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By taking values in a commutative subalgebra g �푙(�푛, ℂ), we construct a new generalized ��-Heisenberg ferromagnet model in 
(1+1)-dimensions. �e corresponding geometrical equivalence between the generalized ��-Heisenberg ferromagnet model and ��-mixed derivative nonlinear Schrödinger equation has been investigated. �e Lax pairs associated with the generalized systems 
have been derived. In addition, we construct the generalized ��-inhomogeneous Heisenberg ferromagnet model and ��-Ishimori 
equation in (2+1)-dimensions. We also discuss the integrable properties of the multi-component systems. Meanwhile, the generalized 
Zn-nonlinear Schrödinger equation, Zn-Davey–Stewartson equation and their Lax representation have been well studied.

1. Introduction

�e Heisenberg ferromagnet (HF) model is one of the most 
investigated integrable systems which plays an important role 
in the two-dimensional (2D) gravity theory [1] and anti-de 
Sitter/conformal field theories [2, 3]. It is proved that the HF 
model is gauge and geometric equivalent to the nonlinear 
Schrödinger (NLS) equation [4, 5]. (1+1)-dimensional gener-
alized HF models involving inhomogeneous and higher order 
deformed HF models have been analyzed [6, 7]. �e deformed 
HF models in (2+1)-dimensions also have been investigated, 
such as the higher order HF models [8, 9], the HF models with 
self-consistent potentials [10], the Ishimori equation [11], and 
inhomogeneous HF models [12, 13].

Multi-component version of the integrable systems has 
deserved much attention due to its wide application in multi-
ple orthogonal polynomials, representation theory, random 
matrix model, the related Riemann-Hilbert problems, and 
Brownian motions [14–18]. Many important integrable sys-
tems have been extended to their multi-component counter-
parts, such as multi-component KP [19, 20], multi-component 
Toda systems [14], and multi-component BKP [21]. A�er 
considering commutative subalgebra of diagonal matrices, 
Bogdanov et al. [22] constructed the generalized multicom-
ponent KP hierarchy which involves � independent general-
ized scalar KP hierarchies. Starting from the maximal 
commutative subalgebra of g �푙(�푚,ℂ), one [23, 24] constructed 
a new ��-Kadomtsev–Petviashvili (KP) hierarchy and 

investigated the existence of �-functions. Meanwhile, the rela-
tion between dispersionless reduced ��-KP hierarchy and 
Frobenius manifold has been discussed. Recently, Li et al. [25] 
constructed the extended multi-component Toda hierarchy 
and extended multi-component bigraded Toda hierarchy. By 
virtue of taking values in a matrix-valued differential algebra 
set, they also establish a class of Hirota quadratic equation, 
which may be useful in Gromov–Witten theory and noncom-
mutative symplectic geometry. In [25], one has defined the 
new multi-component sinh–Gordon systems by considering 
commutative subalgebra of g �푙(�푛,C) and established their 
Bäcklund transformations. A natural problem then arises as 
to how to construct the corresponding extended HF models. 
With this motivation, this paper will be devoted to construct-
ing three types commutative multi-component generalized 
HF models by taking values in commutative subalgebra. 
Furthermore their corresponding geometrical and gauge 
equivalent counterparts shall be discussed.

�is paper is organized as follows. In Section 2, we present 
a brief review of some elementary facts about the ��-HF model 
and ��-NLS equation. Section 3 is devoted to constructing the 
generalized ��-HF models and establishing the geometrical 
equivalence with the ��-mixed derivative NLSE. In Section 4, 
we investigate the generalized ��-inhomogeneous HF models 
and their structure and integrability. In addition, we deduce 
the multi-component Ishimori equation and discuss its cor-
responding gauge equivalent counterpart. �e last section will 
be devoted to a summary and discussion.
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2. ��-Heisenberg Ferromagnet Model

�e Heisenberg ferromagnet (HF) model in (1+1)-dimensions 
[4] is an important integrable equation which reads as

where S denotes the spin vector, S = (S1, S2, S3) and satisfies the 
constraint S2 = 1.

