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In this paper, we discuss the representations of #n-ary multiplicative Hom-Nambu-Lie superalgebras as a generalization of the
notion of representations for n-ary multiplicative Hom-Nambu-Lie algebras. We also give the cohomology of an n-ary
multiplicative Hom-Nambu-Lie superalgebra and obtain a relation between extensions of an n-ary multiplicative Hom-Nambu-
Lie superalgebra b by an abelian one a and Z'(b, a);. We also introduce the notion of T*-extensions of n-ary multiplicative
Hom-Nambu-Lie superalgebras and prove that every finite-dimensional nilpotent metric n-ary multiplicative Hom-Nambu-Lie
superalgebra over an algebraically closed field of characteristic not 2 in the case « is a surjection is isometric to a suitable

T™* -extension.

1. Introduction

In 1996, the concept of n-Lie superalgebras was firstly intro-
duced by Daletskii and Kushnirevich in [1]. Moreover, Can-
tarini and Kac gave a more general concept of n-Lie
superalgebras again in 2010 in [2]. n-Lie superalgebras are
more general structures including n-Lie algebras (n-ary
Nambu-Lie algebras), n-ary Nambu-Lie superalgebras, and
Lie superalgebras [3].

The general Hom-algebra structures arose first in con-
nection with quasideformation and discretizations of Lie
algebras of vector fields. These quasideformations lead to
quasi-Lie algebras, a generalized Lie algebra structure in
which the skew symmetry and Jacobi conditions are twisted.
Hom-Lie algebras, Hom-Lie superalgebras, Hom-Lie bialge-
bras, Hom-Lie 2-algebras, and quasi-Hom-Lie algebras are
discussed in [4-14]. The n-ary Hom-Nambu-Lie algebras
have been introduced in [15]. It is the generalization of n
-ary algebras of Lie type by twisting the identities using linear
maps. It includes n-ary Hom-algebra structures generalizing
the n-ary algebras of Lie type such as n-ary Nambu algebras,
n-ary Nambu-Lie algebras, and n-ary Lie algebras [16].

Cohomologies are powerful tools in mathematics, which
can be applied to algebras and topologies as well as the theory
of smooth manifolds or of holomorphic functions. The coho-
mology of Lie algebras was defined by Chevalley and Eilen-
berg in order to give an algebraic construction of the
cohomology of the underlying topological spaces of compact
Lie groups in [17]. The cohomology of Lie superalgebras was
introduced by Scheunert and Zhang in [18] and was used in
mathematics and theoretical physics: the theory of cobord-
isms, invariant differential operators, central extensions,
and deformations. The theory of cohomology for n-ary
Hom-Nambu-Lie algebras and n-Lie superalgebras can be
found in [19, 20]. This paper generalizes it to n-ary multipli-
cative Hom-Nambu-Lie superalgebras.

The extension is an important way to find a larger algebra
and there are many extensions such as general extensions,
abelian extensions, nonabelian extensions, double exten-
sions, and Kac-Moody extensions. Abelian extensions and
nonabelian extensions of Hom-Lie algebras are, respectively,
researched in [21, 22]. The general extensions of n-Hom-Lie
algebras is researched in [23]. In 1997, Bordemann intro-
duced the notion of T*-extensions of Lie algebras in [24].
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The method of T*-extension was used in [25] and was gener-
alized to many other algebras recently in [26, 27]. This paper
researches general extensions and T*-extensions of n-ary
multiplicative Hom-Nambu-Lie superalgebras. In addition,
the paper also discusses representations of n-ary multiplica-
tive Hom-Nambu-Lie superalgebras as a generalization of
the notions of representations for n-ary multiplicative
Hom-Nambu-Lie algebras.

This paper is organized as follows. In Section 2, we give
the representation and the cohomology for an n-ary multipli-
cative Hom-Nambu-Lie superalgebra. In Section 3, we give a
one-to-one correspondence between extensions of an n-ary
multiplicative Hom-Nambu-Lie superalgebras b by an abelian
one a and Z' (b, a);. In Section 4, we introduce the notion of
T*-extensions of n-ary multiplicative Hom-Nambu-Lie
superalgebras and prove that every finite-dimensional nilpo-
tent metric n-ary multiplicative Hom-Nambu-Lie superalge-
bra (g, [+ ], & (;),) over an algebraically closed field of
characteristic not 2 such that a(g)=g is isometric to (a
nondegenerate ideal of codimension 1 of) a T*-extension
of a nilpotent n-ary multiplicative Hom-Nambu-Lie super-
algebra whose nilpotent length is at most a half of the nil-
potent length of g.

2. n-ary Hom-Nambu-Lie Superalgebras

In the paper, let g = g; ® g7 be a finite-dimensional Z,-graded
vector space. The degree of an element x in g will be denoted
by |x | and in what follows appearance of |x | will mean that x
is a homogeneous element and |x| stands for its degree,
where |x| €Z, and Z, = {0, 1}.

Definition 1. An n-ary Hom-Nambu-Lie superalgebra is a tri-
ple (g, [>+-], {oci}:'z_ll) consisting of a Z,-graded vector
space g = g; @ g7, a multilinear mapping

[.)...,.]:gx...xg—)g (1)
——

n

and a family {a;}/"' of even linear maps «;:g— g,
satistying

X1 s x| =[xy [+ o + x|, (2)

"xn] - _(_1)‘96{“95”1‘[3(1) X X ""xn}’

3)

[X15 0 Xpp Xjps

ot (X1 ) e, = (_1)<le\+~'+|xn-1I)(\MH"-thD

[y (1)

M=

S X1 Vil € (Visr ) o X (V)]s
(4)

where |x|€Z, denotes the degree of a homogeneous
element x € g.

() s wi (Visy)s (X o
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An n-ary Hom-Nambu-Lie superalgebra (g, [+, -],
{a;}1]) is multiplicative, if & = --- =, , = and the fol-
lowing equality is satisfied:

(x[xl)...,xn] = [a(xl),---,(x(xn)], VX, X,y, 5, X, € 8. (5)

Moreover, the multiplicative n-ary Hom-Nambu-Lie
superalgebra (g, [+, -], {@;}/) is also denoted by (g, [-
,]a).

For a multiplicative n-ary Hom-Nambu-Lie superalgebra
(g, [ -+ -], &), equation (4) can be read:

[a(xl)"“>a(xn—1)’ Djl’“"yn]]
= N qy bt bty )
2V ©
fayy)s 0 (yisy ) (XX Vil
A(Yi)s¥(yy)]-

It is clear that n-ary Hom-Nambu-Lie algebras and Hom-
Lie superalgebras are particular cases of n-ary Hom-Nambu-
Lie superalgebras.

!

Definition 2. Let (g, [ ], {&}) and (g, [,+~-]",
{oc'i}?:) be two n-ary Hom-Nambu-Lie superalgebras. A
linear map f : ¢ — g’ is an n-ary Hom-Nambu-Lie superal-
gebra homomorphism if it satisfies

fleree,] = [f () (%))

(7)
foa;=ajof,¥i=1,-,n—1.

Example 3. Let (g, [, ---, -]) be an n-ary Nambu-Lie superal-
gebra and let p : ¢ — g be an n-ary Nambu-Lie superalge-
bra endomorphism. Then, (g,pe[,-,-],p) is an n-ary
multiplicative Hom-Nambu-Lie superalgebra.

Definition 4. Let (g, [+, {a;}17") be an n-ary Hom-
Nambu-Lie superalgebra. A graded subspace H<Cg is a
Hom-subalgebra of (g, [+, ], {a,}0!) if a;(H) < H and

H is closed under the bracket operation [, ---, -], ie.,

[y, ++5u,]y € H, for all uy, -+, u, € H. A graded subspace H
Cg is a Hom-ideal of (g, [ -], {a})) if w;(H)CcH
and [uy, uy,+u,, € H, for all u; € H and uy, -+, u, €.

Definition 5. Let (g, [+ {a}") be an n-ary Hom-
Nambu-Lie superalgebra. A Hom-ideal H of g is abelian if
[uy, Uy, s+, ] = 0 for all u;, u, € H and us, -+, u, € g.

