Þ,
extended to two-dimensional M-L oscillator:

€x = λ _x2 + _y2 + λ x _y − y _xð Þ2� �
x − α2x

1 + λ x2 + y2ð Þ ,

€y = λ _x2 + _y2 + λ x _y − y _xð Þ2� �
y − α2y

1 + λ x2 + y2ð Þ :

ð2Þ

Equation (2) is completely integrable [24, 26], and the
following two integrals can be derived directly from the
calculation:

J = x _y − y _x, ð3Þ

E = 1
2

_x2 + _y2 + λ x _y − y _xð Þ2� �
1 + λ x2 + y2ð Þ + 1

2
α2 x2 + y2
� �

1 + λ x2 + y2ð Þ : ð4Þ

Integral J indicates the conservation of angular momen-
tum, and Equation (4) is the integral of energy type. If Equation
(2) is interpreted as a nonlinear and nonconservative coupled
vibration of a unit mass point, the former item of integral E
corresponded to the kinetic energy of the mass point and the
latter one corresponded to the potential energy. Integral E
can be rewritten as

E = 1
2 _x2 + _y2 −

λ x _x + y _yð Þ2
1 + λ x2 + y2ð Þ

" #
+ 1
2

α2 x2 + y2
� �

1 + λ x2 + y2ð Þ : ð5Þ

2.2. AMethod to Construct Lagrange Equation Directly from the
First Integral. According to the Lagrange mechanics, the differ-
ential equation of the system can be derived if the Lagrange
equation of the system is known. The inverse problem of the
Lagrange mechanics is the differential equation of the system
that is known, and it is used to test whether this equation
can be written into the form of the Lagrange equation and
how to write it in such way [13, 14]. Apparently, the key of
the inverse problem is whether the corresponding Lagrange
equation can be constructed. Among the given methods of
constructing Lagrange equations, many methods are related
to the first integral of the equation, and one of the direct
methods is as follows [15].

If we set the differential equation of the system motion as

€qα =Qα t, q, _qð Þ α = 1, 2,⋯,sð Þ,
I = I t, q, _qð Þ,

ð6Þ

the integral satisfies the condition of det ð∂2I/∂ _qα∂ _qβÞ ≠ 0.
The Lagrange equation can be expressed in the following
form:

L = A t, qð ÞI t, q, _qð Þ + Bα t, qð Þ _qα + B0 t, qð Þ: ð7Þ

The undetermined factors A, Ba, and B0 should satisfy the
following equations:

∂A
∂t

+ ∂A
∂qβ

_qβ

 !
∂I
∂ _qα

−
∂A
∂qα

I − 2A ∂I
∂qα

− A
∂I
∂ _qβ

∂Qβ

∂ _qα

+ ∂Bα

∂t
+ ∂Bα

∂ _qβ
−
∂Bβ

∂qα

 !
_qβ −

∂B0
∂qα

= 0  α = 1, 2,⋯,sð Þ:

ð8Þ

2.3. Lagrange Equation of the Two-Dimensional M-L
Oscillator. The Lagrange function of the two-dimensional
M-L oscillator (2) is constructed by using the above method.
x and y can be set as q1 and q2; then, the corresponding
generalized force gained from Equation (2) is as follows:

€x =Q1 =Qx =
λ _x2 + _y2 + λ x _y − y _xð Þ2� �

x − α2x

1 + λ x2 + y2ð Þ ,

€y =Q2 =Qy =
λ _x2 + _y2 + λ x _y − y _xð Þ2� �

y − α2y

1 + λ x2 + y2ð Þ :

ð9Þ

Select the energy integral E in Equation (4) as the
motion integral I in Equation (7) and put it into Equation
(8); the following solutions can therefore be obtained by
direct calculation:
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A = 1,
B1 = B2 = 0,

B0 =
α2 x2 + y2
� �

1 + λ x2 + y2ð Þ :
ð10Þ

Substituting this into Equation (7), a Lagrange equation
of the two-dimensional M-L oscillator can be obtained:

L = 1
2

_x2 + _y2 + λ x _y − y _xð Þ2� �
1 + λ x2 + y2ð Þ −

1
2

α2 x2 + y2
� �

1 + λ x2 + y2ð Þ , ð11Þ

which can be rewritten into

L = 1
2 _x2 + _y2 −

λ x _x − y _yð Þ2�
1 + λ x2 + y2ð Þ

" #
−
1
2

α2 x2 + y2
� �

1 + λ x2 + y2ð Þ : ð12Þ

When the plane polar coordinates of r and θ are
introduced, the transformed equation is

x = r cos θ,
y = r sin θ:

