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In this paper, we discuss the representations of n-ary multiplicative Hom-Nambu-Lie superalgebras as a generalization of the
notion of representations for n-ary multiplicative Hom-Nambu-Lie algebras. We also give the cohomology of an n-ary
multiplicative Hom-Nambu-Lie superalgebra and obtain a relation between extensions of an n-ary multiplicative Hom-Nambu-
Lie superalgebra b by an abelian one a and Z1ðb, aÞ�0. We also introduce the notion of T∗-extensions of n-ary multiplicative
Hom-Nambu-Lie superalgebras and prove that every finite-dimensional nilpotent metric n-ary multiplicative Hom-Nambu-Lie
superalgebra over an algebraically closed field of characteristic not 2 in the case α is a surjection is isometric to a suitable
T∗-extension.

1. Introduction

In 1996, the concept of n-Lie superalgebras was firstly intro-
duced by Daletskii and Kushnirevich in [1]. Moreover, Can-
tarini and Kac gave a more general concept of n-Lie
superalgebras again in 2010 in [2]. n-Lie superalgebras are
more general structures including n-Lie algebras (n-ary
Nambu-Lie algebras), n-ary Nambu-Lie superalgebras, and
Lie superalgebras [3].

The general Hom-algebra structures arose first in con-
nection with quasideformation and discretizations of Lie
algebras of vector fields. These quasideformations lead to
quasi-Lie algebras, a generalized Lie algebra structure in
which the skew symmetry and Jacobi conditions are twisted.
Hom-Lie algebras, Hom-Lie superalgebras, Hom-Lie bialge-
bras, Hom-Lie 2-algebras, and quasi-Hom-Lie algebras are
discussed in [4–14]. The n-ary Hom-Nambu-Lie algebras
have been introduced in [15]. It is the generalization of n
-ary algebras of Lie type by twisting the identities using linear
maps. It includes n-ary Hom-algebra structures generalizing
the n-ary algebras of Lie type such as n-ary Nambu algebras,
n-ary Nambu-Lie algebras, and n-ary Lie algebras [16].

Cohomologies are powerful tools in mathematics, which
can be applied to algebras and topologies as well as the theory
of smooth manifolds or of holomorphic functions. The coho-
mology of Lie algebras was defined by Chevalley and Eilen-
berg in order to give an algebraic construction of the
cohomology of the underlying topological spaces of compact
Lie groups in [17]. The cohomology of Lie superalgebras was
introduced by Scheunert and Zhang in [18] and was used in
mathematics and theoretical physics: the theory of cobord-
isms, invariant differential operators, central extensions,
and deformations. The theory of cohomology for n-ary
Hom-Nambu-Lie algebras and n-Lie superalgebras can be
found in [19, 20]. This paper generalizes it to n-ary multipli-
cative Hom-Nambu-Lie superalgebras.

The extension is an important way to find a larger algebra
and there are many extensions such as general extensions,
abelian extensions, nonabelian extensions, double exten-
sions, and Kac-Moody extensions. Abelian extensions and
nonabelian extensions of Hom-Lie algebras are, respectively,
researched in [21, 22]. The general extensions of n-Hom-Lie
algebras is researched in [23]. In 1997, Bordemann intro-
duced the notion of T∗-extensions of Lie algebras in [24].
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The method of T∗-extension was used in [25] and was gener-
alized to many other algebras recently in [26, 27]. This paper
researches general extensions and T∗-extensions of n-ary
multiplicative Hom-Nambu-Lie superalgebras. In addition,
the paper also discusses representations of n-ary multiplica-
tive Hom-Nambu-Lie superalgebras as a generalization of
the notions of representations for n-ary multiplicative
Hom-Nambu-Lie algebras.

This paper is organized as follows. In Section 2, we give
the representation and the cohomology for an n-ary multipli-
cative Hom-Nambu-Lie superalgebra. In Section 3, we give a
one-to-one correspondence between extensions of an n-ary
multiplicative Hom-Nambu-Lie superalgebras b by an abelian
one a and Z1ðb, aÞ�0: In Section 4, we introduce the notion of
T∗-extensions of n-ary multiplicative Hom-Nambu-Lie
superalgebras and prove that every finite-dimensional nilpo-
tent metric n-ary multiplicative Hom-Nambu-Lie superalge-
bra ðg, ½·,⋯, · �, α, h,igÞ over an algebraically closed field of
characteristic not 2 such that αðgÞ = g is isometric to (a
nondegenerate ideal of codimension 1 of) a T∗-extension
of a nilpotent n-ary multiplicative Hom-Nambu-Lie super-
algebra whose nilpotent length is at most a half of the nil-
potent length of g.

2. n-ary Hom-Nambu-Lie Superalgebras

In the paper, let g = g�0 ⊕ g�1 be a finite-dimensionalℤ2-graded
vector space. The degree of an element x in g will be denoted
by ∣x ∣ and in what follows appearance of ∣x ∣ will mean that x
is a homogeneous element and ∣x ∣ stands for its degree,
where ∣x ∣ ∈ℤ2 and ℤ2 = f�0, �1g:

Definition 1.An n-ary Hom-Nambu-Lie superalgebra is a tri-
ple ðg, ½·,⋯, · �, fαign−1i=1 Þ consisting of a ℤ2-graded vector
space g = g�0 ⊕ g�1, a multilinear mapping

·,⋯, ·½ �: g ×⋯ × g|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

⟶ g ð1Þ

and a family fαign−1i=1 of even linear maps αi : g⟶ g,
satisfying

x1,⋯, xn½ �j j = x1j j +⋯ + xnj j, ð2Þ

x1,⋯, xi, xi+1,⋯, xn½ � = − −1ð Þ xij j xi+1j j x1,⋯, xi+1, xi,⋯, xn½ �,
ð3Þ

α1 x1ð Þ,⋯,αn−1 xn−1ð Þ, y1,⋯,yn½ �½ � = 〠
n

i=1
−1ð Þ x1j j+⋯+ xn−1j jð Þ y1j j+⋯+ yi−1j jð Þ

· α1 y1ð Þ,⋯, αi−1 yi−1ð Þ, x1,⋯, xn−1, yi½ �, αi yi+1ð Þ,⋯, αn−1 ynð Þ½ �,
ð4Þ

where ∣x ∣ ∈ℤ2 denotes the degree of a homogeneous
element x ∈ g:

An n-ary Hom-Nambu-Lie superalgebra ðg, ½·,⋯, · �,
fαign−1i=1 Þ is multiplicative, if α1 =⋯ = αn−1 = α and the fol-
lowing equality is satisfied:

α x1,⋯,xn½ � = α x1ð Þ,⋯,α xnð Þ½ �, ∀x1, x2,⋯, xn ∈ g: ð5Þ

Moreover, the multiplicative n-ary Hom-Nambu-Lie
superalgebra ðg, ½·,⋯, · �, fαign−1i=1 Þ is also denoted by ðg, ½·,
⋯ , · �, αÞ:

For a multiplicative n-ary Hom-Nambu-Lie superalgebra
ðg, ½·, ⋯ , · �, αÞ, equation (4) can be read:

α x1ð Þ,⋯,α xn−1ð Þ, y1,⋯,yn½ �½ �

= 〠
n

i=1
−1ð Þ ∣x1∣+⋯+∣xn−1∣ð Þ ∣y1∣+⋯+∣yi−1∣ð Þ

· α y1ð Þ,⋯,α yi−1ð Þ, x1,⋯,xn−1, yi½ �,½
α yi+1ð Þ,⋯,α ynð Þ�:

ð6Þ

It is clear that n-ary Hom-Nambu-Lie algebras and Hom-
Lie superalgebras are particular cases of n-ary Hom-Nambu-
Lie superalgebras.

Definition 2. Let ðg, ½·,⋯, · �, fαign−1i=1 Þ and ðg′, ½·,⋯, · �′,
fα′ig

n−1
i=1 Þ be two n-ary Hom-Nambu-Lie superalgebras. A

linear map f : g⟶ g′ is an n-ary Hom-Nambu-Lie superal-
gebra homomorphism if it satisfies

f x1,⋯,xn½ � = f x1ð Þ,⋯,f xnð Þ½ �′,
f ∘ αi = αi′∘ f , ∀i = 1,⋯, n − 1:

ð7Þ

Example 3. Let ðg, ½·, ⋯ , · �Þ be an n-ary Nambu-Lie superal-
gebra and let ρ : g⟶ g be an n-ary Nambu-Lie superalge-
bra endomorphism. Then, ðg, ρ ∘ ½·,⋯, · �, ρÞ is an n-ary
multiplicative Hom-Nambu-Lie superalgebra.

Definition 4. Let ðg, ½·,⋯, · �g, fαign−1i=1 Þ be an n-ary Hom-
Nambu-Lie superalgebra. A graded subspace H ⊆ g is a
Hom-subalgebra of ðg, ½·,⋯, · �g, fαign−1i=1 Þ if αiðHÞ ⊆H and
H is closed under the bracket operation ½·, ⋯ , · �g, i.e.,
½u1,⋯,un�g ∈H, for all u1,⋯, un ∈H: A graded subspace H

⊆ g is a Hom-ideal of ðg, ½·,⋯, · �g, fαign−1i=1 Þ if αiðHÞ ⊆H
and ½u1, u2,⋯,un�g ∈H, for all u1 ∈H and u2,⋯, un ∈ g:

Definition 5. Let ðg, ½·,⋯, · �g, fαign−1i=1 Þ be an n-ary Hom-
Nambu-Lie superalgebra. A Hom-ideal H of g is abelian if
½u1, u2, u3,⋯,un�g = 0 for all u1, u2 ∈H and u3,⋯, un ∈ g:

3. Cohomology for n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Definition 6. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. X = x1 ∧⋯∧ xn−1 ∈ ∧n−1g
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is called a fundamental object of g: For all z ∈ g,X · z
≔ ½x1,⋯,xn−1, z�. It is clear that ∣X ∣ = ∣ x1 ∣ +⋯ + ∣ xn−1∣.