3. Cohomology for n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Definition 6. Let (g, [, -+, -], @) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. 2 =x, A---Ax, €A g
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is called a fundamental object of g. For all ze€g, X -z
= [xy,-x, 1, 2]. Ttis clear that | 27| = |x; |+ -+ + | x,4].

Let £ =x,A--Ax,, and =y, A=Ay, be two
fundamental objects of g. A bilinear map [, -], : A" g x
A"1g — A" 1g defined by

Z |=5Z‘| (lyyl+---+ly;_ 1‘) (}’1)/\"'/\0‘()’1‘—1) ANT

Vi Na(Yi )N Ay, ).
(8)

A linear map a: A"!g— A"g defined by a(Z)=
a(x) A Aalx, ). Then, ofZ, %], = [a(X), (Y)],

Proposition 7. Let (g, [+, -*-, -], «) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. Suppose that X =x; \--- A
Xpopp Y=y, NNy, and Z=z,N---Nz,_; are funda-
mental objects of ¢ and z is an arbitrary element in g. Then,

(L) (Y -2)= (D" Wa(Y) (L -2) + [, Y], - a(2),
)
(X, Y], - a(z) ==(-D)" W7, 2], - a(2). (10)

Proof. It is easy to see that (9) is equivalent to (6). Using (9),
by exchanging 2" and %, we have

a(z) + (1) a(2) - (7 - 2).
(11)

oY) (X -2)=[% ],

Comparing (9) with (11), we obtain (10).

Definition 8. Let (g, [, -+, -], &) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra and V=V ;& V; be a Z,-
graded vector space over a field K and v € EndV. A graded
representation p of g on V is a linear map p: A" !g —>
End(V), X+ p(X) = p(x;,-++,%,,_1) such that

p(X)(Vg) S Vg VPEZ,, (12)
p(a(X))p(Y) = (1) p(a( %)) p(Z) + [, Y, o vs
(13)

pla(xy)s50(X)s [V1>osy]) 0V

n
Z |x1|+"'+|xn—2|)(|J’1|+"'+|J’f|/\+"'+|}’n|)

1

- (14)
(- 1)'” (i + -+, 1) (Oé(yl),""a()’i),""“()’n))
p(Xp X 00 Vi)

for X, % en*'g and x;,+,x,5, ¥, ¥, €4, where the
sign A indicates that the element below must be omitted.
The Z,-graded representation space (V,v) is said to be a
graded g-module.

We use a supersymmetric notation [x;,-
to denote p(X)-v. Set [x|,+-.X, 5, v;,v,] =0 and (a+v)
(x+v)=a(x)+v(v) for all xeg and veV, then (gaV,
[-+,-],@+v) becomes an n-ary multiplicative Hom-
Nambu-Lie superalgebra such that V' is a Z,-graded abelian
ideal of g, that is,

%, V|(like (3))

[V,g,---,g} € Vand [V,V,g,n-,g} =0. (15)
1 )

In the sequel, we will usually abbreviate p(Z') - v with
X v

Example 9. Let (g, [, -+, -], «) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. Then, ad: A"'q— End
(), X — adZ defined by

adX(2) =T -z (16)
is a graded representation of g, it is also called the adjoint
graded representation of g.

Definition 10. Let (g, [, -+-, -], «) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra and (V,v) be a graded
g-module. An m-cochain is an (m + 1)-linear map

fiA"lge - @A"Ig Ag—V (17)

m

such that

Ve (L Loy 2) = F(A(T 1), (L 2)5 0L ), 4(2))

(18)

foral 'y, X5, -+, X,, € " 'gand z € g. We denote the set of
m-cochain by C"(g, V).

Definition 11. For m > 1, we define an m-coboundary opera-
tor 8™ of the n-ary multiplicative Hom-Nambu-Lie superal-
gebra (g, [, ---, -], &), which is an even linear map, by

(5mf)(5l” 5L s L > 2)
=Y (1) 1) F (i 120 ]) ¢

i<j

: (“(%1)""’“@> ) [5[1" ‘%'j]a’ (L 1) “(Z))

m+1
+ Z (=1)/ (=)Ll 412l ¢
() )

(_1)i+1 (_1>|z,.|(|f|+|zl|+m+|z,»,ll)am(5[i)

+
i3



.f(&*l’...,@\i,...,grmﬂ,z
+ ()" (f(L L) * L1 ) 00" (2),
(19)

where 2, e A" g, i=1, -
defined by

,m+1,z€q and the last term is

(f(%l"“ L) L pa1) 0™ (2)

Z Y2l 41, D (1L -+ L 1)
i=1 (20)

[am( m+1) ’ (‘9’/‘ Ly ‘%‘lmﬂ)
o« (X300), @ (2)],
where X1 =L A ALY € NG

Theorem 12. Let f € C"(g, V) be an m-cochain. Then, 8™
20" (f) =0

Proof. See the appendix.

Remark 13. The m-coboundary operator 8™ as above is a
generalization of the one defined for n-ary multiplicative
Hom-Nambu-Lie algebras in [16] and for first-class n-Lie
superalgebras in [20].

The map f € C"(g, V) is called an m-supercocycle if §™
f=0. We denote by Z™(g, V)the graded subspace spanned
by m-supercocycles. Since 8™ o 8™ (f) =0 for all f € C"(g,
V), 8™ 'C™ (g, V) is a graded subspace of Z™ (g, V). There-
fore, we can define a graded cohomology space H" (g, V) of g
as the graded space Z™ (g, V)/8™'C" (g, V).

4. Extensions of n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Definition 14. Let (g;, [+, ] o;)(i=1,2,---) be a family of
n-ary multiplicative Hom-Nambu-Lie superalgebras over
K. f;:6;—g;,, is a morphism of n-ary multiplicative
Hom-Nambu-Lie superalgebras. The sequence

gl_)flgz_>fz... _>gi_>figi+1_>fi+l (21)

is called an exact sequence of n-ary multiplicative Hom-
Nambu-Lie superalgebras, if it satisfies ker f,,; =f;(g;)

(i=1,2,).

Definition 15. Let (g, [+, ] &), (@, [+ 4> &) and (b,
[+ + ]p> &) be n-ary multiplicative Hom-Nambu-Lie super-
algebras over K. g is called an extension of b by a if there is an
exact sequence of n-ary multiplicative Hom-Nambu-Lie
superalgebras:

0—a—'¢g—"b—0. (22)
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Let (g, [+ ] a)and (b, [+, - ], B) be two n-ary multipli-
cative Hom-Nambu-Lie superalgebras over K. Suppose that a
is an abelian graded ideal of g, i.e., a is a graded ideal such that

a,a,85g| =0 (23)
~——
n-2

We consider the case that gis an extension of b by an abelian
graded ideal a of g. Let 7 : b — g be a homogeneous even
linear map with mer=idy and aer=7o . Let B=b, A -
Ab,_; € N"'b and let p: A"'b — End(a), B 1 (B)=
7(by) A---AT(b,_,). Then, a becomes a graded b-module.
Let us write 7(b)=(0,b) and then denote the elements
of g by (a,b) for all aca and beb. Then, the bracket
in g is defined by

[(a1,b,),-,(a, b,)]
(Z[T

where f(%,b,)=1(AB)-1(b,)—1(%-b,) and |(a,b,)| =
la,| = |b;|,Y1 <i<n. It is easy to see that f € C'(b,a);. Let
d=a,N--Na, ;, (A4, RB)=(a;,b;)\A(a,_1,b, ;) and («a
(), B(B)) = (ala,) B(B,)) A+ (@(a,,). B(b, ). Then,

24
(0,)] +f(8.b,), B b, |, 24

((ﬂl[rwl) ayeent(by) v (b) | + () -
poen () B(21))]

, ((r(ﬁ(%’))' (Zl HOREC) D

(B )f(@ h)+f(l3(k%’)‘%’ h) (%) ( >>
< o
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Therefore, f € Z' (b, a);.

Conversely, suppose that an abelian n-ary multiplicative
Hom-Nambu-Lie superalgebras a is a graded b-module, p
(B)-a=1(%B)-a,and f € Z' (b, a);. Let g:= (a,b) = {(x, )
|x€a,yeb}a’ =a+ B, where (a+ f)(x,y) = (a(x), B(»)),
xea,yeb. Then (g,&') is an n-ary multiplicative Hom-
Nambu-Lie superalgebra with the bracket defined by (24).
Then we can define an exact sequence

0—a—'g—"b—0, (26)

where 1(a) = (a,0), (a, b) = b. Thus g is an extension of b by
a and ((a) is an abelian graded ideal of g.
Therefore, we get the following theorem.