�e matrix form of the HF model can be expressed as

Where �푆 = ∑3
�푖=1�푆�푖�휎�푖, �푆2 = �퐼, �푡�푟�푆 = 0 and �휎�(�푖 = 1, 2, 3) are Pauli 

matrices.
Let � take values in a commutative subalgebra �푍� = ℂ[�훤]/(�훤�) and �훤 = (�훿�푖�푗,�푗+1)�푖�푗 ∈ g �푙(�푛, ℂ). From the equa-

tion (2), we obtain

Where �̃2 = �, � is an identity matrix. Suppose �̃ can be 
expressed as

�en �̃푆(�푥, �푡) can be divided into � parts

where

and when �푘 = 0, �0 = �, � is a identity matrix. �en we may 
derive the following theorems.

Theorem 1.  �e following equation holds

Proof.  By choosing the coefficient of �� for two sides of the 
identity (3), (3) leads to (7), which will be referred to as the ��-HF model.

�e integrability condition of (7) is as the following linear 
systems

where

(1)S� = S × S��,

(2)�푖�푆� = 1
2[�푆, �푆��],

(3)�푖�̃푆� = 1
2[�̃푆, �̃푆��],

(4)�̃푆�푖 = �푆�푖0�퐸 + �푆�푖1�훤 + �푆�푖2�훤2 + . . . + �푆�푖(�푛−1)�훤�푛−1.

(5)�̃푆 = �푆0 + �푆1 + �푆2 + . . . + �푆�푛−1,

(6)

�푆�푘 = S�푘 ⋅ X�푘, S�푘 = (�푆�푘1, �푆�푘2, �푆�푘3), ��푘 = (�푋�푘1, �푋�푘2, �푋�푘3),
�푋�푘1 = ( 0 �훤�푘

�훤�푘 0 ), �푋�푘2 = ( 0 �푖�훤�푘

−�푖�훤�푘 0 ), �푋�푘3 = (�훤�푘 00 −�훤�푘 )

(7)�푖�푆�푘�푡 = 1
2 ∑

�푖+�푗=�푘
[�푆�푖, �푆�푗�푥�푥], 0 ≤ �푘 ≤ �푛 − 1.

(8)
�훷�(�푥, �푡, �휆�) = �푈(�푥, �푡, �휆�)�훷(�푥, �푡, �휆�),
�훷�(�푥, �푡, �휆�) = �푉(�푥, �푡, �휆�)�훷(�푥, �푡, �휆�),

(9)

�푈 = �푖 �푛−1∑
�푙=0

∑
�푗+�푘=�푙

�휆�푗S�푘 ⋅ X�푙,

�푉 = 2�푖 �푛−1∑
�푙=0

∑
�푡+�푗+�푘=�푙

�휆�푡�휆�푗S�푘 ⋅ X�푙 + 1
2

�푛−1∑
�푙=0

∑
�푡+�푗+�푘=�푙

�휆�푡S�푗 ⋅ S�푘�푥 ⋅ X�푙.

Substituting (5) and (6) into (3), we obtain the following 
corollary:

Corollary 2.  �e vector form of the ��-HF model:

here we use the property

�is proves that the ��-HF is geometrical equivalent to 
the following ��-NLSE.

Theorem 3.  �e following identity holds

Proof.  From NLS equation, we obtain

where

By choosing the coefficients of �� for the identity (13), (13) 
leads to the ��-NLS equation (12).� ☐

�e Lax pair of (12) can be represented as

where

and

where � is a identity matrix.

3. Generalized ��-Heisenberg Ferromagnet 
Model in (1+1)-Dimensions

Let us consider the integrable deformed HF model [28]

where � is a deformation parameter.