Let X = x1 ∧⋯ ∧ xn−1 and Y = y1 ∧⋯∧ yn−1 be two
fundamental objects of g. A bilinear map ½·, · �α : ∧n−1g ×
∧n−1g⟶ ∧n−1g defined by

X ,Y½ �α = 〠
n−1

i=1
−1ð Þ∣X∣ ∣y1∣+⋯+∣yi−1∣ð Þα y1ð Þ∧⋯∧α yi−1ð Þ ∧X

· yi ∧ α yi+1ð Þ∧⋯∧α yn−1ð Þ:
ð8Þ

A linear map α : ∧n−1g⟶ ∧n−1g defined by αðXÞ =
αðx1Þ ∧⋯∧ αðxn−1Þ: Then, α½X ,Y�α = ½αðXÞ, αðYÞ�α.

Proposition 7. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. Suppose that X = x1 ∧⋯∧
xn−1, Y = y1 ∧⋯∧ yn−1 and Z = z1 ∧⋯∧ zn−1 are funda-
mental objects of g and z is an arbitrary element in g. Then,

α Xð Þ · Y · zð Þ = −1ð Þ Xj j Yj jα Yð Þ · X · zð Þ + X ,Y½ �α · α zð Þ,
ð9Þ

X ,Y½ �α · α zð Þ = − −1ð Þ Xj j Yj j Y ,X½ �α · α zð Þ: ð10Þ
Proof. It is easy to see that (9) is equivalent to (6). Using (9),
by exchanging X and Y , we have

α Yð Þ · X · zð Þ = Y ,X½ �α · α zð Þ + −1ð Þ Xj j Yj jα Xð Þ · Y · zð Þ:
ð11Þ

Comparing (9) with (11), we obtain (10).

Definition 8. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra and V = V�0 ⊕V�1 be a ℤ2-
graded vector space over a field K and ν ∈ EndV : A graded
representation ρ of g on V is a linear map ρ : ∧n−1g⟶
EndðVÞ,X ↦ ρðXÞ = ρðx1,⋯,xn−1Þ such that

ρ Xð Þ Vβ

� �
⊆Vβ+∣X∣, ∀β ∈ℤ2, ð12Þ

ρ α Xð Þð Þρ Yð Þ = −1ð Þ Xj j Yj jρ α Yð Þð Þρ Xð Þ + ρ X ,Y½ �α ∘ ν,
ð13Þ

ρ α x1ð Þ,⋯,α xn−2ð Þ, y1,⋯,yn½ �ð Þ ∘ ν

= 〠
n

i=1
−1ð Þn−i −1ð Þ ∣x1∣+⋯+∣xn−2 ∣ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ

· −1ð Þ∣yi∣ ∣yi+1∣+⋯+∣yn∣ð Þρ α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

� ρ x1,⋯,xn−2, yið Þ,

ð14Þ

for X ,Y ∈ ∧n−1g and x1,⋯, xn−2, y1,⋯, yn ∈ g, where the
sign ∧ indicates that the element below must be omitted.
The ℤ2-graded representation space ðV , νÞ is said to be a
graded g-module.

We use a supersymmetric notation ½x1,⋯,xn−1, v�(like (3))
to denote ρðXÞ · v: Set ½x1,⋯,xn−2, v1, v2� = 0 and ðα + νÞ
ðx + vÞ = αðxÞ + νðvÞ for all x ∈ g and v ∈ V , then ðg ⊕V ,
½·,⋯, · �, α + νÞ becomes an n-ary multiplicative Hom-
Nambu-Lie superalgebra such that V is a ℤ2-graded abelian
ideal of g, that is,

V , g,⋯, g|fflfflfflffl{zfflfflfflffl}
n−1

24 35 ⊆V and V , V , g,⋯, g|fflfflfflffl{zfflfflfflffl}
n−2

24 35 = 0: ð15Þ

In the sequel, we will usually abbreviate ρðXÞ · v with
X · v.

Example 9. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. Then, ad : ∧n−1g⟶ End
ðgÞ,X ↦ adX defined by

adX zð Þ =X · z ð16Þ

is a graded representation of g, it is also called the adjoint
graded representation of g:

Definition 10. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra and ðV , νÞ be a graded
g-module. An m-cochain is an ðm + 1Þ-linear map

f : ∧n−1g ⊗⋯⊗ ∧n−1g|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
m

∧ g⟶V ð17Þ

such that

ν ∘ f X1,X2,⋯,Xm, zð Þ = f α X1ð Þ, α X2ð Þ,⋯,α Xmð Þ, α zð Þð Þ
ð18Þ

for allX1,X2,⋯,Xm ∈ ∧n−1g and z ∈ g:We denote the set of
m-cochain by Cmðg, VÞ:

Definition 11. For m ≥ 1, we define an m-coboundary opera-
tor δm of the n-ary multiplicative Hom-Nambu-Lie superal-
gebra ðg, ½·, ⋯ , · �, αÞ, which is an even linear map, by

δmfð Þ X1,⋯,Xm,Xm+1, zð Þ
=〠

i<j
−1ð Þi −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ f

� α X1ð Þ,⋯, dα X ið Þ ,⋯, X i,X j

� �
α
,⋯,α Xm+1ð Þ, α zð Þ

� �
+ 〠

m+1

i=1
−1ð Þi −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣Xm+1∣ð Þ f

� α X1ð Þ,⋯, dα X ið Þ ,⋯,α Xm+1ð Þ,X i · z
� �

+ 〠
m+1

i=1
−1ð Þi+1 −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þαm X ið Þ
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· f X1,⋯,cX i ,⋯,Xm+1, z
� �

+ −1ð Þm f X1,⋯,Xm,ð Þ ·Xm+1ð Þ•ααm zð Þ,
ð19Þ

where X i ∈ ∧n−1g, i = 1,⋯,m + 1, z ∈ g and the last term is
defined by

f X1,⋯,Xm,ð Þ ·Xm+1ð Þ•ααm zð Þ

= 〠
n−1

i=1
−1ð Þ ∣f ∣+∣X1∣+⋯+∣Xm∣ð Þ ∣X1

m+1∣+⋯+∣X i−1
m+1∣ð Þ

· αm X1
m+1

� �
,⋯,f X1,⋯,Xm,X i

m+1
� �

,
�
⋯,αm Xn−1

m+1
� �

, αm zð Þ�,
ð20Þ

where Xm+1 =X1
m+1 ∧⋯∧Xn−1

m+1 ∈ ∧
n−1g:

Theorem 12. Let f ∈ Cmðg, VÞ be an m-cochain. Then, δm+1

∘ δmð f Þ = 0:

Proof. See the appendix.

Remark 13. The m-coboundary operator δm as above is a
generalization of the one defined for n-ary multiplicative
Hom-Nambu-Lie algebras in [16] and for first-class n-Lie
superalgebras in [20].

The map f ∈ Cmðg, VÞ is called an m-supercocycle if δm

f = 0. We denote by Zmðg, VÞthe graded subspace spanned
by m-supercocycles. Since δm+1 ∘ δmð f Þ = 0 for all f ∈ Cmðg,
VÞ, δm−1Cm−1ðg, VÞ is a graded subspace of Zmðg, VÞ. There-
fore, we can define a graded cohomology spaceHmðg, VÞ of g
as the graded space Zmðg, VÞ/δm−1Cm−1ðg, VÞ:

4. Extensions of n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Definition 14. Let ðgi, ½·,⋯, · �i, αiÞði = 1, 2,⋯Þ be a family of
n-ary multiplicative Hom-Nambu-Lie superalgebras over
K. f i : gi → gi+1 is a morphism of n-ary multiplicative
Hom-Nambu-Lie superalgebras. The sequence

g1⟶
f1g2⟶

f2⋯⟶ gi⟶
f igi+1⟶

f i+1 ⋯ ð21Þ
is called an exact sequence of n-ary multiplicative Hom-
Nambu-Lie superalgebras, if it satisfies ker f i+1 = f iðgiÞ
ði = 1, 2,⋯Þ:

Definition 15. Let ðg, ½·,⋯, · �g, αgÞ, ða, ½·,⋯, · �a, αaÞ and ðb,
½·,⋯, · �b, αbÞ be n-ary multiplicative Hom-Nambu-Lie super-
algebras overK. g is called an extension of b by a if there is an
exact sequence of n-ary multiplicative Hom-Nambu-Lie
superalgebras:

0⟶ a⟶ιg⟶πb⟶ 0: ð22Þ

Let ðg, ½·,⋯, · �g, αÞand ðb, ½·,⋯, · �b, βÞ be two n-ary multipli-
cative Hom-Nambu-Lie superalgebras over K. Suppose that a
is an abelian graded ideal of g, i.e., a is a graded ideal such that

a, a, g,⋯, g|fflfflffl{zfflfflffl}
n−2

2664
3775 = 0 ð23Þ

We consider the case that gis an extension of b by an abelian
graded ideal a of g. Let τ : b⟶ g be a homogeneous even
linear map with π ∘ τ = idb and α ∘ τ = τ ∘ β: Let B = b1 ∧⋯
∧bn−1 ∈ ∧n−1b and let ρ : ∧n−1b⟶ EndðaÞ,B↦ τ ðBÞ =
τðb1Þ ∧⋯∧τðbn−1Þ. Then, a becomes a graded b-module.
Let us write τðbÞ = ð0, bÞ and then denote the elements
of g by ða, bÞ for all a ∈ a and b ∈ b. Then, the bracket
in g is defined by

a1, b1ð Þ,⋯, an, bnð Þ½ �

= 〠
n

i=1
τ b1ð Þ,⋯,ai,⋯,τ bnð Þ½ � + f B, bnð Þ,B · bn

 !
,

ð24Þ

where f ðB, bnÞ = τðBÞ · τðbnÞ − τðB · bnÞ and ∣ðai, biÞ ∣ =
∣ai∣ = ∣bi∣,∀1 ≤ i ≤ n. It is easy to see that f ∈ C1ðb, aÞ�0. Let
A = a1 ∧⋯∧an−1, ðA ,BÞ = ða1, b1Þ∧⋯∧ðan−1, bn−1Þ and ðα
ðAÞ, βðBÞÞ = ðαða1Þ, βðb1ÞÞ ∧⋯∧ðαðan−1Þ, βðbn−1ÞÞ. Then,

α Að Þ, β Bð Þð Þ · A ′,B′
� �

· an′ , bn′
� �� �

− 〠
n

i=1
−1ð Þ∣A ∣ ∣a1′∣+⋯+∣ai−1′ ∣ð Þ α a1′

� �
,

�h
β b1′
� ��

,⋯, A ,Bð Þ · ai′, bi′
� �

,⋯, α an′
� �

, β bn′
� �� �i

= α Að Þ, β Bð Þð Þ · 〠
n

i=1
τ b1′
� �

,⋯,ai′,⋯,τ bn′
� �h i

+ f B′, bn′
� �

,B′ · bn′
 !

− 〠
n

i=1
−1ð Þ∣A ∣ ∣a1′∣+⋯+∣ai−1′ ∣ð Þ · α a1′

� �
, β b1′
� �� �

,⋯,
h

〠
n−1

j=1
τ b1ð Þ,⋯,aj,⋯,τ bn−1ð Þ, τ bi′

� �h i
+ τ Bð Þ · ai′

  
+ f B, bi′
� �

Þ,B · bi′Þ,⋯, α an′
� �

, β bn′
� �� �i

= τ β Bð Þð Þ · 〠
n

i=1
τ b1′
� �

,⋯,ai′,⋯,τ bn′
� �h i !  

+ 〠
n−1

j=1
τ β b1ð Þð Þ,⋯,α aj

� �
,⋯,τ β bn−1ð Þð Þ, τ B′ · bn′

� �h i
+ τ β Bð Þð Þ · f B′, bn′

� �
+ f β Bð Þ,B′ · bn′
� �

Þ, β Bð Þ · B′ · bn
� ��

− 〠
n

i=1
−1ð Þ∣A ∣ ∣a1′∣+⋯+∣ai−1′ ∣ð Þ · 〠

n−1

j=1
τ β b1′

� �� �
,⋯,

h  
τ b1ð Þ,⋯,aj,⋯,τ bn−1ð Þ, τ bi′

� �h i
,⋯,τ β bn′

� �� �i
+ τ β b1′

� �� �
,⋯,τ Bð Þ · ai′,⋯,τ β bn′

� �� �h i
+ τ β b1′

� �� �
,⋯,f B, bi′

� �
,⋯,τ β bn′

� �� �h i
+〠

j≠i
τ β b1′

� �� �
,⋯,α aj′

� �
,⋯,τ B · bi′

� �
,⋯,τ β bn′

� �� �h i
+ f β b1′

� �
,⋯,B · bi′,⋯,β bn′

� �� �
Þ, β b1′

� �
,⋯,B · bi′,⋯,β bn′

� �h i�
= δ1 f B,B′, bn′

� �
, 0

� �
:

ð25Þ

4 Advances in Mathematical Physics



Therefore, f ∈ Z1ðb, aÞ�0.
Conversely, suppose that an abelian n-ary multiplicative

Hom-Nambu-Lie superalgebras a is a graded b-module, ρ
ðBÞ · a≔ τðBÞ · a, and f ∈ Z1ðb, aÞ�0. Let g≔ ða, bÞ = fðx, yÞ
∣ x ∈ a, y ∈ bg,α′ ≔ α + β, where ðα + βÞðx, yÞ = ðαðxÞ, βðyÞÞ,
x ∈ a, y ∈ b: Then ðg, α′Þ is an n-ary multiplicative Hom-
Nambu-Lie superalgebra with the bracket defined by (24).
Then we can define an exact sequence

0⟶ a⟶ιg⟶πb⟶ 0, ð26Þ

where ιðaÞ = ða, 0Þ, πða, bÞ = b. Thus g is an extension of b by
a and ιðaÞ is an abelian graded ideal of g.

Therefore, we get the following theorem.

Theorem 16. Suppose that ða, ½·,⋯, · �a, αÞ and ðb, ½·,⋯, · �b,
βÞ are two n-ary multiplicative Hom-Nambu-Lie superalge-
bras over K and a is abelian. Then, there is a one-to-one cor-
respondence between extensions of b by a and Z1ðb, aÞ�0.

5. T∗-Extensions of n-ary Multiplicative
Hom-Nambu-Lie Superalgebras

Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative Hom-Nambu-
Lie superalgebra and g∗ be its dual space. Since g = g�0 ⊕ g�1
and g∗ = g∗�0 ⊕ g∗�1 are ℤ2-graded vector space, the direct sum
g ⊕ g∗ = ðg�0 ⊕ g∗�0 Þ ⊕ ðg�1 ⊕ g∗�1 Þ is a ℤ2-graded vector space.
In the sequel, whenever x + f ∈ g ⊕ g∗ appears, it means that
x + f is homogeneous and ∣x + f ∣ = ∣ x ∣ = ∣ f ∣ .

Lemma 17. Let g∗ be the dual ℤ2-graded vector space of
an n-ary multiplicative Hom-Nambu-Lie superalgebra ðg,
½·, ⋯ , · �, αÞ. Let us consider the even linear map ad∗

: ∧n−1g⟶ Endðg∗Þ defined by

ad∗ Xð Þ fð Þ zð Þ = − −1ð Þ Xj j fj j f adX zð Þð Þ, ð27Þ

for all X ∈ ∧n−1g, f ∈ g∗ and z ∈ g. Then, ad∗ is a repre-
sentation of g on g∗ if and only if the following conditions
hold:

ad Xð Þadα Yð Þ − −1ð Þ Xj j Yj jad Yð Þadα Xð Þ = α ∘ ad X ,Y½ �α ;
ad x1,⋯,xn−2, yið Þad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ

� �
= −1ð Þ ∣x1∣+⋯+∣xn−2 ∣ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ

· −ad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

ad x1,⋯,xn−2, yið Þ
n o

ð28Þ

for all i = 1, 2,⋯, n:

Proof. ð⇒ÞWe firstly prove that the necessity holds. Then, by
the definition of ad∗, one gets

ad∗ α Xð Þð Þad∗ Yð Þ fð Þ zð Þ
= − −1ð Þ∣X∣ ∣Y∣+∣f ∣ð Þad∗ Yð Þ fð Þ adα Xð Þ zð Þð Þ
= − −1ð Þ∣X∣ ∣Y∣+∣f ∣ð Þ − −1ð Þð Yj j fj j f ad Yð Þadα Xð Þ zð Þð Þ
= −1ð Þ∣X∣ ∣Y∣+∣f ∣ð Þ+ Yj j fj j f ad Yð Þadα Xð Þ zð Þð Þ

ð29Þ

and

−1ð Þ Xj j Yj jad∗α Yð Þad∗ Xð Þ fð Þ zð Þ
= −1ð Þ Xj j Yj j − −1ð Þð Yj j Xj j+ fj jð Þad∗ Xð Þ fð Þ adα Yð Þ zð Þð Þ
= − −1ð Þ Yj j fj j − −1ð Þð xj j fj j f ad Xð Þadα Yð Þ zð Þð Þ
= −1ð Þ ∣X∣+∣Y∣ð Þ∣f ∣ f ad Xð Þadα Yð Þ zð Þð Þ:

ð30Þ

Moreover, we have

ad∗ X ,Y½ �α
� �

∘ ν fð Þ zð Þ
= − −1ð Þ Xj j+ Yj jð Þ fj jÞν fð Þ ad X ,Y½ �α zð Þ� �
= − −1ð Þ ∣X∣+∣Y∣ð Þ∣f ∣ f α ∘ ad X ,Y½ �α zð Þ� �

:

ð31Þ

By (13), we have adðXÞadαðYÞ − ð−1ÞjXjjYjadðYÞadα
ðXÞ = α ∘ ad½X ,Y�α:

ad∗ α x1ð Þ,⋯,α xn−2ð Þ, y1,⋯,yn½ �ð Þν fð Þ zð Þ
= − −1ð Þ x1j j+⋯+ xn−2j j+ y1j j+⋯+ ynj jð Þ fj j f α x1ð Þ,⋯,α xn−2ð Þ,½

� y1,⋯,yn½ �, α zð Þ�
= − −1ð Þ x1j j+⋯+ xn−2j j+ y1j j+⋯+ ynj jð Þ fj j − −1ð Þ zj j y1j j+⋯+ ynj jð Þ