Theorem 16. Suppose that (a, [, -], &) and (b, [+, |,
B) are two n-ary multiplicative Hom-Nambu-Lie superalge-
bras over K and a is abelian. Then, there is a one-to-one cor-
respondence between extensions of b by a and Z' (b, a);.

5. T*-Extensions of n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Let (g, [, -**, -], &) be an n-ary multiplicative Hom-Nambu-
Lie superalgebra and g¢* be its dual space. Since g =g; @ g;
and ¢" = g; ® g are Z,-graded vector space, the direct sum
geg" =(g;®g;)®(g;®g]) is a Z,-graded vector space.
In the sequel, whenever x + f € g ® g* appears, it means that
x+ f is homogeneous and |x+ f | = [x| = | f].

Lemma 17. Let ¢* be the dual Z,-graded vector space of
an n-ary multiplicative Hom-Nambu-Lie superalgebra (g,
[ -+, -],a). Let us consider the even linear map ad"
N"1g — End(g*) defined by

ad*(Z)(f)(z) ==(-D)"VIf (adZ (2)), (27)

for all X e N"'g,f €g* and z€g. Then, ad” is a repre-
sentation of ¢ on g* if and only if the following conditions
hold:

ad(L)ada(Y) - (-1 \ad(Y)ada(X) = a0 ad (X, Y], ;
ad (x5, y;)ad (a(y,)--a () 0 (2,))

= (_1)(‘)‘1|+"'+|xn72|>(|y1|+“‘+|)/i‘/\+"'+|yn|)

Aad(a(y)en 0l aly,) ) ad (x|
(28)

for all i=1,2,---,n

Proof. (=) We firstly prove that the necessity holds. Then, by
the definition of ad”, one gets

ad" (@(T))ad" (%)) (2)
()T ad (/) () ada(2)(2))
() (1) 7V (ad (9 )ade( T 2)
= () TSV flad (5 ade( ) (2))
29)

and

(1)1 ad” (Y )ad” (2)(£) (2)
= (=) () 7T Dad () () (ada( %) )
(1) W =1V f (ad(X ade( /) 2))
= (-1) TV (ad (7 )ada( %))

(30)
Moreover, we have
ad* (2, ¥],) o v(f)(2)
= ()T y(f) (ad[Z, Y1, (2))  (31)

=—(-) WIS (o ad]T, ], (2))-

By (13), we have ad(2)ada(¥%) - (—l)wn%ad(?)ad(x
(@) = aoadl . Y,

ad” (a(x)),r (X2 )s [y )V () (2
= ()bt DU g x, ),
oy a(2)]
= (1)l bt DI <_(_1)\zmyl\+~~+\m>>

flaCrr)s e a(x,2) 4(2)s [y1y,]]
= —(=1) (bl el bl <_(_1)\z\(\ymmm\))

"X(xn—Z)’

(- 1)(IX1|+“'+\xnfz\+\zl)(\y1\+“'+b',71\)

zM:

-f

Sy ) X5 X0 2 Vil AV ) (0]

(_1)"-i(_1)\y,\(\ym [ty ) (e e [y -+ )£

a(yy)s-

™=

I
—_

_1)(\xl\*“H%z\)(\yl\+'"+\y,\/\+“'+\)’n\)f[ (3))ses ( Do (V)
XX 0 Y Z]]

(_1)”-"(_1)\}',\(\%H [ty ) (e e [+ o+ [y )£

™=

]
—

_1)(\xl\+“‘+\anz\)(\)'1\+“'+\J’,~\A*“‘*\yn\)

S (ad(a0n)a0) a0, Jad (5,279 (2))
(32)
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(&) It is easy to see that the sufficiency holds. The

(—1)”’i(—1)(|"1 Fe o ) (D e A D4y (i o+, D) proof is complete.

ad” (tx(yl),n-,(x(yi),---,oc(yn))ad*(xl,u-,xn,z,yi)(f) (2) The representation ad” as defined in Lemma 17 is called
; the coadjoint representation of g. Let  be a homogeneous n
z ~1)"i (-1 |x1|+“'+|xn72|)<|}’1H“‘+|y1|/\+'“+|yn|)+|yi|(‘/vi+l|+'”+|yn|> -linear map from A"g into ¢* of degree 0. Now, we define a
i=1 bracket on g ® g*:

M:

. (_(_1)<lm+ ~+lyilA+~~~+lynl><lxl|+~~~+\xn-z|+|y,\+|f|>)
_ by + ooty + Folg = B, Jg + 010,
cad”(3,05,02) () (ad (000 nar,) ) ) Come

| + Z Yyl s o g (R ) -
(= 1) (= 1) Ok sl bt )

]
—

— (35)
f (ad (o1, 0y )ad (a(y) sl () ) (2)).
(33) Theorem 18. Let (g, [, -+, -], «) be an n-ary multiplica-

tive Hom-Nambu-Lie superalgebra. Assume that the coadjoint

By (14), we obtain representation exists. Then, (§®g", [+, ]g &) is an n-ary

multiplicative Hom-Nambu-Lie superalgebra if and only if 0

ad(xy-5, 0 3)ad () 0(3) 0 (7,) ) €2'(g,9")p where a' (x + ) = a(x) + foa, Vx € gy € 0.

— [y [+, o 1) (g |+ o+l A+ 4y |
= (=1) (bbbl Proof. 1t is clear that [, ---, -], satisfies (3) if and only if 0

S ad(a(y)a(y)a() Jad(ex v . €CHGE )y Let T+ F=(x+f) A A, +f,,) and
{=ad(ay)aly)a(y,) )ad (e, (}) YTyt g ) A g ). Then we have
34

—

‘(a<x1>,---,a(xj),--ua(xn,l),wn)'(fj°“)+i<—1>""< 1)t Do () - (0" (15 ,) - G0

-

]
—_

(=)D a(yy) + () 0 @)oo (L4 F) - (34 i) t() + (9,0 0)]g

= )y [ 1)+ (9, >{fry +0(2,y,) +ad'(2) - g,

i=1

n—l
+ 1t o) o (3 21 ) -f]},'--,oc( D)+ (9,0 a)}
J=1 0
— Z(_l)lfrl(ly1|+...+|y,-_ll) [a(y))y X -y e(y,)] +6(“()’1)""”%'J’i"">“()’n)) (37)
i=1
+ z(_1)n—k(_1)|)/k|(‘)’k+1|+~-.+U’n\+|ﬁf|)ad* (0‘(}’1)”"’“@)”"’% 'yi"”’“(yn)> . (gk o (x)
k<i
3 (~1)"H (1)l g g ( ()’1)>"‘a3ﬁ‘)’i>"‘a“()’k)>""“()’n))'(9k°“)

i<k

—

+ (_1)%’(_1)(|&"|+Iy,-l)(ly,-+1I+-~-+Iynl>ad* (“(J’1)>""“(J’i)"">“( n)) . {e(g,yi) +ad® (X)- g,

n-1

3 (T Gl age (v gk, ) 'ff}}'

-
Il
—_
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Since [, -+ 4 satisfies (4) and ad" () satisfies (14), it can

be concluded that |, ---,], satisfies (4) if and only if

=0(a(X), Y -y,) +ad («(X)) - 0(%.y,)

zn: Iéfl (yyl++lyiy ) 9(“(),1)’...,

i=1

LYo+ 0(Vy)

Zn: I5l’| (I +lyia D) (_1)n—i(_1)(ILTI+I)',I)(I)',-+1|+---+Iyn\)
i=1

ad” (a(y,) -y aly) ) -0 )

= 69('%.’ ?’yn)’
(38)

ie,0€Z'(g,0");5

Definition 19. Let (g, [, -+-, -], «) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. A bilinear form (,), on g is
said to be nondegenerate if

9L={x€gl <x,y>g=0aVy€g}=0; (39)
invariant if

<[x1)...,xn71,y]g, z> = _(_1)(|x1|+-..+|xn,l|)|y|
g

(brxndy) . (40

g
Vxl) "':xn_l)y)z € q;

supersymmetric if

(63)g = (1)) 5 (41)

consistent if
(%:7),=0,Vx,y €9, x| #[y[ (42)
a is called (,),-symmetric, if

(@(x),y)q = (a(y): X) > VX, y € 85 (43)

a subspace I of g is called isotropic if I € I*.