ð13Þ

In the form of plane polar coordinates, kinematic
integrals are expressed as

J = r2 _θ, ð14Þ

E = 1
2

_r2

1 + λr2
+ 1
2 r

2 _θ
2 + 1

2
α2r2

1 + λr2
, ð15Þ

E = 1
2 _r2 + r2 _θ

2� �
−
1
2
λr2 _r2

1 + λr2
+ 1
2

α2r2

1 + λr2
: ð16Þ

In Equations (11) and (12), the Lagrange equations are
written as

L = 1
2

_r2

1 + λr2
+ 1
2 r

2 _θ
2
−
1
2

α2r2

1 + λr2
, ð17Þ

L = 1
2 _r2 + r2 _θ

2� �
−
1
2

λr2 _r2
1 + λr2

−
1
2

α2r2

1 + λr2
: ð18Þ

3. The Hamiltonian Equation of the Three-
Dimensional M-L Oscillator

According to the Lagrange 3quation (11), the respective con-
jugated canonical momentums derived from the coordinates
x and y are

px =
∂L
∂ _x

= 1 + λy2
� �

_x − λxy _y

1 + λ x2 + y2ð Þ ,

py =
∂L
∂ _y

= 1 + λx2
� �

_y − λxy _x

1 + λ x2 + y2ð Þ :

ð19Þ

The inverse solution are

_x = 1 + λx2
� �

px + λxypy,

_y = 1 + λy2
� �

py + λxypx:
ð20Þ

The Hamiltonian equation of the two-dimensional M-L
oscillator is obtained by means of Legendre transformation:

H = 1
2 1 + λ x2 + y2

� �� �
px

2 + py
2

� �
− xpy + ypx
� �2� 	

+ 1
2

α2 x2 + y2
� �

1 + λ x2 + y2ð Þ
ð21Þ

or rewritten as

H = 1
2 px

2 + py
2 + λ xpx + ypy

� �2
 �
+ 1
2

α2 x2 + y2
� �

1 + λ x2 + y2ð Þ :

ð22Þ

Similarly, the generalized momentum and Hamilton
equation corresponding to plane polar coordinates can be
derived as

pr =
_r

1 + λr2
,

pθ = r2 _θ,

H = 1
2 1 + λr2
� �

pr
2 + 1

r2
pθ

2

 �

+ 1
2

α2r2

1 + λr2
:

ð23Þ

4. The Three-Dimensional Extension of the M-
L Oscillator

The vector of position is introduced from the rectangular
coordinates of x and y, the two-dimensional M-L oscillator
equation and the derived grange function were written in
vector form and vector variable form, respectively. From this,
the two-dimensional vector is extended to three-dimensional
vector, so that the two-dimensional M-L oscillator is extended
to three-dimensional.

The position vector is hence introduced as

r* = x i
*
+ y j

*
: ð24Þ

The differential equation (2) can be written in vector
form as

r*
::

=
λ r*

: 2
+ λ r* × r*

:� 
2
" #

− α2

1 + λr2
r* ð25Þ

or as
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r*
::

=
λ 1 + λr2
� �

r*
: 2

− λ r* ⋅ r*
:� 
2

" #
− α2

1 + λr2
r*: ð26Þ

Correspondingly, the first integrals Equations (3), (4),
and (5) are written, respectively, as

J
*
= r* × r*

:

, ð27Þ

E = 1
2

r*
: 2

+ λ r* × r*
:� 
2

" #

1 + λr2
+ 1
2

α2r2

1 + λr2
,

ð28Þ

E = 1
2 r*

: 2
−
λ r* ⋅ r*

:� 
2

1 + λr2

2
6664

3
7775 + 1

2
α2r2

1 + λr2
: ð29Þ

In the form of vector variable, the Lagrange equation (11)
is written as

L = 1
2

r*
: 2

+ λ r* × r*
:� 
2

" #

1 + λr2
−
1
2

α2r2

1 + λr2
,

ð30Þ

L = 1
2 r*

: 2
−
λ r* ⋅ r*

:� 
2

1 + λr2

2
6664

3
7775 −

1
2

α2r2

1 + λr2
: ð31Þ

If the M-L oscillator is extended to the three-dimensional
case, the two-dimensional plane potential vector of Equation
(24) can be directly extended to the three-dimensional one.

r* = x i
*
+ y j

*
+ z k

*
: ð32Þ

Therefore, Equations (25), (26), (27), (28), (29), and (30)
are directly extended to three-dimensional cases without
being rewritten. However, there will be changes when they
are written in rectangular coordinate forms. For example,
the component forms of Equation (25) will be written in
rectangular coordinate forms:

€x = λ _x2 + _y2 + _z2 + λ x _y − y _xð Þ2 + z _x − x _zð Þ2 + y _z − z _yð Þ2� �� �
− α2

1 + λ x2 + y2 + z2ð Þ x,

€y = λ _x2 + _y2 + _z2 + λ x _y − y _xð Þ2 + z _x − x _zð Þ2 + y _z − z _yð Þ2� �� �
− α2

1 + λ x2 + y2 + z2ð Þ y,

€z = λ _x2 + _y2 + _z2 + λ x _y − y _xð Þ2 + z _x − x _zð Þ2 + y _z − z _yð Þ2� �� �
− α2

1 + λ x2 + y2 + z2ð Þ z:

ð33Þ

Correspondingly, there are three component conserva-
tion formulas for the angular momentum integral (27), and
the energy integrals (28) and (29) should also be rewritten.