� �
· f α x1ð Þ,⋯,α xn−2ð Þ, α zð Þ, y1,⋯,yn½ �½ �

= − −1ð Þ x1j j+⋯+ xn−2j j+ y1j j+⋯+ ynj jð Þ fj j − −1ð Þ zj j y1j j+⋯+ ynj jð Þ
� �

· 〠
n

i=1
−1ð Þ x1j j+⋯+ xn−2j j+ zj jð Þ y1j j+⋯+ yi−1j jð Þ

· f α y1ð Þ,⋯,α yi−1ð Þ, x1,⋯,xn−2, z, yi½ �, α yi+1ð Þ,⋯,α ynð Þ½ �

= −〠
n

i=1
−1ð Þn−i −1ð Þ yij j yi+1j j+⋯+ ynj jð Þ+ x1j j+⋯+ xn−2j j+ y1j j+⋯+ ynj jð Þ fj j

· −1ð Þ x1j j+⋯+ xn−2j jð Þ y1j j+⋯+ yij j∧+⋯+ ynj jð Þ f α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ,
h

� x1,⋯,xn−2, yi, z½ �
i

= −〠
n

i=1
−1ð Þn−i −1ð Þ yij j yi+1j j+⋯+ ynj jð Þ+ x1j j+⋯+ xn−2j j+ y1j j+⋯+ ynj jð Þ fj j

· −1ð Þ x1j j+⋯+ xn−2j jð Þ y1j j+⋯+ yij j∧+⋯+ ynj jð Þ

· f ad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

ad x1,⋯,xn−2, yið Þ zð Þ
� �

,

ð32Þ
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〠
n

i=1
−1ð Þn−i −1ð Þ ∣x1∣+⋯+∣xn−2∣ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ+∣yi∣ ∣yi+1∣+⋯+∣yn∣ð Þ

· ad∗ α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

ad∗ x1,⋯,xn−2, yið Þ fð Þ zð Þ

= 〠
n

i=1
−1ð Þn−i −1ð Þ ∣x1∣+⋯+∣xn−2∣ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ+∣yi∣ ∣yi+1∣+⋯+∣yn∣ð Þ

· − −1ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ ∣x1∣+⋯+∣xn−2∣+∣yi ∣+∣f ∣ð Þ
� �
· ad∗ x1,⋯,xn−2, yið Þ fð Þ ad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ

� �
zð Þ

� �
= 〠

n

i=1
−1ð Þn−i −1ð Þ∣yi∣ ∣y1∣+⋯+∣yi−1∣ð Þ+∣f ∣ ∣y1∣+⋯+∣yn∣+∣x1∣+⋯+∣xn−2∣ð Þ

· f ad x1,⋯,xn−2, yið Þad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

zð Þ
� �

:

ð33Þ
By (14), we obtain

ad x1,⋯,xn−2, yið Þad α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

= −1ð Þ ∣x1∣+⋯+∣xn−2∣ð Þ ∣y1∣+⋯+∣yi∣∧+⋯+∣yn∣ð Þ

· −ad α y1ð Þ,⋯, dα yið Þ ,⋯,α yið Þ
� �

ad x1,⋯,xn−2, yið Þ
n o

:

ð34Þ

ð⇐Þ It is easy to see that the sufficiency holds. The
proof is complete.

The representation ad∗ as defined in Lemma 17 is called
the coadjoint representation of g: Let θ be a homogeneous n
-linear map from ∧ng into g∗ of degree 0. Now, we define a
bracket on g ⊕ g∗:

x1 + f1,⋯,xn + f n½ �θ = x1,⋯,xn½ �g + θ x1,⋯,xnð Þ

+ 〠
n

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn∣ð Þad∗ x1,⋯,bxi ,⋯,xnð Þ · f i:

ð35Þ

Theorem 18. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplica-
tive Hom-Nambu-Lie superalgebra. Assume that the coadjoint
representation exists. Then, ðg ⊕ g∗, ½·,⋯, · �θ, α′Þ is an n-ary
multiplicative Hom-Nambu-Lie superalgebra if and only if θ
∈ Z1ðg, g∗Þ�0, where α′ðx + f Þ = αðxÞ + f ∘ α, ∀x ∈ g, y ∈ g∗:

Proof. It is clear that ½·, ⋯ , · �θ satisfies (3) if and only if θ
∈ C1ðg, g∗Þ�0. Let X +F = ðx1 + f1Þ ∧⋯∧ ðxn−1 + f n−1Þ and
Y +G = ðy1 + g1Þ ∧⋯ ∧ ðyn−1 + gn−1Þ. Then, we have

α′ X +Fð Þ
� �

· Y +Gð Þ · yn + gnð Þð Þ

= α Xð Þ +F ∘ αð Þ ·
(
〠
n

i=1
−1ð Þn−i −1ð Þ yij j yi+1j j+⋯+ ynj jð Þad∗ y1,⋯,byi ,⋯,ynð Þ · gi +Y · yn + θ Y , ynð Þ

)

= α Xð Þ · Y · ynð Þ + θ α Xð Þ,Y · ynð Þ + ad∗ α Xð Þð Þ · θ Y , ynð Þ + 〠
n−1

j=1
−1ð Þn−j −1ð Þ xjj j x j+1j j+⋯+ xn−1j j+ Yj j+ ynj jð Þad∗

� α x1ð Þ,⋯, dα xj
� �

,⋯,α xn−1ð Þ,Y · yn
� �

· f j ∘ α
� �

+ 〠
n

i=1
−1ð Þn−i −1ð Þ yij j yi+1j j+⋯+ ynj jð Þad∗ α Xð Þð Þ · ad∗ y1,⋯,byi ,⋯,ynð Þ · gið Þ,

ð36Þ

〠
n

i=1
−1ð Þ∣X∣ ∣y1∣+⋯+∣yi−1∣ð Þ α y1ð Þ + g1 ∘ αð Þ,⋯, X +Fð Þ · yi + gið Þ,⋯,α ynð Þ + gn ∘ αð Þ½ �θ

= 〠
n

i=1
−1ð Þ∣X∣ ∣y1 ∣+⋯+∣yi−1∣ð Þ α y1ð Þ + g1 ∘ αð Þ,⋯, X · yi + θ X , yið Þ + ad∗ Xð Þ · gi

("
+ 〠

n−1

j=1
−1ð Þn−j −1ð Þ∣xj∣ ∣x j+1∣+⋯+∣xn−1∣+∣yi∣ð Þad∗ x1,⋯, bxj ,⋯,xn−1, yi

� �
· f j

)
,⋯,α ynð Þ + gn ∘ αð Þ

#
θ

= 〠
n

i=1
−1ð Þ∣X∣ ∣y1∣+⋯+∣yi−1∣ð Þ α y1ð Þ,⋯,X · yi,⋯,α ynð Þ½ � + θ α y1ð Þ,⋯,X · yi,⋯,α ynð Þð Þ

(
+〠

k<i
−1ð Þn−k −1ð Þ∣yk∣ ∣yk+1∣+⋯+∣yn∣+∣X∣ð Þad∗ α y1ð Þ,⋯, dα ykð Þ ,⋯,X · yi,⋯,α ynð Þ

� �
· gk ∘ αð Þ

+〠
i<k

−1ð Þn−k −1ð Þ∣yk ∣ ∣yk+1∣+⋯+∣yn∣ð Þad∗ α y1ð Þ,⋯,X · yi,⋯, dα ykð Þ ,⋯,α ynð Þ
� �

· gk ∘ αð Þ

+ −1ð Þn−i −1ð Þ ∣X∣+∣yi∣ð Þ ∣yi+1∣+⋯+∣yn∣ð Þad∗ α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

· θ X , yið Þ + ad∗ Xð Þ · gi
(

+ 〠
n−1

j=1
−1ð Þn−j −1ð Þ∣xj∣ ∣xj+1∣+⋯+∣xn−1∣+∣yi∣ð Þad∗ x1,⋯, bxj ,⋯,xn−1, yi

� �
· f j

))
:

ð37Þ
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Since ½,⋯,�g satisfies (4) and ad∗ðXÞ satisfies (14), it can
be concluded that ½,⋯,�θ satisfies (4) if and only if

0 = θ α Xð Þ,Y · ynð Þ + ad∗ α Xð Þð Þ · θ Y , ynð Þ

− 〠
n

i=1
−1ð Þ∣X∣ ∣y1∣+⋯+∣yi−1∣ð Þ · θ α y1ð Þ,⋯,X · yi,⋯,α ynð Þð Þ

− 〠
n

i=1
−1ð Þ∣X∣ ∣y1∣+⋯+∣yi−1∣ð Þ · −1ð Þn−i −1ð Þ ∣X∣+∣yi∣ð Þ ∣yi+1∣+⋯+∣yn∣ð Þ

· ad∗ α y1ð Þ,⋯, dα yið Þ ,⋯,α ynð Þ
� �

· θ X , yið Þ
= δθ X ,Y , ynð Þ,

ð38Þ

i.e., θ ∈ Z1ðg, g∗Þ�0.