In this section, we only consider consistent bilinear
forms. If g admits a nondegenerate invariant supersymmetric
bilinear form (,), such that a is (,),-symmetric, then we call
(@[ ]pan()y) a metric n-ary multiplicative Hom-
Nambu-Lie superalgebra. In particular, a metric vector space
is a pair (V, a) consisting of a Z,-graded vector space V =
V5 @ V7 and an endomorphism « of V admitting a nonde-
generate invariant supersymmetric bilinear form (), such

g
that « is (,),-symmetric.

Lemma 20. With notations of Theorem 18, define a bilinear
form ()g: (a®g") x (g@¢") — Kby

(x+foy+ )y =f () + (-1)"Vg(x). (44)

Then, (y+ g+ flg = (<) (x-+ £, + ghos (g s non-
degenerate and o' is (,)-symmetric, where a' (x + f) = a(x)
+foaxeg feg’. Moreover, (®g*, [+ -]g ', (,)g) is
metric if and only if the following identity holds

(L, y)(2) + (-1)"10(L, 2)(y) = 0. (45)

Proof. If x + f is orthogonal to all elements of g ® g*, then for
arbitrary element y+geg@®g*, we have f(y)=0 and

(1) g(x) = 0, which implies that x=0 and f =0, so (,),
is nondegenerate. Moreover, we have

v+ g x4 1= 9(x) + (<)1)
= (D (F0) + (090 )  (46)
= (D)t £,y + )

In addition, one gets

<oc'(x +f)y+ g>9 =(a(x)+foay+g)
=foa(y) + (-1)*Pg(a(x)),

(47)

<x+f,a’(y+g)>9 =(x+tf,ay)+gea),
= fa(y) + (-1)"Vg o a(x).
Hence, ((x'(x +f),y+g)g=(x+f, “l()’ +9))e-

Furthermore, (g ® g*,

(48)

(-)p) is metric if and only if

=((X+F)-(r+9g)z+h)
(D) + g, (X +F) - (24 h))g
=(L-y+0(X,y)+ad" (L) g,z +h),

-1
) <Z (=) (= nrlabe bl o e

i=1

(o XX, Y) fp 2t h
(49)

0
+ (D)W y + g, T -2+ 6(X,2) +ad* (L) - h),

+cﬂﬂ%y<y+g,§ﬁ—n

i=1

71(_1)‘xil(lxi+1|+"'+|xn71|+|Z|)ad*

.(xl’...’.fi,-c

"xn—l’z) f1>

0
=0(2,y)(2) + (-1)"1F0(2 2) (7),

i.e., (45) holds.



Now, we give the definition of T*-extensions.

Definition 21. For a 1-supercocycle 0 satistying (45) we shall
call the metric n-ary multiplicative Hom-Nambu-Lie

superalgebra (g@g*, [+, ] @', (,)g) the T*-extension of
(¢ [ -, -],a) (by ) and denote it by (T5g, [+, - ]g &)

Theorem 22. Let (g, [, -+, |, &) be an n-ary multiplicative
Hom-Nambu-Lie superalgebra over a field K. Let

0) _

g9 =g, g (m+1) |:g(m)) ",Q(m):|gand gl =g, gm+1

(50)

=[g", g,---,g]g,Vm >0.

g is called solvable (nilpotent) of length k if and only if
there is a smallest integer k such that g™ =0 (g* = 0). Then

(1) If g is solvable of length k, then Tyg is solvable of
length k or k + 1.

(2) If g is nilpotent of length k, then Tpg is nilpotent of
length at least k and at most 2k — 1. In particular,
the nilpotent length of Tjg is k.

(3) If g can be decomposed into a direct sum of two Hom-
ideals of g, then T ;g can be too.

Proof. (1) Suppose that ¢ is solvable of length k. Since
(ng)(m)/g* = g™ and ¢ =0, we have (T;g)(k> C ¢*, which
implies (T g)(kH) =0 because g* is abelian, and it follows
that Tjg is solvable of length k or k + 1.

(2) Suppose that g is nilpotent of length k. Since (T;g)"

/g* = g™ and g¢* =0, we have (ng)k cg*. Let fe (ng)k c

g, y¢€g, %+%=(%}+9})/\ A(%7—1+g;?—1)€
(ng)/\n_l,jz 1, ...’k_ 1. Then
(X4 F) + (Liy + Fi) H)

-l (3 - ad (@) N0 e () 0.

This proves that (ng)Zkfl = 0. Hence T4 is nilpotent of

length at least k and at most 2k — 1.
Now consider the case of trivial T*-extension T;g of g.
Note that

(L +F) - (Lo + Fpa) - 0+ 9)
=ad(Zy) - ad(Lyy) -y +ad™ (L) - ad (Ty) -9
k=
L $A 1 Y (D) e T b1 Ti) g g
=1 i=
(@) e ad” (X )ad” (L) ad (D) -
(Lpa)y) F;=0.

(52)

Then, (ng)k =0, as required.
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(3) Suppose that 0+ g=1@], where I and ] are two
nonzero Hom-ideals of g. Let I* ={f eg* | f(J) =0} and
J*={feg*|f(I)=0}. Then, I*(resp. J*) can canonically
be identified with the dual space of I(resp. J) and ¢* =I*

®J".
Note that
[T51, Tgg,--Togl, =[I@I",g@ g’ g0 d"],
=[L g g+ [ 60, (53)
+ [I)gf")g)g*]o QI@I* = T:;I,
since
[I*’ g’)g]o(]) =I* ([]’ g,’g]g) cr* (])

=0and [I,g,--8,¢*],(J) (54)

=a'(I1.7.9-],) =9"(0) =0.

Moreover, for x + f € T;I=I®I*, we have a' (x + f) = «
(x)+feaclal* since foaeg® and foa(])ef(J)=
that is, &' (T3I) € T;I. Then, T;I is a Hom-ideal of Tjg
and so is T§J in the same way. Hence, Tjg can be decom-
posed into the direct sum T§I® TjJ of two nonzero Hom-
ideals of T g.

Lemma 23. Let (g, [+, * ], & (»)) be a metric n-ary multipli-
cative Hom-Nambu-Lie superalgebra of even dimension m
over a field K and I be an isotropic m/2-dimensional Hom-
ideal of g. Then, I is abelian.

Proof. Since dimI+dimI* = m/2 + dim I* =m and I € I*, we
have I = I+,
By I is a Hom-ideal of g, one gets

(o lo-aL1,) =([6allpT) € (1LD)=0. (59)

which implies [g,:+.g, I, I]g cgt=0.

Definition 24. Let (g, [+, -], @) and (g -, -]g', B) be
two n-ary Hom-Nambu-Lie superalgebras. A bijective homo-
morphism ¢ : g — g’ is called an isomorphism of n-ary
Hom-Nambu-Lie superalgebras.

Definition 25. Two metric n-ary multiplicative Hom-Nambu-
. ! !

Lie superalgebras (g, [+, ], & (,)g) and (g [»+ -], B

() g') is said to be isometric if there exists an n-ary multipli-

cative Hom-Nambu-Lie superalgebra isomorphism ¢ : g
— g’ such that (%, 9)q = (¢(x), gb(y)>g', Vx,y €g.

Theorem 26. Let (g, [+, ], B, (,),) be a metric n-ary multi-
plicative Hom-Nambu-Lie superalgebra of dimension m
over a field KK of characteristic not 2. Suppose that (Tyg;,
[~,~--,~]6,0c', (o) is a T*-extension of (g, [-,~--,~]91,06)-



Advances in Mathematical Physics

Then, (8, [ ]y B, ()g) is isometric to (Tggy, [+ lg
a',()g) if and only if m is even and g contains an isotropic

Hom-ideal I of dimension m/2. In particular, g; = g/I.