(10)S�푘�푡 = ∑
�푖+�푗=�푘

S�푖 × S�푗�푥�푥, 0 ≤ �푘 ≤ �푛 − 1,

(11)

[S�푖 ⋅ X�푖, S�푗�푥�푥 ⋅ X�푗] = 2�푖 S�푖 × S�푗�푥�푥 ⋅ X�푖+�푗, �푖 + �푗 ≤ �푛 − 1,
wℎ�푒�푛�푖 + �푗 < �푛 − 1,X�푖+�푗 = 0.

(12)�푖�휑�푘�푡 + �휑�푘�푥�푥 + 2 ∑
�푖+�푗+�푙=�푘

�휑�푖�휑�푗�휑�푙 = 0, 0 ≤ �푘 ≤ �푛 − 1.

(13)�푖�̃휑�푡 + �̃휑�푥�푥 + 2�儨�儨�儨�儨�̃휑�儨�儨�儨�儨2�̃휑 = 0,

(14)�̃휑 = �휑0�퐸 + �휑1�훤 + �휑2�훤2 + . . . + �휑�푛−1�훤�푛−1.

(15)
�훷�

�(�푥, �푡, �휆�) = �푈�(�푥, �푡, �휆�)�훷�(�푥, �푡, �휆�),
�훷�

�(�푥, �푡, �휆�) = �푉�(�푥, �푡, �휆�)�훷�(�푥, �푡, �휆�),

(16)

�푈�耠 = �푛−1∑
�푗=0

(−�푖�휆�푗 ∑+�푀�푗(�푥, �푡))�훤�푗,

�푉�耠 = �푛−1∑
�푗=0

(−2�푖 ∑
�푗+�푘=�푙

�휆�푗�휆�푘 ∑⋅�훤�푙 + 2 ∑
�푗+�푘=�푙

�휆�훼�푀�훽(�푥, �푡) ⋅ �훤�푙

−�푖�푀�푙�푥(�푥, �푡) ⋅ �훤�푙 − �푖 ∑
�푘+�푡=�푙

�푀�푘(�푥, �푡)�푀�푡(�푥, �푡) ⋅ �훤�푙) ⋅∑,

(17)∑ = �푑�푖�푎�푔{�퐸, −�퐸}, �푀�(�푥, �푡) = ( 0 �휑�−�휑� 0 ),

(18)S� = S × S�� +
�휖
2(S� ⋅ S�)S�,
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By expanding S = S0�퐸 + S1�훤 + . . . + S�푛−1�훤�푛−1, we obtain 
the generalized ��-Heisenberg ferromagnet model in 
(1+1)-dimensions

where � is a deformation parameter. When �휖 = 0, Eq. (19) 
reduces to the ��-HF model (10). �e Lax representation of 
the generalized ��-HF equation (19) is given by

where �휆�(0 ≤ �푗 ≤ �푛 − 1) are spectral parameters.
In order to derive the geometrical equivalent counterpart 

of (19), we introduce the multi-component Serret-Frenet 
equation

By introducing the multi-component Hasimoto function

where

here

Identifying S�(0 ≤ �푗 ≤ �푛 − 1) in (19) with the tangent vector 
of a curve t�, we obtain

(19)

S�푗�푡 = ∑
�훼+�훽=�푗

(S�훼 × S�훽�푥�푥)

+ �휖
2 ∑

�푎+�푏+�푐=�푗
[(S�푎�푥 ⋅ S�푏�푥) ⋅ S�푐�푥], 0 ≤ �푗 ≤ �푛 − 1,

(20)