Definition 19. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra. A bilinear form h,ig on g is
said to be nondegenerate if

g⊥ = x ∈ g ∣ x, yh ig = 0,∀y ∈ g
n o

= 0 ; ð39Þ

invariant if

x1,⋯,xn−1, y½ �g, z
D E

g
= − −1ð Þ ∣x1∣+⋯+∣xn−1∣ð Þ∣y∣

� y, x1,⋯,xn−1, z½ �g
D E

g
,

∀x1,⋯, xn−1, y, z ∈ g ;

ð40Þ

supersymmetric if

x, yh ig = −1ð Þ xj j yj j y, xh ig ; ð41Þ

consistent if

x, yh ig = 0, ∀x, y ∈ g, xj j ≠ yj j ; ð42Þ

α is called h,ig-symmetric, if

α xð Þ, yh ig = α yð Þ, xh ig, ∀x, y ∈ g ; ð43Þ

a subspace I of g is called isotropic if I ⊆ I⊥:

In this section, we only consider consistent bilinear
forms. If g admits a nondegenerate invariant supersymmetric
bilinear form h,ig such that α is h,ig-symmetric, then we call
ðg, ½·,⋯, · �g, α, h,igÞ a metric n-ary multiplicative Hom-
Nambu-Lie superalgebra. In particular, a metric vector space
is a pair ðV , αÞ consisting of a ℤ2-graded vector space V =
V�0 ⊕ V�1 and an endomorphism α of V admitting a nonde-
generate invariant supersymmetric bilinear form h,ig such
that α is h,ig-symmetric.

Lemma 20. With notations of Theorem 18, define a bilinear
form h,iθ : ðg ⊕ g∗Þ × ðg ⊕ g∗Þ⟶K by

x + f , y + gh iθ = f yð Þ + −1ð Þ xj j yj jg xð Þ: ð44Þ

Then, hy + g, x + f iθ = ð−1Þjxjjyjhx + f , y + giθ, h,iθ is non-
degenerate and α′ is h,iθ-symmetric, where α′ðx + f Þ = αðxÞ
+ f ∘ α, x ∈ g, f ∈ g∗: Moreover, ðg ⊕ g∗, ½·,⋯, · �θ, α′, h,iθÞ is
metric if and only if the following identity holds

θ X , yð Þ zð Þ + −1ð Þ yj j zj jθ X , zð Þ yð Þ = 0: ð45Þ

Proof. If x + f is orthogonal to all elements of g ⊕ g∗, then for
arbitrary element y + g ∈ g ⊕ g∗, we have f ðyÞ = 0 and

ð−1ÞjxjjyjgðxÞ = 0, which implies that x = 0 and f = 0, so h,iθ
is nondegenerate. Moreover, we have

y + g, x + fh iθ = g xð Þ + −1ð Þ yj j xj j f yð Þ
= −1ð Þ xj j yj j f yð Þ + −1ð Þ xj j yj jg xð Þ

� �
= −1ð Þ xj j yj j x + f , y + gh iθ:

ð46Þ

In addition, one gets

α′ x + fð Þ, y + g
D E

θ
= α xð Þ + f ∘ α, y + gh iθ
= f ∘ α yð Þ + −1ð Þ xj j yj jg α xð Þð Þ,

ð47Þ

x + f , α′ y + gð Þ
D E

θ
= x + f , α yð Þ + g ∘ αh iθ
= f α yð Þ + −1ð Þ xj j yj jg ∘ α xð Þ:

ð48Þ

Hence, hα′ðx + f Þ, y + giθ = hx + f , α′ðy + gÞiθ:

Furthermore, ðg ⊕ g∗, h,iθÞ is metric if and only if

0 = X +Fð Þ · y + gð Þ, z + hh iθ
+ −1ð Þ Xj j yj j y + g, X +Fð Þ · z + hð Þh iθ

= X · y + θ X , yð Þ + ad∗ Xð Þ · g, z + hh iθ
+ 〠

n−1

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn−1∣+∣y∣ð Þad∗

� x1,⋯,bxi ,⋯,xn−1, yð Þ · f i, z + h

+
θ

*

+ −1ð Þ Xj j yj j y + g,X · z + θ X , zð Þ + ad∗ Xð Þ · hh iθ

+ −1ð Þ Xj j yj j y + g, 〠
n−1

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn−1 ∣+∣z∣ð Þad∗

� x1,⋯,bxi ,⋯,xn−1, zð Þ · f i
+

θ

*

= θ X , yð Þ zð Þ + −1ð Þ yj j zj jθ X , zð Þ yð Þ,

ð49Þ

i.e., (45) holds.
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Now, we give the definition of T∗-extensions.

Definition 21. For a 1-supercocycle θ satisfying (45) we shall
call the metric n-ary multiplicative Hom-Nambu-Lie
superalgebra ðg ⊕ g∗, ½·,⋯, · �θ, α′, h,iθÞ the T∗-extension of
ðg, ½·, ⋯ , · �, αÞ (by θ) and denote it by ðT∗

θg, ½·,⋯, · �θ, α′Þ:

Theorem 22. Let ðg, ½·, ⋯ , · �, αÞ be an n-ary multiplicative
Hom-Nambu-Lie superalgebra over a field K. Let

g 0ð Þ = g, g m+1ð Þ = g mð Þ,⋯,g mð Þ
h i

g
and g1 = g, gm+1

= gm, g,⋯,g½ �g,∀m ≥ 0:
ð50Þ

g is called solvable (nilpotent) of length k if and only if
there is a smallest integer k such that gðkÞ = 0 (gk = 0). Then

(1) If g is solvable of length k, then T∗
θg is solvable of

length k or k + 1.

(2) If g is nilpotent of length k, then T∗
θg is nilpotent of

length at least k and at most 2k − 1. In particular,
the nilpotent length of T∗

0g is k.

(3) If g can be decomposed into a direct sum of two Hom-
ideals of g, then T∗

0g can be too.

Proof. (1) Suppose that g is solvable of length k. Since
ðT∗

θgÞðmÞ/g∗ ≅ gðmÞ and gðkÞ = 0, we have ðT∗
θgÞðkÞ ⊆ g∗, which

implies ðT∗
θgÞðk+1Þ = 0 because g∗ is abelian, and it follows

that T∗
θg is solvable of length k or k + 1.

(2) Suppose that g is nilpotent of length k. Since ðT∗
θgÞm

/g∗ ≅ gm and gk = 0, we have ðT∗
θgÞk ⊆ g∗. Let f ∈ ðT∗

θgÞk ⊆
g∗, y ∈ g, X j +F j = ðX1

j +F1
j Þ ∧⋯ ∧ ðXn−1

j +Fn−1
j Þ ∈

ðT∗
θgÞ∧

n−1
, j = 1,⋯, k − 1. Then

X1 +F1ð Þ⋯ Xk−1 +Fk−1ð Þ · fð Þ yð Þ
= ad∗ X1ð Þ⋯ ad∗ Xk−1ð Þ · fð Þ yð Þ ∈ f gk

� �
= 0:

ð51Þ

This proves that ðT∗
θgÞ2k−1 = 0. Hence T∗

θg is nilpotent of
length at least k and at most 2k − 1.

Now consider the case of trivial T∗-extension T∗
0g of g.

Note that

X1 +F1ð Þ⋯ Xk−1 +Fk−1ð Þ · y + gð Þ
= ad X1ð Þ⋯ ad Xk−1ð Þ · y + ad∗ X1ð Þ⋯ ad∗ Xk−1ð Þ · g

+ 〠
k−1

j=1
〠
n−1

i=1
−1ð Þn−i −1ð Þ∣X i

j∣ ∣X i+1
j ∣+⋯+∣Xn−1

j ∣+∣y∣+∣X j+1∣+⋯+∣Xk−1∣ð Þ · ad∗

� X1ð Þ⋯ ad∗ X j−1
� �

ad∗ X1
j ,⋯,cX i

j ,⋯,Xn−1
j , ad X j+1

� �
⋯ ad

�
� Xk−1ð Þ · yÞ ·F i

j = 0:
ð52Þ

Then, ðT∗
θgÞk = 0, as required.

(3) Suppose that 0 ≠ g = I ⊕ J , where I and J are two
nonzero Hom-ideals of g. Let I∗ = f f ∈ g∗ ∣ f ðJÞ = 0g and
J∗ = f f ∈ g∗ ∣ f ðIÞ = 0g. Then, I∗(resp. J∗) can canonically
be identified with the dual space of I(resp. J) and g∗ ≅ I∗

⊕ J∗.
Note that

T∗
0 I, T∗

0g,⋯,T∗
0g½ �0 = I ⊕ I∗, g ⊕ g∗,⋯,g ⊕ g∗½ �0

= I, g,⋯,g½ �g + I∗, g,⋯,g½ �0
+ I, g,⋯,g, g∗½ �0 ⊆ I ⊕ I∗ = T∗

0 I,
ð53Þ

since

I∗, g,⋯,g½ �0 Jð Þ = I∗ J , g,⋯,g½ �g
� �

⊆ I∗ Jð Þ
= 0 and I, g,⋯,g, g∗½ �0 Jð Þ
= g∗ I, J , g,⋯,g½ �g

� �
= g∗ 0ð Þ = 0:

ð54Þ

Moreover, for x + f ∈ T∗
0 I = I ⊕ I∗, we have α′ðx + f Þ = α

ðxÞ + f ∘ α ∈ I ⊕ I∗ since f ∘ α ∈ g∗ and f ∘ αðJÞ ∈ f ðJÞ = 0,
that is, α′ðT∗

0 IÞ ⊆ T∗
0 I: Then, T

∗
0 I is a Hom-ideal of T∗

0g
and so is T∗

0 J in the same way. Hence, T∗
0g can be decom-

posed into the direct sum T∗
0 I ⊕ T∗

0 J of two nonzero Hom-
ideals of T∗

0g.

Lemma 23. Let ðg; ;½·,⋯, · �, α, h,iθÞ be a metric n-ary multipli-
cative Hom-Nambu-Lie superalgebra of even dimension m
over a field K and I be an isotropic m/2-dimensional Hom-
ideal of g. Then, I is abelian.