Proof. (=) Since dimg, = dimgj, dimg = dimTjg, =m is
even. Moreover, «'(f)=foaeg’ for all feg?. It is clear
that g7 is a Hom-ideal of dimension m/2 and by the defini-
tion of (), we have (g7, g7), =0, i.e., g is isotropic.

(&) Suppose that I is an m/2-dimensional isotropic
graded ideal of g. By Lemma 23, I is abelian. Let g, = g/
I and 7 : ¢ — g, be the canonical projection. Since chlK
#2, we can choose a complement graded subspace g, C
g such that g=g,+I and g,<gy. Then, gy =g, since
dimg, = m/2.

Denote by p, (resp. p;) the projection g — g, (resp.
g—1I) and let f; denote the homogeneous linear map
I— gy iz f1(z), where f](z)(n(x))=(z,%),, Vx€g,V
zel

If 7(x) =n(y), then x—y €I, hence (z,x-y), € (z,1),
=0 and so (z,x), = (2, y),, which implies f] is well defined.
Moreover, f] is bijective and |f;(z) | = | z| forall z eI

In addition, f] has the following property:

(—1)" K (= 1)l bt g

(%)) - £ (@) (0)),

f: ({xl,...)zk,...,xn
. (n(xl),...)

=3
N————

—
-y
=
S~—
S—

It

(56)

where x, -, Xj_1» X > X, €6, 2 €1
Define a homogeneous #-linear map

- Xg g

@)= i (2 (b, ) )

0:g, %

() )sroom 7

where x;, -+, x,, € gy. Then, 0 is well defined since 7|,
—gy/[=g/I=g, is a linear isomorphism and 6 e C'
(91> 87)o-

Now, define the bracket on g; ® g} by (35), then, (g, ® g}
,a') is a metric n-ary multiplicative Hom-Nambu-Lie superal-
gebra. Let ¢ be a linear map g — g, @ g} defined by ¢(x + z)
=n(x) +f(2),Vx+z€g=g,+]I. Sincer|, and f] arelinear
isomorphisms, ¢ is also a linear isomorphism. Note that

[xl,...)zk,...’xn]g>
1

DA

9"([’51 T2 X, Zﬂ}g)
ol
k

-

n

vy [xl,...,zk,...,xn]g> :ﬂ([xl,...,xn]g)

k=1

M=

N~—

9
+f1 <P1(x1’ )"';xl’ %" Xy g>
= [(xy)s )]y + 00 (xy)em(xy,)
(58)

. (ﬂ(xl),...,n@),...,ﬂ

= [(xy) + £ (21) o7 (x
=[p(x, +2,),

(%) £ (=)
n) +ff (Zn)]e
"(P(xn + Zn)]@’

where we use the definitions of ¢ and 6 and (56). Moreover, ¢
ca=a' o@. In fact, for x + z € g = g, + [, then,

o a(x+2) = g(a(x) +a(z)) =m(a(x)) +f1(a(2))

o (n(x) + f1(2)) = a(m(x)) + f (2) o«
(59)

oc’o(p(x+z):

Moreover,

fi(z) e a(n(x)) = fi(2)m(a(x)) = (2 a(x)),
= (a(2), x)q = f1((2)) (71())-

Therefore, fi(z)oa=f;(a(z)), one gets poa=a' og.
Then, ¢ is an isomorphism of n-ary multiplicative Hom-
Nambu-Lie superalgebras, hence, g; @ g} is an n-ary multiplica-
tive Hom-Nambu-Lie superalgebra. Furthermore, we have

<(P(xo+z)’¢(xol+zl)>9
= (n(x) +£1(2) (x0)+f1( ),
o) o
<z x0’>g+( )lxol\xo\<z x0> =<x0+z,x0 +z'>g,

(61)
then, ¢ is isometric. The relation
([pCer +21)s (%, + 2] (X1 + Zpa1) g
= <(p([x1 TZpsXy Zﬂ]g)’ P(Xp41 + Zn+1)>9
= <[x1 + 2y Xy 2] Xy + Zn+1>g
:_(_1)(‘161|+---+‘xn_1‘)|xn‘<xn 2y Xy + 2 (62)
T2 X T Zn+1]g>g

= _(_1)(‘x1|+---+‘X",1‘)|X”‘ <q)(xn + Zn), [(P(xl + Zl)"”’
. (P(xn—l + Zn—l)’ (P(xn+1 + Zn+1>]6>9’

implies that (,), on g, ® g} is invariant.
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For x+f,y+g€g, ®g}, then, there exist x' +z,,y" +
z, € gy +1 such that o(x" +z,) =x+f and @(y' +2z,) =y +
g- Hence, we have

(63)

Therefore, (g, ® g%, [+ ]g @', (,)g) is a metric n-ary
multiplicative Hom-Nambu-Lie superalgebra. In this way,
we get a T*-extension (T3g,, [ -lgpa’s()g) of (g,
[+ ]g,» @) and consequently, (g, [+ 4, B> (1)) and (T

80 [ oo a', ())g) are isometric as required.

Suppose that (g, [, --+, -], @) is an n-ary multiplicative
Hom-Nambu-Lie superalgebra and 6,, 6, € Z'(g,¢*); sat-
isfying (45). Tg ¢ and Ty g are said to be equivalent if
there exists an isomorphism of n-ary multiplicative
Hom-Nambu-Lie superalgebras ¢ : Ty g— Tyg such
that ¢|,. =id;. and the induced map ¢ Tsa/a" —Thg
/g* is the identity, i.e., ¢(x) —x € g*. Moreover, if ¢ is also
an isometry, then, Ty g and T g are said to be isometri-
cally equivalent.

Proposition 27. Suppose that (g,[-, ---, -], a) is an n-ary
multiplicative Hom-Nambu-Lie supemlgebm over a field K
of characteristic not 2 and 9,, 0, € Z'(g, g*); satisfying (45).
Then, we have

(1) (Tg,8 [+ lo,» a, ()o,) is equivalent to (Tg g,
[ Jo, &5 ()g,) if and only if 6, - 6,:=56" € 5C°
(8,6%);and 0’ (x)a=0'(a(x)) for all x € g. Moreover,

o)y’ = 3 (000 + (DO ) ) (60

becomes a supersymmetric invariant bilinear form on ¢ and «
. ! .
is (,)g -symmetric.

(2) Ty g is isometrically equivalent to Tg @ if and only if
there is 0' € C°(g, ¢*), such that 6,-60,=80" and
the bilinear form induced by 0' in (64) vanishes
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Proof. (1) Let ¢ : T g — T @ be an isomorphism of n-ary
multiplicative Hom-Nambu-Lie superalgebras satisfying

¢l =idg and ¢(x) —x€g”,Vxeg. Set ' (x) = ¢(x) - x.
Then 6’ eCO(g g*); and
0=¢([x1+f1r-~,xn+fn]91) 9 + 1)+ £,

-
T
__><

] )+9 (x1> T n)
51 +6'(0) 4 fr, 40 (5,) 4, ]

——

+ (_1)"—1'(_1)\xi\(lxiﬂl+~~+lxn\)ad* (X1 X, )

E

I
—

f;=0' ([xi""’xnig) +0, (x5 0%,) =6, (x50,
Y (1) Do (1 ey

=0, (xpox,) = 00" (3,0 x,).

(65)

By a'¢ = ¢a’, we may obtain 6'(x)a=0"(a(x)) for all
xX€g.

For the converse, suppose that 6’ € C(g,g*); sat-
isfies 0, -0,=00" and 6'(x)a=0(a(x)) for all xecgq.
Let ¢:Tgg—> T5 g be defined by ¢(x +f) =x+0'(x)+

f. Then ¢|,. =id,. and ¢(x) —x € g*, Vx € g. Moreover, a'¢
= ¢a'. In fact,
a'px+f)= oc(x+ 6’ (x) +f) =a(x) +0' (x)a+ fa
g’ (x+ f) = p(a(x) + fo) = a(x) + 0" (a(x)) + far
(66)

By 0’ (x)a=0'(a(x)), one gets a’¢p = pa’. Therefore, ¢ is
an isomorphism of n-ary multiplicative Hom-Nambu-Lie
superalgebras, that is, T g is equivalent to Tj g.

It is clear that (,),'
Note that

defined by (64) is supersymmetric.