�̃푈 = �휖 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞=�푘

�휆�푚�휆�푛S�푝 ⋅ X�푞 + �휖 �푛−1∑
�푘=0

∑
�푚+�푛+�푝=�푘

�휆�푚S�푛�푥 ⋅ X�푝,

�̃푉 = �휖 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙=�푘

�휆�푚�휆�푛S�푝 × S�푞�푥 ⋅ X�푙

− �휖 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙+w=�푘

�휆�푚�휆�푛�휆�푝�휆�푞S�푙 ⋅ Xw

+ �휖 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞=�푘

�휆�푚(S�푛 × S�푝�푥�푥) ⋅ X�푞

+ 2�휖2 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙+w=�푘

�휆�푚�휆�푛(S�푝�푥 ⋅ S�푞�푥)S�푙 ⋅ Xw

+ 2�휖2 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙=�푘

�휆�푚(S�푛�푥 ⋅ S�푝�푥)S�푞�푥 ⋅ X�푙

− �휖2 �푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙=�푘

�휆�푚�휆�푛�휆�푝S�푞�푥 ⋅ X�푙

− 3
2�휖2

�푛−1∑
�푘=0

∑
�푚+�푛+�푝+�푞+�푙=�푘

�휆�푚�휆�푛(S�푝�푥 ⋅ S�푞�푥) ⋅ X�푙,

(21)

t�푗�푥 = ∑
�푚+�푙=�푗

�푘�푚n�푙, b�푗�푥 = − ∑
�푚+�푙=�푗

�휏�푚n�푙, n�푗�푥 = ∑
�푚+�푙=�푗

(�휏�푚b�푙 − �푘�푚t�푙).

(22)�휑�푗�푥 = ∑
�훼+�훽=�푗

�푘�훼�푥�푏�훽 + �푖 ∑
�푝+�푞+�푟=�푗

(�푘�푝�휏�푞�푏�푟), 0 ≤ �푗 ≤ �푛 − 1,

(23)

�푏�훽 = ∑
�푚1 ⋅1+�푚2 ⋅2+...+�푚�푛−1 ⋅(�푛−1)=�훽

1
�푚1!�푚2! . . . �푚�푛−1!�퐴

�푚1
1 �퐴�푚2

2 . . . �퐴�푚�푛−1
�푛−1

⋅ exp(�푖∫
�푥

−∞
�휏0�푑�푥�耠),

(24)
�퐴 �푖� = exp(�푖∫�푥

−∞
�휏�푖��푑�푥�耠).

�en we have

By the equation

one finds that the time evolution equation satisfies the 
following equation

Substituting (26) and (27) into (28) and taking �휑� → 2�휑�, we 
derive the ��-mixed derivative NLSE equation

Taking �휖 = 0, the ��-mixed derivative NLSE equation (29) 
degenerates into ��-NLSE equation (12). �en we obtain the 
Lax representation of the ��-mixed derivative NLSE 
equation

where

and

(25)

t�푗�푡 = ∑
�훼+�훽=�푗

(t�훼 × t�훽�푥�푥) +
�휖
2 ∑

�푎+�푏+�푐=�푗
[(t�푎�푥 ⋅ t�푏�푥) ⋅ t�푐�푥],

= ∑
�푝+�푞=�푗

(�휂�푝n�푞 + �휁�푝b�푞) +
�휖
2 ∑

�푚+�푛+�푝+�푞=�푗
�푘�푚�푘�푛�푘�푝n�푞, 0 ≤ �푗 ≤ �푛 − 1.

(26)�훾�푗 = − ∑
�푝+�푞=�푗

(�휂�푝 + �푖�휁�푞)�푏�푞 = −�푖�휑�푗�푥 − �휖
2 ∑

�푎+�푏+�푐=�푗
�휑�푎�휑�푏�휑�푐.

(27)�푅�푗�푥 = �푖
2 ∑

�훼+�훽=�푗
(�훾�훼�휑�훽 − �훾�훼�휑�훽) = 1

2( ∑
�푎+�푏=�푗

�휑�푎�휑�푏)
�푥

,

(28)�휑�푗�푡 + �훾�푗�푥 − �푖 ∑
�훼+�훽=�푗

�푅�훼�휑�훽 = 0.

(29)
�푖�휑�푗�푡 + �휑�푗�푥�푥 + 2 ∑

�훼+�훽+�훾=�푗
�휑�훼�휑�훽�휑�훾 − 2�푖�휖( ∑

�훼+�훽+�훾=�푗
�휑�훼�휑�훽�휑�훾)

�푥= 0, 0 ≤ �푗 ≤ �푛 − 1.