Proof. Since dimI+dimI⊥ =m/2 + dim I⊥ =m and I ⊆ I⊥, we
have I = I⊥.

By I is a Hom-ideal of g, one gets

g, g,⋯,g, I, I½ �g
D E

θ
= g,⋯,g, I½ �g, I
D E

θ
⊆ I, Ih iθ = 0, ð55Þ

which implies ½g,⋯,g, I, I�g ⊆ g⊥ = 0.

Definition 24. Let ðg, ½·,⋯, · �g, αÞ and ðg′, ½·, ⋯ , · �g′, βÞ be
two n-ary Hom-Nambu-Lie superalgebras. A bijective homo-
morphism ϕ : g⟶ g′ is called an isomorphism of n-ary
Hom-Nambu-Lie superalgebras.

Definition 25. Twometric n-ary multiplicative Hom-Nambu-
Lie superalgebras ðg, ½·,⋯, · �g, α, h,igÞ and ðg′, ½·,⋯, · �g′, β,
h,ig′Þ is said to be isometric if there exists an n-ary multipli-

cative Hom-Nambu-Lie superalgebra isomorphism ϕ : g

⟶ g′ such that hx, yig = hϕðxÞ, ϕðyÞig′, ∀x, y ∈ g:

Theorem 26. Let ðg, ½·,⋯, · �g, β, h,igÞ be a metric n-ary multi-
plicative Hom-Nambu-Lie superalgebra of dimension m
over a field K of characteristic not 2. Suppose that ðT∗

θg1,
½·,⋯, · �θ, α′, h,iθÞ is a T∗-extension of ðg1, ½·,⋯, · �g1 , αÞ:
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Then, ðg, ½·,⋯, · �g, β, h,igÞ is isometric to ðT∗
θg1, ½·,⋯, · �θ,

α′, h,iθÞ if and only if m is even and g contains an isotropic
Hom-ideal I of dimension m/2. In particular, g1 ≅ g/I.

Proof. (⇒) Since dimg1 = dimg∗1 , dimg = dimT∗
θg1 =m is

even. Moreover, α′ð f Þ = f ∘ α ∈ g∗1 for all f ∈ g∗1 : It is clear
that g∗1 is a Hom-ideal of dimension m/2 and by the defini-
tion of h,iθ, we have hg∗1 , g∗1 iθ = 0, i.e., g∗1 is isotropic.

(⇐) Suppose that I is an m/2-dimensional isotropic
graded ideal of g. By Lemma 23, I is abelian. Let g1 = g/
I and π : g⟶ g1 be the canonical projection. Since chK
≠ 2, we can choose a complement graded subspace g0 ⊆
g such that g = g0 ∔ I and g0 ⊆ g⊥0 . Then, g⊥0 = g0 since
dimg0 =m/2.

Denote by p0 (resp. p1) the projection g⟶ g0 (resp.
g⟶ I) and let f ∗1 denote the homogeneous linear map
I ⟶ g∗1 : z↦ f ∗1 ðzÞ, where f ∗1 ðzÞðπðxÞÞ≔ hz, xig, ∀x ∈ g, ∀
z ∈ I.

If πðxÞ = πðyÞ, then x − y ∈ I, hence hz, x − yig ∈ hz, Iig
= 0 and so hz, xig = hz, yig, which implies f ∗1 is well defined.
Moreover, f ∗1 is bijective and ∣f ∗1 ðzÞ ∣ = ∣ z ∣ for all z ∈ I.

In addition, f ∗1 has the following property:

f ∗1 x1,⋯,zk,⋯,xn½ �g
� �

π yð Þð Þ = −1ð Þn−k −1ð Þ∣zk ∣ ∣xk+1∣+⋯+∣xn∣ð Þad∗

� π x1ð Þ,⋯, dπ xkð Þ ,⋯,π xnð Þ
� �

· f ∗1 zkð Þ π yð Þð Þ,
ð56Þ

where x1,⋯, xk−1, xk+1,⋯, xn ∈ g, zk ∈ I.
Define a homogeneous n-linear map

θ : g1 ×⋯ × g1 ⟶ g∗1

π x1ð Þ,⋯,π xnð Þð Þ↦ f ∗1 p1 x1,⋯,xn½ �g
� �� �

,
ð57Þ

where x1,⋯, xn ∈ g0: Then, θ is well defined since πjg0 : g0
⟶ g0/I ≅ g/I = g1 is a linear isomorphism and θ ∈ C1

ðg1, g∗1 Þ�0.
Now, define the bracket on g1 ⊕ g∗1 by (35), then, ðg1 ⊕ g∗1

, α′Þ is a metric n-ary multiplicative Hom-Nambu-Lie superal-
gebra. Let φ be a linear map g⟶ g1 ⊕ g∗1 defined by φðx + zÞ
= πðxÞ + f ∗1 ðzÞ, ∀x + z ∈ g = g0 ∔ I: Since πjg0 and f ∗1 are linear
isomorphisms, φ is also a linear isomorphism. Note that

φ x1 + z1,⋯,xn + zn½ �g
� �
= φ x1,⋯,xn½ �g + 〠

n

k=1
x1,⋯,zk,⋯,xn½ �g

 !

= φ

 
p0 x1,⋯,xn½ �g
� �

+ p1 x1,⋯,xn½ �g
� �

+ 〠
n

k=1
x1,⋯,zk,⋯,xn½ �g

!
= π x1,⋯,xn½ �g
� �

+ f ∗1 p1 x1,⋯,xn½ �g
� �

+ 〠
n

k=1
x1,⋯,zk,⋯,xn½ �g

 !
= π x1ð Þ,⋯,π xnð Þ½ �g1 + θ π x1ð Þ,⋯,π xnð Þð Þ

+ 〠
n

k=1
−1ð Þn−k −1ð Þ∣zk ∣ ∣xk+1∣+⋯+∣xn∣ð Þad∗

� π x1ð Þ,⋯, dπ xkð Þ ,⋯,π xnð Þ
� �

· f ∗1 zkð Þ
= π x1ð Þ + f ∗1 z1ð Þ,⋯,π xnð Þ + f ∗1 znð Þ½ �θ
= φ x1 + z1ð Þ,⋯,φ xn + znð Þ½ �θ,

ð58Þ

where we use the definitions of φ and θ and (56). Moreover, φ
∘ α = α′ ∘ φ: In fact, for x + z ∈ g = g0 ∔ I, then,

φ ∘ α x + zð Þ = φ α xð Þ + α zð Þð Þ = π α xð Þð Þ + f ∗1 α zð Þð Þ
α′ ∘ φ x + zð Þ = α′ π xð Þ + f ∗1 zð Þð Þ = α π xð Þð Þ + f ∗1 zð Þ ∘ α:

ð59Þ

Moreover,

f ∗1 zð Þ ∘ α π xð Þð Þ = f ∗1 zð Þπ α xð Þð Þ = z, α xð Þh ig
= α zð Þ, xh ig = f ∗1 α zð Þð Þ π xð Þð Þ:

ð60Þ

Therefore, f ∗1 ðzÞ ∘ α = f ∗1 ðαðzÞÞ, one gets φ ∘ α = α′ ∘ φ:
Then, φ is an isomorphism of n-ary multiplicative Hom-
Nambu-Lie superalgebras, hence, g1 ⊕ g∗1 is an n-ary multiplica-
tive Hom-Nambu-Lie superalgebra. Furthermore, we have

φ x0 + zð Þ, φ x0 ′ + z′
� �D E

θ

= π x0ð Þ + f ∗1 zð Þ, π x0 ′
� �

+ f ∗1 z′
� �D E

θ

= f ∗1 zð Þ π x0 ′
� �� �

+ −1ð Þ x0j j x0′j j f ∗1 z′
� �

π x0ð Þð Þ
= z, x0 ′
D E

g
+ −1ð Þ x0j j x0′j j z′, x0

D E
g
= x0 + z, x0 ′ + z′
D E

g
,

ð61Þ

then, φ is isometric. The relation

φ x1 + z1ð Þ,⋯,φ xn + znð Þ½ �θ, φ xn+1 + zn+1ð Þ	 

θ

= φ x1 + z1,⋯,xn + zn½ �g
� �

, φ xn+1 + zn+1ð Þ
D E

θ

= x1 + z1,⋯,xn + zn½ �g, xn+1 + zn+1
D E

g

= − −1ð Þ x1j j+⋯+ xn−1j jð Þ xnj j xn + zn, x1 + z1,⋯,xn−1½
D

+ zn−1, xn+1 + zn+1�g
E
g

= − −1ð Þ x1j j+⋯+ xn−1j jð Þ xnj j φ xn + znð Þ, φ x1 + z1ð Þ,⋯,½h
� φ xn−1 + zn−1ð Þ, φ xn+1 + zn+1ð Þ�θ



θ
,

ð62Þ

implies that h,iθ on g1 ⊕ g∗1 is invariant.
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For x + f , y + g ∈ g1 ⊕ g∗1 , then, there exist x′ + z1, y′ +
z2 ∈ g0 ∔ I such that φðx′ + z1Þ = x + f and φðy′ + z2Þ = y +
g: Hence, we have

α′ x + fð Þ, y + g
D E

θ

= α′ φ x′ + z1
� �� �

, φ y′ + z2
� �D E

θ

= φ α x′ + z1
� �� �

, φ y′ + z2
� �D E

θ

= α x′ + z1
� �

, y′ + z2
D E

θ

= α y′ + z2
� �

, x′ + z1
D E

θ

= φ α y′ + z2
� �� �

, φ x′ + z1
� �D E

θ

= α′ φ y′ + z2
� �� �

, φ x′ + z1
� �D E

θ

= α′ y + gð Þ, x + f
D E

θ
:

ð63Þ

Therefore, ðg1 ⊕ g∗1 , ½·,⋯, · �θ, α′, h,iθÞ is a metric n-ary
multiplicative Hom-Nambu-Lie superalgebra. In this way,
we get a T∗-extension ðT∗

θg1, ½·,⋯, · �θ, α′, h,iθÞ of ðg1,
½·,⋯, · �g1 , αÞ and consequently, ðg, ½·,⋯, · �g, β, h,igÞ and ðT∗

θ

g1, ½·,⋯, · �θ, α′, h,iθÞ are isometric as required.