(& 32y + ()T .2 2,
0'(y)(2) + (-1) 1V (2)(2 )

; (DO 0)(Z - 2) + (1) (22 (7))
-5 {echr,y) (2) = 00(2:)(2) +ad" ()6 () (2)

+ ) (1) (el e b g
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(XXX Y) '9'(%)(2)}

_ %(_1)|ﬂ\2\ad* (2)-0'(2)(y) - %ad* )

1

0 (3)(2) + 5 (1) {02@2 2)0) (67)

{(Z52)(y) +ad" (2)0"(2)(y)

£ ) (R (B g g
i=1

. (xl""’)?i""’xn—l)z) 6'(x,)(y)} =0,

D>

where we make use of (63)=0 and 6,6, satisfying (45).
Then, (,) is invariant. In addition,

;1

(@(x).7)q' = 5 (6" (@(x) ) + (~1)V10" () (a(x)))

1

=2 (0" @) ) + ()0 (k) a(y))) ()
= (a(y) x)g’

since 0’ (x)a=0'(a(x)) for all x€g. That is, & is (x, ),
-symmetric.

(2) Let the isomorphism ¢ be defined as in (1). Then for
all x+f,y+ g €Ty g we have

(B0 +1) 0y +9))g, = (x+0'(x) + £,y +6'0) + g),

=0'(x)(y) +f(y) + (-1)""8" (y) (x)
+ (-1 g(x) =2(x, y)y’
+{(x+f.y+ ) -

(69)

Thus, ¢ is an isometry if and only if (), = 0.

Lemma 28. Let (V,(,)y,a) be a metric Z,-graded vector
space of dimension m over an algebraically closed field K of
characteristic not 2 and g € gl(V') be a Lie superalgebra con-
sisting of nilpotent homogeneous endomorphisms of V such
that for each feg, the map f*:V —V defined by
(Fr), vy = (DY M G, f(v1)), is contained in g, too. Sup-
pose that W is an isotropic graded subspace of V which is
stable under ¢ and «, i.e, f(W)CW for all feg and o
W) < W, then W is contained in a maximally isotropic
graded subspace W .. of V which is also stable under g
and a, moreover dim W, =[m/2]. If m is even, then
w Wi If m s odd “then W dim W

max max max’ max
—dim W, =1, and f(Wy ) S W, for all feg.

max
Proof. The proof is by induction on m. The base step m =0 is
obviously true. For the inductive step, we consider the follow-
ing two cases.

11

Case 1. W # 0 or there is a nonzero g-stable vector v € V(that
is, g(v) € Kv) such that (v,v),, =0.

Case 2. W =0 and every nonzero g-stable vector v € V sat-
isfies (v, v), #0.

In the first case, Kv is a nonzero isotropic g-stable
graded subspace, and W* is also g-stable since

(w, f(w*))y = () (w), wh), =0. Now,
the bilinear form (,),,' on the factor graded space V'=
WL/W defined by (x* + W, y* + W), = (x*, y*), then V'
is metric. Denote by 7 the canonical projection W+ —s V'
and define f' : V' — V' by f' (n(w*)) = n(f (w")), then f'
is well defined since W and W* are g-stable. Let g’ := {f’
| f €g}. Then, g’ is a Lie superalgebra. For each f € g, there
is a positive integer k such that f=0, which implies that

consider

(f ')k =0. Hence, g’ also consists of nilpotent homogeneous

endomorphisms of V'. Note that g’ satisfies the same condi-
tions of g. In fact, let x* and y* be two arbitrary elements in

W™, Then, by the definition of (,),, we have

() =) m0h)) |
Hl’ WG (), f (e
DY (), (£ (")
1 1l \< f(yl)> <f

(' (x >> <y*>>v

() (x(=)) 7)),

)
>V’ (70)
)y

=(-
=(=
=(-
(

for arbitrary f € g, which shows that (f')" = (f*) eq’ for
al feg.
Since dim V' =dim W* — dim W =dim V -2 dim W,

we can use the inductive hypothesis to get a maximally isotropic
g'-stable subspace W' =W, /W in V' and «(W' )<
W' .. Clearly, dim W' = [dim V'/2] = [(n -2 dim W)/2]
= [n/2] — dim W. For all x*, y* € W, the relation (x*, y*),,

= (m(x*), m(y*)), =0 implies that W, is isotropic. Note
that dim W =dim W'__ +dim W = [n/2], then, W, is

maximally isotropic. Moreover, for all f € ¢ and w* € W
we have 7(f(w")) = f' (m(w*)) € W' ., which implies f (w")

W ox- It follows that W is g-stable and a(W .. ) € W .«
This proves the first assertion of the lemma in this case.

In the second case, by Engel’s Theorem of Lie superalge-
bras, there is a nonzero g-stable vector v € V such that f(v)
=0 for all f eg. Clearly, Kv is a nondegenerate g-stable
graded subspace of V, then V = Kv@(IKv)" and (Kv)™ is also
g-stable since  (f((kv)"), v}y = (- {(kv)* £ (v) =
~D)((kv)*, 0), =0, Vf € a. Now, if (Kv)* =0, then V
=Kv and ¢g(V) =0, hence g =0 and so 0 is the maximally
isotropic g-stable subspace, then the lemma follows. If

(Kv)* #0,

max’

then again by Engel's Theorem of Lie



12

superalgebras, there is a nonzero g-stable vector w € (Kv)*
€ V such that f(w) =0 for all f € g. It follows that g vanishes
on the two-dimensional nondegenerate subspace KvéeKw of
V. Without loss of generality, we can assume that (v, v), =
1= (w,w)y. Set c= (v, w), then it is easy to check that the

nonzero vector v+ (—c++/c2 — 1)w is isotropic and g-sta-
ble. This contradicts the assumption of Case 2.

Therefore, the existence of a maximally isotropic g-stable
graded subspace W, containing W is proved. If m is even,
then dimW, ,=dimW, =m/2; if m is odd, then
dimW:, = (m +1)/2 and dimW,___ = (m —1)/2. Since g’ is
nilpotent, there exists a nonzero 7z(w") € V' such that g’ (7
(w')) =0. Note that dimV'=1, which implies g'(V') =0,
sog(Wh, )CW

max max*

Theorem 29. Let (g, [+, ], &, (,),) be a nilpotent metric n
-ary multiplicative Hom-Nambu-Lie superalgebra of dimen-
sion m over an algebraically closed field K of characteristic
not 2. If ] is an isotropic Hom-ideal of g, then g contains a
maximally Hom-ideal I of dimension [m/2] containing ]J.
Moreover, if m is even, then g is isometric to some T"-exten-
sion of g/I. If m is odd, then I* is abelian and g is isometric
to a nondegenerate graded ideal of codimension 1 in some
T*-extension of g/1.

Proof. Consider ad(A"'g) ={ad2 | & € A" 'g}. Then, ad
(A"1g) is a Lie superalgebra. For any & € A"'g, ad. is nil-
potent since g is nilpotent. Then, the following identity

(-adZ(y),z)y=(-1)

x

q | H}" <y’ ad'%.(z»g (71)
implies (ad2)" = —adZ € g. By ] is an isotropic graded ideal
of g, then, J is an isotropic ad(A"!g)-stable graded subspace
and «(J) € J, by Lemma 28 so there is a maximally isotropic
ad(A"!g)-stable graded subspace I of g containing J such that
a(I) €I and dim I = [m/2],] is also an isotropic graded ideal of
g. Moreover, if m is even, then, g is isometric to some T*
-extension of g/I by Theorem 26.

If m is odd, then dim I* —dim I =1 and ad(A"!g)(I*)
<1 by Lemma 28. Note that

{xegl [x. 1,89, 0}

={x€ g,x,Ig,~,g}> = }

(72)
= {xe I gy ,x }
=[L,8,.g]; = (ad (A" 1g)(

which implies that I* ¢ (ad(A"'g)(I*))" = Z(I*), hence I*

is abelian.
Take any nonzero element a ¢ g, we define &' by

X )_{a ifx=a, 73)
- a(x) ifxeg.
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Then, Ka is a 1-dimensional abelian n-ary multiplica-
tive Hom-Nambu-Lie superalgebra. Define a bilinear map
(), : KaxKa— K by (a,a),=1. Then, (,), is a nonde-
generate supersymmetric invariant bilinear form on Ka.