(30)

�푈 = �푖 �푛−1∑
�푘=0

∑
�푎+�푏=�푘

(2�휖 ∑
�푚+�푛=�푎

�휆�푚�휆�푛 + 2�휆�푎)�휎�푏
3

− �푛−1∑
�푘=0

∑
�푚+�푛=�푘

(2�휖�휆�푚 + 1)�퐴�푛,

�푉 = �푛−1∑
�푘=0

∑
�푓+g=�푘

[−8�푖�휖2 ∑
�푚+�푛+�푝+�푞=�푓

�휆�푚�휆�푛�휆�푝�휆�푞

−16�푖�휖 ∑
�푚+�푛+�푝=�푓

�휆�푚�휆�푛�휆�푝

+ ∑
�푚+�푛+�푝+�푞=�푓

(−8�푖 + 4�푖�휖2�휑�푚�휑�푛)�휆�푝�휆�푞

+4�푖�휖 ∑
�푚+�푛+�푝=�푓

�휆�푚�휑�푛�휑�푝 + �푖 ∑
�푚+�푛=�푓

�휑�푚�휑�푛]�휎g

3

+ �푛−1∑
�푘=0

∑
�푚+�푛=�푘

(8�휖2 ∑
�푎+�푏+�푐=�푚

�휆�푎�휆�푏�휆�푐 + 12�휖 ∑
�푎+�푏=�푚

�휆�푎�휆�푏 + 4�휆�푚)�퐴�푛

− �푛−1∑
�푘=0

∑
�푚+�푛=�푘

(2�휖�휆�푚 + 1)�퐵�푛,

(31)�퐴 �푗 = ( 0 �휑�푗−�휑�푗 0 ), �휎�푗
3 = (�훤�푗 00 −�훤�푗 ).
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�en the Lax representation of Eq. (33) is given by

Now one considers the the geometrical equivalent counterpart 
of the multi-component Eq. (33). Let us introduce the 
multi-component Serret-Frenet equation

�en we derive the multi-component Hasimoto function

In order to derive the geometrical equivalent counterpart of 
(33), we identify �푆�(0 ≤ �푗 ≤ �푛 − 1) in the vector form of the ��
-generalized inhomogeneous HF model in (2+1)-dimensions 
(33) with the tangent vector of a curve t�. �en we have

�us we obtain

By the equation

Substituting (43) and (44) into (28) and taking ��� → −���, 
we derive the ��-NLS equation

(38)

�휎�푙
1 = ( 0 �훤�푙

�훤�푙 0 ), �휎�푙
2 = ( 0 �푖�훤�푙

−�푖�훤�푙 0 ), �휎�푙
3 = (�훤�푙 00 −�훤�푙 ).

(39)

�̃퐹 = − �푖
2

�푛∑
�푙=0

∑
�훼+�훽=�푙

�휆�훼S�훽�휎�푙,

�̃퐺 = − �푖
2

�푛∑
�푙=0

[ ∑
�푝+�푞+�푟=�푙

�휆�푝(�휌�푞 + �푢�푞)S�푟 + ∑
�푖+�푗+�푚=�푙

�휆�푚(S�푖 × S�푗�푦)]�휎�푙.

(40)

t�푗�푦 = − ∑
�푝+�푞+�푙=�푗

�푢�푝�푥
�푘�푞 b�푙 + �휕−1�푥 ∑

�푝+�푞=�푗
�푘�푝�푦n�푞 − �휕−1�푥 ∑

�푝+�푞+�푙+�푚=�푗

�휏�푝�푢�푞�푥

�푘�푙 n�푚,
b�푗�푦 = − ∑

�푝+�푞=�푗
(�푢�푝 + �휕−1�푥 �휏�푝�푦)n�푞 + ∑

�푝+�푞+�푙=�푗

�푢�푝�푥

�푘�푞 t�푙,
n�푗�푦 = ∑

�푝+�푞=�푗
(�푢�푝b�푞 + �휕−1�푥 �휏�푝�푦b�푞 − �휕−1�푥 �푘�푝�푦t�푞) + ∑

�푝+�푞+�푙+�푚=�푗

�휏�푝�푢�푞�푥

�푘�푙 t�푚.