Suppose that ðg, ½·, ⋯ , · �, αÞ is an n-ary multiplicative
Hom-Nambu-Lie superalgebra and θ1, θ2 ∈ Z

1ðg, g∗Þ�0 sat-
isfying (45). T∗

θ1
g and T∗

θ2
g are said to be equivalent if

there exists an isomorphism of n-ary multiplicative
Hom-Nambu-Lie superalgebras ϕ : T∗

θ1
g⟶ T∗

θ2
g such

that ϕjg∗ = idg∗ and the induced map ϕ : T∗
θ1
g/g∗ ⟶ T∗

θ2
g

/g∗ is the identity, i.e., ϕðxÞ − x ∈ g∗. Moreover, if ϕ is also
an isometry, then, T∗

θ1
g and T∗

θ2
g are said to be isometri-

cally equivalent.

Proposition 27. Suppose that ðg, ½·, ⋯ , · �, αÞ is an n-ary
multiplicative Hom-Nambu-Lie superalgebra over a field K

of characteristic not 2 and θ1, θ2 ∈ Z
1ðg, g∗Þ�0 satisfying (45).

Then, we have

(1) ðT∗
θ1
g, ½·,⋯, · �θ1 , α′, h,iθ1Þ is equivalent to ðT∗

θ2
g,

½·,⋯, · �θ2 , α′, h,iθ2Þ if and only if θ1 − θ2 ≔ δθ′ ∈ δC0

ðg, g∗Þ�0 and θ′ðxÞα = θ′ðαðxÞÞ for all x ∈ g:Moreover,

x, yh iθ′≔
1
2

θ′ xð Þ yð Þ + −1ð Þ xj j yj jθ′ yð Þ xð Þ
� �

ð64Þ

becomes a supersymmetric invariant bilinear form on g and α
is h,iθ′-symmetric.

(2) T∗
θ1
g is isometrically equivalent to T∗

θ2
g if and only if

there is θ′ ∈ C0ðg, g∗Þ�0 such that θ1 − θ2 = δθ′ and
the bilinear form induced by θ′ in (64) vanishes

Proof. (1) Let ϕ : T∗
θ1
g⟶ T∗

θ2
g be an isomorphism of n-ary

multiplicative Hom-Nambu-Lie superalgebras satisfying
ϕjg∗ = idg∗ and ϕðxÞ − x ∈ g∗, ∀x ∈ g. Set θ′ðxÞ = ϕðxÞ − x.

Then θ′ ∈ C0ðg, g∗Þ�0 and

0 = ϕ x1 + f1,⋯,xn + f n½ �θ1
� �

− ϕ x1 + f1ð Þ,⋯,ϕ xn + f nð Þ½ �θ2
= ϕ x1,⋯,xn½ �g
� �

+ θ1 x1,⋯,xnð Þ
− x1 + θ′ x1ð Þ + f1,⋯,xn + θ′ xnð Þ + f n
h i

θ2

+ 〠
n

i=1
−1ð Þn−i −1ð Þ xij j xi+1j j+⋯+ xnj jð Þad∗ x1,⋯, bxi ,⋯,xnð Þ

· f i = θ′ x1,⋯,xn½ �g
� �

+ θ1 x1,⋯,xnð Þ − θ2 x1,⋯,xnð Þ

− 〠
n

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn∣ð Þad∗ x1,⋯,bxi ,⋯,xnð Þ

· θ′ xið Þ = θ1 x1,⋯,xnð Þ − θ2 x1,⋯,xnð Þ − δθ′ x1,⋯,xnð Þ:
ð65Þ

By α′ϕ = ϕα′, we may obtain θ′ðxÞα = θ′ðαðxÞÞ for all
x ∈ g:

For the converse, suppose that θ′ ∈ C0ðg, g∗Þ�0 sat-
isfies θ1 − θ2 = δθ′ and θ′ðxÞα = θ′ðαðxÞÞ for all x ∈ g:
Let ϕ : T∗

θ1
g⟶ T∗

θ2
g be defined by ϕðx + f Þ = x + θ′ðxÞ +

f . Then ϕjg∗ = idg∗ and ϕðxÞ − x ∈ g∗, ∀x ∈ g: Moreover, α′ϕ
= ϕα′: In fact,

α′ϕ x + fð Þ = α x + θ′ xð Þ + f
� �

= α xð Þ + θ′ xð Þα + f α

ϕα′ x + fð Þ = ϕ α xð Þ + f αð Þ = α xð Þ + θ′ α xð Þð Þ + f α:

ð66Þ

By θ′ðxÞα = θ′ðαðxÞÞ, one gets α′ϕ = ϕα′: Therefore, ϕ is
an isomorphism of n-ary multiplicative Hom-Nambu-Lie
superalgebras, that is, T∗

θ1
g is equivalent to T∗

θ2
g.

It is clear that h,iθ′ defined by (64) is supersymmetric.
Note that

X · y, zh iθ′ + −1ð Þ Xj j yj j y,X · zh iθ′
= 1
2 θ′ X · yð Þ zð Þ + −1ð Þ ∣X∣+∣y∣ð Þ∣z∣θ′ zð Þ X · yð Þ
� �

+ 1
2 −1ð Þ Xj j yj j θ′ yð Þ X · zð Þ + −1ð Þ ∣X∣+∣z∣ð Þ∣y∣θ′ X · zð Þ yð Þ

� �
= 1
2

(
θ2 X , yð Þ zð Þ − θ1 X , yð Þ zð Þ + ad∗ Xð Þθ′ yð Þ zð Þ

+ 〠
n−1

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn−1∣+∣y∣ð Þad∗
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� x1,⋯,bxi ,⋯,xn−1, yð Þ · θ′ xið Þ zð Þ
)

−
1
2 −1ð Þ yj j zj jad∗ Xð Þ · θ′ zð Þ yð Þ − 1

2 ad
∗ Xð Þ

· θ′ yð Þ zð Þ + 1
2 −1ð Þ yj j zj j

(
θ2 X , zð Þ yð Þ

− θ1 X , zð Þ yð Þ + ad∗ Xð Þθ′ zð Þ yð Þ

+ 〠
n−1

i=1
−1ð Þn−i −1ð Þ∣xi∣ ∣xi+1∣+⋯+∣xn−1∣+∣z∣ð Þad∗

� x1,⋯,bxi ,⋯,xn−1, zð Þ · θ′ xið Þ yð Þ
)

= 0,

ð67Þ

where we make use of ð63Þ = 0 and θ1, θ2 satisfying (45).
Then, h,iθ′ is invariant. In addition,

α xð Þ, yh iθ′ =
1
2 θ′ α xð Þð Þ yð Þ + −1ð Þ xj j yj jθ′ yð Þ α xð Þð Þ
� �

= 1
2 θ′ α yð Þð Þ xð Þ + −1ð Þ xj j yj jθ′ xð Þ α yð Þð Þ
� �

= α yð Þ, xh iθ′

ð68Þ

since θ′ðxÞα = θ′ðαðxÞÞ for all x ∈ g: That is, α is hx, yiθ′
-symmetric.

(2) Let the isomorphism ϕ be defined as in (1). Then for
all x + f , y + g ∈ T∗

θ1
g, we have

ϕ x + fð Þ, ϕ y + gð Þh iθ2 = x + θ′ xð Þ + f , y + θ′ yð Þ + g
D E

θ2

= θ′ xð Þ yð Þ + f yð Þ + −1ð Þ xj j yj jθ′ yð Þ xð Þ
+ −1ð Þ xj j yj jg xð Þ = 2 x, yh iθ′
+ x + f , y + gh iθ1 :

ð69Þ

Thus, ϕ is an isometry if and only if h,iθ′ = 0.

Lemma 28. Let ðV , h,iV , αÞ be a metric ℤ2-graded vector
space of dimension m over an algebraically closed field K of
characteristic not 2 and g ⊆ glðVÞ be a Lie superalgebra con-
sisting of nilpotent homogeneous endomorphisms of V such
that for each f ∈ g, the map f + : V ⟶V defined by

h f +ðvÞ, v′iV = ð−1Þj f jjvjhv, f ðv′ÞiV is contained in g, too. Sup-
pose that W is an isotropic graded subspace of V which is
stable under g and α, i.e., f ðWÞ ⊆W for all f ∈ g and αð
WÞ ⊆W, then W is contained in a maximally isotropic
graded subspace Wmax of V which is also stable under g

and α, moreover, dimWmax = ½m/2�. If m is even, then
Wmax =W⊥

max. If m is odd, then Wmax ⊂W⊥
max, dim W⊥

max
− dim Wmax = 1, and f ðW⊥

maxÞ ⊆Wmax for all f ∈ g.