Let g’ = g+ Ka. Define
[x; + ka0

Xyt kna]g’ = [xl"”’xn] (74)

q’

<x+k1a,y+k2a>g' = (x.9), + (k14 kya),. (75)

Then, (g', [, -+, -]g’,a’,<,>g') is a nilpotent metric
n-ary multiplicative Hom-Nambu-Lie superalgebra since

<oc'(x +a),y+ a>g/ =
=(a(x),y)q
=

~

o (y+a),x+a>
g

for all x,yeg and g is a nondegenerate Hom-ideal of
codimension 1 of (g',a’). Since I* is not isotropic
and K is algebraically closed there exists zeI* and
(z,2)g=-1. In addition, we have a(I")CI" since

(a/(vl),v>g:(oc(v),1/¢>g:0 for vel and v'el*. Let

b=a+z and I=I+Kb. Then, I' is an (m+1)/2
-dimensional isotropic graded ideal of g'.
In fact, for all x + k;a+ k,z, y + kya+ kyz e I,
<x+k1u+k1z,y+k2a+k2z)g’
=(x+kz,y+kz), +{ka kyua
< 1%) 2 >g < 1 2 >a (77)

= <x’y>g + <‘x’ k22>g + <klz’y>g
+ (kyz ky2), + koky = ki ky - kyky = 0.

In light of Theorem 26, we conclude that g’ is isometric
to some T*-extension of g'/I'.
Define @ : ¢' — g/I, x+ Aa— x — Az + I. Then

[D(x; + Aa),,D(x, + A,a)]
=[x -Az+Lx

g/l
w— Az + I]g/l
= [y + 1= 0 ([

= (1§<[x1 + A4, x, + /\na]g'),

(78)

where we use the fact that I'* is abelian and ad(A"'g) (I*) < I.
Moreover, @a = ad. In fact, for x + Aa € g', we have

Da(x + Aa) = O(a(x) + Aa(a)) = D(a(x) + Aa)
a(x) - Az+I=a(x) - Aa(z) +1 (79)
(

a(x—Az+1)=ad(x + Aa).
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It’s clear that @ is surjective and ker @ = I',s0g' /1" = g/,
hence the theorem follows.

Now, we show that there exists an isotropic Hom-ideal in
every finite-dimensional metric n-ary multiplicative Hom-
Nambu-Lie superalgebra and investigate the nilpotent length
of g/I.

Proposition 30. Suppose that (g, [+, ], & (,),) is a finite-
dimensional metric n-ary multiplicative Hom-Nambu-Lie
superalgebra.

(1) For any graded subspace V<g, C(V)={xegq]
[e.galy € VY =[gm0 V],
(2) 9" =C,,(9)", where Cy(g) =0, C;,,(8) = C(C,(g))
(3) If g is nilpotent of length k, then ¢' € C;_;(g)
Proof. The relation
V’ 5" aVJ_ = PR ) \4 )VJ_
(C(v). [a--s ]g>g (g0 C(V)], >g (50)
TR
c(V,vh), =0
shows that C(V) € [g,-+.4, Vl] Notice that

(—
4}

1
= <[g’...’g’ Vl]g’ [g’...)g’ Vl]g>g = 0’

(81)

which 8, [8 8, Vl];]g c(VHt=V, e,

[6,+.8, VL] € C(V). Hence, (1) follows.By induction, (2)
and (3) can be proved easily.

implies  [g,-

Theorem 31. Every finite-dimensional nilpotent metric n-ary
multiplicative Hom-Nambu-Lie superalgebra (g, [+, -], a,
(-)4) over an algebraically closed field of characteristic not 2

such that a(g) =g is isometric to (a nondegenerate ideal of
codimension 1 of) a T*-extension of a nilpotent n-ary multi-
plicative  Hom-Nambu-Lie superalgebra whose nilpotent
length is at most a half of the nilpotent length of g.

Proof. Define ] = Y% ¢’ N C;(g). Since g is nilpotent, the sum
is finite. Proposition 30 (2) says (g')" = C;(g), then ¢’ N C,(g)
is isotropic for all i > 0. Since

a'2¢/2¢/nC(g).ifi<j, (82)
we have

(a'nCi(9)) 2 (a") = Ci(a) 2Ci(a) N\ ifi<j.  (83)

13
It follows that
(d'nCy(g),d' N Cj(g)>g =0,Yi, j>0. (84)

Therefore, J is an isotropic graded ideal of g. Let k denote
the nilpotent length of g. Using Proposition 30 (3) we can
conclude that g{*™"2c Cyy,)(a). This implies that
g/k*V2 is contained in J. By Theorem 29, there is a maxi-
mally isotropic graded ideal I of g containing J 2 g*1)/2], 1t
means that g/I has nilpotent length at most [(k + 1)/2], and
the theorem follows.

Remark 32. Most results concerning T™ -extensions in [20, 24,
26, 27] are contained in this section as special cases.

Appendix

Proof of Theorem 33. We now check that 8™ ¢ 8™ = 0. In
fact, for f € C"(g, V), one gets

(6m+1 ° (Sm(f)) (3"1)... me+2> Z)

_.:E: l)i

i<j

) (oc(fl’l),---,oc(/&\’i),---,[&”i, ],

1) ZH( il 1) g ¢

(L ) ()
m+2

+ Z (_1)l<_1)|%|(lﬂ”z+1|+"'+\3”m+z|)5mf
i=1

: (oc(-frl)f--,a@,---,a(&"m»fz:--z)

m+2

+ Z z+1

-6mf(&”1,---,%i,---,$m+2,z)
+ (_1)m+1((Smf(‘%‘li"'xt%‘mﬂ’) : ‘%‘m+2).aam+l(z)’

|5l’i|(|f|+|&"1|+...+|%i,1|)am+1 (.EZ‘)

= Y ayaf (L) 0H (L) ol ), &L )] oo
S<E<i<j
@2 (L)t [ Ly L] 0P (T pn)s 82(2)
Y af (1) 03 () 0 ()
s<i<t<j

: [(x(‘%ﬂs)’ a(‘%'t)]oc’. B

Y agaf (@(Z1) 03 ()0 ()

s<i<j<t

o[ L] el L) (X )]0 (L), 0(2))
_.Z aijszf(“z(*% ’“@i)’ >“2@s)’ >
i<s<t<j

(L) (L[ Lo L] 0 (L 12), @(2))
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= Y af (@) (T 0 (T )

i<s<j<t

@] Xp ] el

- Z aijsrf(“z(‘%))“"0‘2/(‘\%1')"‘3“[‘%"%j]a""’

i<j<s<t

()L ), AL (L) () )

b (1)) ()
<i<j
[o@, 12, 7] ] (),

—

D02 (X)) s 02 (L) 5o

- Z bijkf(‘xz(‘%‘

i<k<j

a0, [ ) }

24

- Y buf (P2 /@:) 02 ()

i<j<k
(X0 L], A L)@ (L) (2))
+kz Cijkf( L) ('%k)""’ /(gﬁi)f'"
<i<j
[T T 0 (L ) (L) ()
- Y G ()T o)

i<k<j
[T 2] 0 (L), (L) - (2))

S (@
i<j<k

(L) (L) () - () )

_ Zciijf(“2(%1%‘“)“2/(5”1‘)"“)“2 (L))
i<j

: az (‘%‘m+2)’ [‘%‘i’ '%.j]a ' (X(Z) +
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m+1

+ Z k+m
.(f(a(grl),..., (@)
+ Z cxtif<a2(&»l)’...)“2/(;[:))...’

s<t<i

Ifl’k\ [ Ly [+ 41T 1)

0L ), &AL )] (T (X ), (- 2) )

+ Y cf (L)@ (L) 0 ()

s<i<t

JEEARICHIREEE MSRIE)

= Y e (X002 ( L) 03 (T )

JEEARICHIREEE MSRIE)