(41)

�휑�푗�푦 = ∑
�훼+�훽=�푗

�푘�푎�푦�푏�훽 + �푖 ∑
�푝+�푞+�푟=�푗

(�휕−1�푥 �푘�푝�휏�푞�푦�푏�푟), 0 ≤ �푗 ≤ �푛 − 1.

(42)

t�푗�푡 = ∑
�푚+�푙=�푗

t�푚 × t�푙�푥�푦 + ∑
�푚+�푙=�푗

t�푚�푥 × t�푙�푦 + ∑
�푚+�푙=�푗

�푢�푚�푥t�푙

+ ∑
�푚+�푙=�푗

�푢�푚S�푙�푥 + ∑
�푚+�푙=�푗

�휌�푚S�푙�푥,
= ∑

�푝+�푞=�푗
�푘�푝�푦b�푞 + ∑

�푝+�푞+�푚=�푗
(−�푘�푝�휕−1�푥 �휏�푞�푦n�푚 + �휌�푝�푘�푞n�푚),

0 ≤ �푗 ≤ �푛 − 1.

(43)�훾�푗 = − ∑
�푝+�푞=�푗

(�휂�푝 + �푖�휁�푞)�푏�푞 = −�푖�휑�푗�푦 − ∑
�푎+�푏=�푗

�휌�푎�휑�푏.

(44)�푅�푗�푥 = �푖
2 ∑

�훼+�훽=�푗
(�훾�훼�휑�훽 − �훾�훼�휑�훽) = −12�휕�푦( ∑

�푎+�푏=�푗
�휑�푎�휑�푏).

(45)

�푖�휑�푗�푡 − �휑�푗�푥�푦 − �푖( ∑
�훼+�훽=�푗

�휌�훼�휑�훽)
�푥

− ∑
�푎+�푏=�푗

�푅�푎�휑�푏 = 0, 0 ≤ �푗 ≤ �푛 − 1,

4. Generalized ��-Heisenberg Ferromagnet 
Model in (2+1)-Dimensions

Many (2+1)-dimensional integrable inhomogeneous 
Heisenberg ferromagnet equations have been of interest, for 
instance, Inhomogeneous M-I equation [13] and the Ishimori 
equation [11]. �e Ishimori equation [11] is a well-known 
(2+1)-dimensional integrable extension of the HF model, 
which involves an infinite dimensional symmetry algebra with 
a loop algebra structure and is solved by the inverse scattering 
transform approach. �ere is geometrical and gauge equiva-
lence between the Ishimori equation and Davey-Stewartson 
equation [29, 30]. In this section, we shall derive the mul-
ti-component counterparts of two types deformed HF models 
in (2+1)-dimensions.

4.1. ��-Inhomogeneous M-I Equation.  Let S take values in a 
commutative algebra, we have S = S0�퐸 + S1�훤 + . . . + S�푛−1�훤�푛−1.  
By means of multi-component generalization, we obtain the 
generalized ��-inhomogeneous Heisenberg ferromagnet 
model in (2+1)-dimensions

where

and the parameters �� satisfy

When �푗 = 0, Eq. (33) reduced to the integrable inhomogene-
ous Myrzakulov-I equation [13].

�e linear problem of the multi-component HF models 
(33) in (2+1)-dimensions can be expressed as

where

and

(32)

�퐵�푗 = (
0 �푖�휑�푗�푥 + 2�휖 ∑

�푎+�푏+�푐=�푗
�휑�푎�휑�푏�휑�푐

�푖�휑�푗�푥 − 2�휖 ∑
�푎+�푏+�푐=�푗

�휑�푎�휑�푏�휑�푐 0 ).