Hence, the Lagrange equation (30) is written as

L = _x2 + _y2 + _z2 + λ x _y − y _xð Þ2 + z _x − x _zð Þ2 + y _z − z _yð Þ2� �� �
1 + λ x2 + y2 + z2ð Þ

−
1
2

α2 x2 + y2 + z2
� �

1 + λ x2 + y2 + z2ð Þ :

ð34Þ

It should be noted that the extension of the three-
dimensional case of the M-L oscillator has no special signifi-
cance. According to the previous discussion, the expression
(29) of the angular momentum conservation in vector form

has gone beyond the two-dimensional space and J
*
is perpen-

dicular to the plane of motion. After introducing of the three-

dimensional position vector, the angular momentum J
*
is still

conserved and its direction remains unchanged in space. In
the following formula

r* ⋅ J
*
= r* ⋅ r* × r*

:� 

≡ 0, ð35Þ

it shows that the three-dimensionalM-L oscillator moves in the

plane J
*
perpendicular to the constant vector, passing through

the origin. If the z-axis is parallel to J
*
, the oscillator must move

in the xy-plane, that is,

z ≡ 0: ð36Þ

In such a coordinate system, Equation (33) degenerates to
Equation (2), and Lagrange equation (34) is reduced to Equa-
tion (11). In other words, the extended three-dimensionalM-L
oscillator is reduced to a two-dimensional one. The following
section will point out that the one-dimensional M-L oscillator
(1) is a special case of the two-dimensional one.

5. Discussion

After Obtaining the Lagrange function in polar form, the
two-dimensional M-L oscillator can be solved directly by
two methods:

Approach 1. The Lagrangian function of the radial motion of
the oscillator can be derived by using Equations (14) and (17).

Lr =
1
2

_r2

1 + λr2
+ 1
2
J2

r2
+ 1
2

α2r2

1 + λr2
: ð37Þ

Now the motion of the two-dimensional M-L oscillator
has been reduced to the problem of one-dimensional radial
motion, which can be directly integrated.

Approach 2. As can be seen from Equation (28), if J = 0, the
two-dimensional M-L oscillator will degenerate to the M-L
oscillator represented by Equation (1); if J ≠ 0, the differential
quotient of time t can be transformed into that of the space
coordinate by using the integral of Equation (14):
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d
dt

= _θ
d
dθ

= J
r2

d
dθ

: ð38Þ

An orbital differential equation of a two-dimensional
M-L oscillator can be derived by substituting the energy-
type integral (15).

J2

2
1

r4 1 + λr2ð Þ
dr
dθ

� 
2
+ 1
r2

" #
+ 1
2

α2r2

1 + λr2
= E: ð39Þ

By integrating this equation, the orbit equation of the
oscillator (r = rðθÞ) can be obtained, and then, θ = θðtÞ is
hence obtained when plugging in integral (14) of the angular
momentum.

In the study of modern physics, for example, it may involve
the quantization of some nonconservative nonlinear systems
when dealing with some mesoscopic physical systems. At this
time, it is often necessary to derive the Hamiltonian function
of the system. The Hamiltonian function of the two-
dimensionalM-L oscillator derived in this paper can be directly
solved by Hamiltonian mechanics methods, such as Hamilton-
Jacobi theory; on the other hand, it also lays the foundation for
further discussion of the quantization of this system.

6. Conclusions

There are many ways to study nonlinear and nonconserva-
tive systems, but analytical mechanics theories and methods
have an important value in such research. In some studies,
e.g., discussing the quantization problem, it is necessary to
first mechanize the system analysis; that is to say, the
Lagrange and Hamiltonian functions of the system need to
be derived first. In this paper, according to the Lagrange
mechanics inverse problem theory and method, the Lagrange
function and Hamiltonian function of the oscillator can be
constructed directly from the energy form integral of the
two-dimensional M-L oscillator, which can be used to realize
the analytical mechanics of the nonlinear and nonconserva-
tive system. The two-dimensional M-L vibrator is solved by
using traditional analytical mechanics methods such as
coordinate transformation and motion integration reduction
order separation variables. At the same time, the relationship
between the two-dimensional M-L oscillator and the one-
dimensional and three-dimensional M-L oscillator is
discussed. By studying the analytical mechanics of the two-
dimensional M-L oscillator, it is shown that the methodology
of analytical mechanics is of vital value in the study of some
nonlinear nonconservative systems. The key lies in the anal-
ysis and mechanization of nonlinear differential equations of
motion, meaning that the Lagrange function and Hamilton
function of nonlinear equations can be derived by using
analytical mechanics inverse problem methodology.
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