+ Y dif (@(2)) 102 (2o (T )

k<i

0 (X n) (L) (2;-2)) = Y df ((L1),

i<k
@ (L 2) (X0 (2;-2))
DY X CANICEARNTEARNIC AR

k<i
(L) Ti2) = Y P (L) -f (X))
i<k

. “2/@"1,),...,“2@]{),...,

m+1

&) o T) L ), Ti2) + ) ()

i=1

. (_1)\1i\(lffi+l L o ) (f (AL 1)o@ ( L) A0 (L i )5) (X)) o™

+ (f(“(‘%‘l)”"’a(‘%‘m)’) : “(‘%‘mﬂ))‘aam(‘%mﬂ . Z)

+ z_emam“(%) 'f(“(*%l)""»“(/*i))""

2, %z}ar"’“(/fz)r",a(%wz%“(Z))

+ Y G (Z) -f(a(%l>,-~-,a</&i>,---,a@,---.

s<i<t
m+1
Z eStI“

.f(a(gr Yoo a(f[,) a(g[) Lo X
m+2 ) szkam+1 ( (‘9’”)

k<i
(L) Ty 2)

'[%s’%t}a“‘ ( m+2

. 0(

(L) ()
= 2w () (L)) 0l L)
(L ) T -z) + Y G (Z) - (o ()

k<i

5[ > > )) - ngiamﬂ(%)

i<k
) (am(gxk) f(%lf@%muz))
+1

.f(g[l,.. Z

3

(

(f( XL ) - L i )*a0™ (2))

(_1)i+m (_l)lﬂ”,l(\flﬂ.?”, |+»-<+|£l”1,1\)‘xm+l (!%'l)

M

f(zl"”:é’\i’”':gmﬂ’) : ‘%mﬂ)'a‘xm(z))

1) Znal (A ) e

—
1~

m+2)

(Z)s) - [T Lol ) 2™ ()

(Xi2)
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)L )s Lo Xl

Z hy <f(“(‘%1

s<t<m+1

(L) ) & p2) ) 2ad”" (2)

1 m+
3 Z k(1) U T ) (Tl )
i=1 k=1

(b AT o () e

A CCARRTEARIEIE MR R 0 R

.m+1(3fz1+12) m+1 } Zi

i=1 k=1
(=1)mE (1) HL i) (125214411

- (~1) AT 1T [amﬂ (Lhs)or0™(ZLy) - f

. (&’1""’&/‘}0 . '%‘m+l"%‘lrn+2) m+1 (‘%‘nm:z) m+1(z)}
_ "21 (_1)(lfl"'l‘%l|+"'+|‘%m+1|)(|5[1 ol +z|)
i=1
: [ el (‘%‘in*'z) : (f(‘%'l"""%‘mr) : ‘%‘mﬂ).tx‘xm
(‘Elﬂ:ﬂrwz) .. m+1 (‘anm+12) m+1 (Z)],
(A1)
where
g = (1) (1Tl Tl) LI ATl g
= (_1)‘1“%‘“:‘;‘5:;
bijk — (_1)i+k(_1)‘zl|(|%i+1|+”'+|yﬁl|)(_1)|5rk|(|3[k+l\+-~+|ﬂ’}-,1|), b;k

= (_1)\3,\I%Ibljk;
ik — (_1)i+k(_1)|y;|(|2i+1|+'“+‘zj71|) (_1)laﬂk|(|3’k+1H““r|=§rm+z|)) C;jk
= (_1)\zi\\zk\cljk;

HE mal) g

N NNL iy D)) [ ALy [+
(-1)"(-1) D (1) (i d;

d

ij
_ || X .
= (—1) | J|dij’

_ (_1)i+k+1(_1)\2,\(I%,-+1I+---+Ifrj,ll) (=1) WL 1), ¢

2|
=(_1)| ill k\eijk;

= i+ LT e+ 2 11 (IF L 4412
ij—(‘l)lﬂﬂ(‘l)l (1231 1|( 1) (UL 41T )gj

= (-)illg;
hij:(_1)i+m(_1)|&’|(|&r,ﬂl+ HZpal) =(- 1)|,sr||5z|h
pki — (—1)”1‘“(—1)'yi|(|1f+l|+“‘+|5rm+z|)(—1)‘"C[k|<|f|+|3"1|+‘“+|i‘2"k71|)’p~ki

= (_l)h‘ﬁHfﬁlpki'

(A2)

It can be verified that the sum of terms labeled with the

B)+(14) +

+(12) +

same letter vanishes. For example, (11)
(15) =0, in fact,

(11) +

() 0TT) ) T T ], Y™ 2

and
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m+1
Z (_1)k+f"(_1)\ﬂ"kl(lfl”k+1\+"‘+lﬂ’m+1\)
k=1

(12) + (13) + (14) + (15) =

—

. rf (1) () i) (F(o(Z),
'0‘(/‘3?1')’ ] ‘x('%.mﬂ)’) : ‘X(‘%‘mﬂ))‘a‘xm(%i ’ Z)

_ z (—1)f+m(_l)‘2‘,“(‘f‘+‘<%1|+~..+‘fri—1‘) ,(xmﬂ(&,-i)

) ((f(frp . Efi, .

(_1)m+k(_1)(\f\ﬂ%\*“ﬂzmu\ (| @]+ X2 )

«%ﬂmu’) : '%‘m+2) ‘zx‘xm(z))

.(—I)Wk\(\frm\*"'*ﬂ’"“‘) : [amﬂ (‘%‘in+2)’

(L )s s

m+1 (%zﬁlz) m+1(z)}

(L) ULy ) L L )7+

—1 m+1
z Z )k (= 1) (L2 ]) (|Loa |+ |Tka])
(LU TD [ (@), () - f

& (L), @ (2]
(A.3)

(3"1,5/[\ &”mwg[;ﬁz) ..

3
~

(=1)rm (— 1) 0Tt )

* =
S
T =
—

(- l)wm(wum +12,01)

I
—

AN

(L) 0T (L ),

a('%':"'@)/\"'/\’%‘k"%'in+2/\"'/\(x(-%‘fn+12)) m+1(z)

—

3
k)

( 1)k+m(_1)Izk|(|3‘k+1|+"'+|gm+1|)

1]
bl
= HM
L
L

1)\ém(|frm+zl+ +12501)

:1

i

{ 1) T HZ A HT ) (1ol +H,01)
Jj<

(@ (D) of () o T (L ),

(X( m+2)) (‘%‘k ‘%-m+2) : m+1<2nnm+12) mﬂ(z)}
n Z(_1)(|f|+|2”,|+...+|5l”k/\|+...+|frm+,|)(|£Z}n+2|+ AL LI+

>
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(@ (L) (T Dy )onf ((Z)
& T )L ) 6 L) ) oo™ (L) o (2)]
n (_1)(|f|+|&’1|+-~-+|%kA\+~-+|zmH|)(\z;+z|+.--+|gz;;12|)
[ m+1(&»’1ﬂ+2) f(a(fl‘l))'"’a(/‘%\‘k)>'“’a(‘%‘m+l)7‘%‘k
g[“m”) m+1(3»:zn+12) m+1(z):|}'
(A.4)

Moreover, we have

(_1)i+m(_1)\,T,|(|f|+|£l”,\+~»+\R’,,1|)
(=1) U HIT ATl AL (1L s+, 1] o«

J
. [“m : (‘9’/' ‘5[ ‘%.mﬂ’ ‘%‘mﬂ) o

m+1

(. m<m

i=1

, z ()T, (4T

,—/‘\E

(1) R [ (2, ) ()
I<j

'%-il’H’Z)’.."aof('%. : ‘%‘ 2m+1"%.m+2) . m+1('%.7n+12)’
-(x’”“(z)} +Z( 1)|%|(|ﬂ+|%|+ AL ALy L G L)

I>j
’ [ o (&ﬁinﬂ) ) "X°f(‘%1> : ‘% %m+l’zm+2> o
(o ]
# () T ) a2 ) () -
(T T T L )™ (T )0 2)

+ (— 1) TE il T, HT AT )

[ (@)@ (T T T s D)

(k) ’"(fm-a’"(z)]}
(A.5)
Since (14) + (11¢) =0, (12) + (13d) =0, (11a) + (13b) =0,
(11b) + (13a) =0, one gets (11)+(12) + (13) + (14) + (15) =

0. Then &™'08™=0. Therefore, the proof of Theorem
12 is completed.
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