(33)

S�푗�푡 = ∑
�푚+�푛=�푗

(S�푚�푥 × S�푛�푦 + S�푚 × S�푛�푥�푦 + �푢�푚�푥S�푛 + �푢�푚S�푛�푥 + �휌�푚S�푛�푥),
0 ≤ �푗 ≤ �푛 − 1,

(34)�푢�푗�푥 = − ∑
�푎+�푏+�푐=�푗

�푆�푎 ⋅ (S�푏�푥 × S�푐�푦)

(35)�휌�푚 = ∑
�푎+�푏=�푚

�휇3�푎�푥�푏 + �휈3�푚.

(36)

�휉�푛�푥 = �푖
2

�푛∑
�푙=0

∑
�훼+�훽+�훾=�푙

�휆�훼�휉�훾S�훽�휎�푙,

�휉�푛�푡 = − ∑
�푓+g=�푛

�휆�푓�휉g�푦 + �푖
2

�푛∑
�푙=0

[ ∑
�훼+�훽+�푝+�푞=�푙

�휆�훼(�휌�훽 + �푢�훽)S�푝�휉�푞
+ ∑

�푚+�푖+�푗+�훾=�푙
�휆�푚(S�푖 × S�푗�푦)�휉�훾]�휎�푙,

(37)S�훽 = (�푆1�훽, �푆2�훽, �푆3�훽), X�푙 = �휎�푙 = (�휎�푙
1, �휎�푙

2, �휎�푙
3).
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and

here

�en it follows that

where

�us we obtain the gauge equivalent counterpart of Eq. (49) 
which can be considered as the ��-Davey-Stewartson 
equation

Its Lax reprensentation is given by

with

where

(54)

�푆±�푗 = �푆1�푗 ± �푖�푆2�푗,
∑

�푚+�푛=�푗
2(1 + �푆3�푚[�훼(ln�푓1�푛 �푦 − 1

2(�푙�푛�푓1�푛)�푥])

= 1
2(�푆3�푗�푥 + ∑

�푚+�푛=�푗
�푆3�푚�푆3�푛�푥 + �푆−�푚�푥�푆+�푛)

− �훼(�푆3�푗�푦 + ∑
�푚+�푛=�푗

�푆3�푚�푆3�푛�푦 + �푆−�푚�푦�푆+�푛),

(55)

∑
�푚+�푛=�푗

2(1 + �푆3�푚[�훼(ln�푓2�푛)�푦 + 1
2(ln�푓2�푛)�푥])

= −12(�푆3�푗�푥 + ∑
�푚+�푛=�푗

�푆3�푚�푆3�푛�푥 + �푆+�푚�푥�푆−�푛)

− �훼(�푆3�푗�푦 + ∑
�푚+�푛=�푗

�푆3�푚�푆3�푛�푦 + �푆+�푚�푦�푆−�푛),

(56)�휔1�푗 = (�훤�푗 00 0 ), �휔2�푗 = ( 0 �훤�푗

0 0 ), �휔3�푗 = ( 0 0�훤�푗 0 ),
�휔4�푗 = ( 0 00 �훤�푗 ).

(57)�훼�푔�푗�푦 − ∑
�푚+�푛=�푗

�퐵1�푚�푔�푛�푥 = ∑
�푚+�푛=�푗

�퐵0�푚�푔�푛,

(58)�퐵1�푗 = (
1
2�훤

�푗 0
0 −12�훤

�푗
), �퐵0�푗 = ( 0 �푞�푗�푝�푗 0 ).

(59)

�푖�푞�푗�푡 + 1
4�푞�푗�푥�푥 + �훼2�푞�푗�푦�푦 + ∑

�푚+�푛=�푗
v�푚�푞�푛 = 0,

�훼2v�푗�푦�푦 − 1
4v�푗�푥�푥 = ∑

�푚+�푛=�푗
−2�훼2(�푝�푚�푞�푛)�푦�푦 + 1

4(�푝�푚�푞�푛)�푥�푥.

(60)
�훼�̃휓�푦 = ̃�퐵1�̃휓�푥 + ̃�퐵0�̃휓,
�̃휓�푡 = �푖 ̃�퐶0�̃휓�푥�푥 + ̃�퐶1�̃휓�푥 + ̃�퐶0�̃휓.

(61)
̃�퐵0 = �퐵00 + �퐵01 + �퐵02 + . . . + �퐵0(�푛−1),̃�퐵1 = �퐵10 + �퐵11 + �퐵12 + . . . + �퐵1(�푛−1),

where

When �푗 = 0, the ��-NLS equation (45) degrades into the 
(2+1)-dimensional focusing nonlinear Schrödinger equation 
equation [13]. �e Lax representation of the ��-HLS equation 
can be expressed as

where

where �휆�(0 ≤ �푗 ≤ �푛 − 1) are spectral parameters.

4.2. ��-Ishimori Equation.  Based on the multi-component 
generalization, we construct the multi-component Ishimori 
equation in (2+1)-dimensions

�e Lax representation of (49) is given by

where

In terms of gauge transformation

�e functions �� and S� can be written as

where �푓�푖�푗, �휔�푖�푗, �푆±�푗  satisfy the following equations:

(46)�푅�푗�푥 = 1
2�휕�푦( ∑

�푎+�푏=�푗
�휑�푎�휑�푏), 0 ≤ �푗 ≤ �푛 − 1.

(47)�̃푈 = 1
2( �푖�휆 �휑−�휑 −�푖�휆), �̃푉 = ( �̃퐴 �̃퐵−�̃퐵 −�̃퐴),

(48)

�̃퐴 = −12
�푛−1−
�푘=0

�푅�푘 + �푖
2

�푛−1∑
�푘=0

∑
�푚+�푛=�푘

�휆�푚�휌�푛,

�̃퐵 = −12
�푛−1∑
�푘=0

�휑�푘�푦 + �푖
2

�푛−1∑
�푘=0

∑
�푚+�푛=�푘

�휌�푚�휑�푛,

(49)

�푖S�푗�푡 + ∑
�푚+�푛=�푗

�푖�푢�푚�푦S�푛�푥 + �푖�푢�푚�푥�푆�푛�푦 + 1
2[S�푚, ( 1

4S�푛�푥�푥 + �훼2
S�푛�푦�푦)] = 0,

�훼2�푢�푗�푦�푦 − 1
4�푢�푗�푥�푥 = ∑

�푚+�푛=�푗

�훼2

4�푖 �푡�푟(�푆�푚[S�푛�푦, S�푛�푥]), 0 ≤ �푗 ≤ �푛 − 1.

(50)�휙� = �푈�휙�, �휙� = �푊�휙�� + �푉�휙�,

(51)

�푈�푗 = −�훼S�푗,
�푉�푗 = −�푖S�푗�푥�푥 + �푢�푗�푦 + ∑

�푚+�푛=�푗
(−�푖�훼S�푛�푦S�푚 − �훼3�푢�푚�푥S�푛),

�푊�푗 = −2�푖S�푗.

(52)�̃휓� = �푔��휙�.

(53)
�푔�푗 = (�푓1�푗 + ∑

�푚+�푛=�푗
�푓1�푚�푆3�푛, ∑

�푚+�푛=�푗
�푓1�푚�푆−�푛 , ∑

�푚+�푛=�푗
�푓2�푚�푆+�푛 ,

−�푓2�푗 − ∑
�푚+�푛=�푗

�푓2�푚�푆3�푛) ⋅ (�휔1�푗, �휔2�푗, �휔3�푗, �휔4�푗),
S�푗 = ∑

�푎+�푏+�푐=�푗
�푔−1
�푎 �휎3�푏�푔�푐,
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0 0 ), �푏3�푗 = ( 0 0
�훤�푗 0 ), �푏4�푗 = ( 0 0

0 �훤�푗 ),
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