Proof. The proof is by induction onm. The base stepm = 0 is
obviously true. For the inductive step, we consider the follow-
ing two cases.

Case 1.W ≠ 0 or there is a nonzero g-stable vector v ∈ V(that
is, gðvÞ ⊆Kv) such that hv, viV = 0.

Case 2. W = 0 and every nonzero g-stable vector v ∈ V sat-
isfies hv, viV ≠ 0:

In the first case, Kv is a nonzero isotropic g-stable
graded subspace, and W⊥ is also g-stable since

hw, f ðw⊥ÞiV = ð−1Þj f jjwjh f +ðwÞ,w⊥iV = 0. Now, consider
the bilinear form h,iV ′ on the factor graded space V ′ =
W⊥/W defined by hx⊥ +W, y⊥ +WiV ′≔ hx⊥, y⊥iV , then V ′
is metric. Denote by π the canonical projection W⊥ ⟶V ′
and define f ′ : V ′ ⟶V ′ by f ′ðπðw⊥ÞÞ = πð f ðw⊥ÞÞ, then f ′
is well defined since W and W⊥ are g-stable. Let g′ ≔ f f ′
∣ f ∈ gg. Then, g′ is a Lie superalgebra. For each f ∈ g, there
is a positive integer k such that f k = 0, which implies that

ð f ′Þk = 0. Hence, g′ also consists of nilpotent homogeneous
endomorphisms of V ′. Note that g′ satisfies the same condi-
tions of g. In fact, let x⊥ and y⊥ be two arbitrary elements in
W⊥. Then, by the definition of h,iV ′, we have

f ′
� �+

π x⊥
� �� �

, π y⊥
� �D E

V
′

= −1ð Þ f ′j j x⊥j j π x⊥
� �

, f ′ π y⊥
� �� �D E

V
′

= −1ð Þ fj j x⊥j j π x⊥
� �

, π f y⊥
� �� �	 


V
′

= −1ð Þ fj j x⊥j j x⊥, f y⊥
� �	 


V
= f + x⊥

� �
, y⊥

	 

V

= π f + x⊥
� �� �

, π y⊥
� �	 


V
′

= f +
� �′ π x⊥

� �� �
, π y⊥
� �D E

V
′,

ð70Þ

for arbitrary f ∈ g, which shows that ð f ′Þ+ = ð f +Þ′ ∈ g′ for
all f ∈ g.

Since dim V ′ = dim W⊥ − dim W = dim V − 2 dimW,
we can use the inductive hypothesis to get a maximally isotropic
g′-stable subspace W′max =Wmax/W in V ′ and αðW′maxÞ ⊆
W′max: Clearly, dim W′max = ½dim V ′/2� = ½ðn − 2 dim WÞ/2�
= ½n/2� − dimW. For all x⊥, y⊥ ∈Wmax, the relation hx⊥, y⊥iV
= hπðx⊥Þ, πðy⊥ÞiV ′ = 0 implies that Wmax is isotropic. Note
that dimWmax = dim W′max + dim W = ½n/2�, then, Wmax is
maximally isotropic. Moreover, for all f ∈ g and w⊥ ∈Wmax,
we have πð f ðw⊥ÞÞ = f ′ðπðw⊥ÞÞ ∈W′max, which implies f ðw⊥Þ
∈Wmax. It follows thatWmax is g-stable and αðWmaxÞ ⊆Wmax:
This proves the first assertion of the lemma in this case.

In the second case, by Engel’s Theorem of Lie superalge-
bras, there is a nonzero g-stable vector v ∈ V such that f ðvÞ
= 0 for all f ∈ g. Clearly, Kv is a nondegenerate g-stable
graded subspace of V , then V =KvêðKvÞ⊥ and ðKvÞ⊥ is also

g-stable since h f ððkvÞ⊥Þ, viV = ð−1Þj f jjvjhðkvÞ⊥, f +ðvÞiV =
ð−1Þj f jjvjhðkvÞ⊥, 0iV = 0, ∀f ∈ g. Now, if ðKvÞ⊥ = 0, then V
=Kv and gðVÞ = 0, hence g = 0 and so 0 is the maximally
isotropic g-stable subspace, then the lemma follows. If
ðKvÞ⊥ ≠ 0, then again by Engel’s Theorem of Lie
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superalgebras, there is a nonzero g-stable vector w ∈ ðKvÞ⊥
⊆V such that f ðwÞ = 0 for all f ∈ g. It follows that g vanishes
on the two-dimensional nondegenerate subspace KvêKw of
V . Without loss of generality, we can assume that hv, viV =
1 = hw,wiV . Set c = hv,wiV , then it is easy to check that the
nonzero vector v + ð−c + ffiffiffiffiffiffiffiffiffiffiffi

c2 − 1
p Þw is isotropic and g-sta-

ble. This contradicts the assumption of Case 2.
Therefore, the existence of a maximally isotropic g-stable

graded subspace Wmax containing W is proved. If m is even,
then dimWmax=dimW⊥

max =m/2; if m is odd, then
dimW⊥

max = ðm + 1Þ/2 and dimWmax = ðm − 1Þ/2. Since g′ is
nilpotent, there exists a nonzero πðw⊥Þ ∈ V ′ such that g′ðπ
ðw⊥ÞÞ = 0. Note that dimV ′=1, which implies g′ðV ′Þ = 0,
so gðW⊥

maxÞ ⊆Wmax.

Theorem 29. Let ðg, ½·,⋯, · �, α, h,igÞ be a nilpotent metric n
-ary multiplicative Hom-Nambu-Lie superalgebra of dimen-
sion m over an algebraically closed field K of characteristic
not 2. If J is an isotropic Hom-ideal of g, then g contains a
maximally Hom-ideal I of dimension ½m/2� containing J .
Moreover, if m is even, then g is isometric to some T∗-exten-
sion of g/I. If m is odd, then I⊥ is abelian and g is isometric
to a nondegenerate graded ideal of codimension 1 in some
T∗-extension of g/I.

Proof. Consider adð∧n−1gÞ = fadX ∣X ∈ ∧n−1gg. Then, ad
ð∧n−1gÞ is a Lie superalgebra. For any X ∈ ∧n−1g, adX is nil-
potent since g is nilpotent. Then, the following identity

−adX yð Þ, zh ig = −1ð Þ Xj j yj j y, adX zð Þh ig ð71Þ

implies ðadXÞ+ ≔ −adX ∈ g. By J is an isotropic graded ideal
of g, then, J is an isotropic adð∧n−1gÞ-stable graded subspace
and αðJÞ ⊆ J , by Lemma 28 so there is a maximally isotropic
adð∧n−1gÞ-stable graded subspace I of g containing J such that
αðIÞ ⊆ I and dim I = ½m/2�,I is also an isotropic graded ideal of
g: Moreover, if m is even, then, g is isometric to some T∗

-extension of g/I by Theorem 26.
If m is odd, then dim I⊥ − dim I = 1 and adð∧n−1gÞðI⊥Þ

⊆ I by Lemma 28. Note that

Z Ið Þ = x ∈ g ∣ x, I, g,⋯,g½ �g = 0
n o

= x ∈ g ∣ g, x, I, g,⋯,g½ �g
D E

g
= 0

� 

= x ∈ g ∣ I, g,⋯,g½ �g, x

D E
g
= 0

� 

= I, g,⋯,g½ �⊥g = ad ∧n−1g

� �
Ið Þ� �⊥,

ð72Þ

which implies that I⊥ ⊂ ðadð∧n−1gÞðI⊥ÞÞ⊥ = ZðI⊥Þ, hence I⊥

is abelian.
Take any nonzero element a ∉ g, we define α′ by

α′ xð Þ =
a if x = a,
α xð Þ if x ∈ g:

(
ð73Þ

Then, Ka is a 1-dimensional abelian n-ary multiplica-
tive Hom-Nambu-Lie superalgebra. Define a bilinear map
h,ia : Ka ×Ka⟶K by ha, aia = 1. Then, h,ia is a nonde-
generate supersymmetric invariant bilinear form on Ka.
Let g′ = g∔Ka. Define

x1 + k1a,⋯,xn + kna½ �g′ = x1,⋯,xn½ �g, ð74Þ

x + k1a, y + k2ah ig′ = x, yh ig + k1a, k2ah ia: ð75Þ

Then, ðg′, ½·, ⋯ , · �g′, α′, h,ig′Þ is a nilpotent metric
n-ary multiplicative Hom-Nambu-Lie superalgebra since

α′ x + að Þ, y + a
D E

g

′ = α xð Þ + α að Þ, y + ah ig′

= α xð Þ, yh ig + α að Þ, ah ia
= α yð Þ, xh ig + α að Þ, ah ia
= α′ y + að Þ, x + a
D E

g

′

ð76Þ

for all x, y ∈ g and g is a nondegenerate Hom-ideal of
codimension 1 of ðg′, α′Þ: Since I⊥ is not isotropic
and K is algebraically closed there exists z ∈ I⊥ and
hz, zig = −1: In addition, we have αðI⊥Þ ⊆ I⊥ since

hα′ðv⊥Þ, vig = hαðvÞ, v⊥ig = 0 for v ∈ I and v⊥ ∈ I⊥: Let

b = a + z and I = I ∔Kb. Then, I ′ is an ðm + 1Þ/2
-dimensional isotropic graded ideal of g′.

In fact, for all x + k1a + k1z, y + k2a + k2z ∈ I ′,

x + k1a + k1z, y + k2a + k2zh ig′
= x + k1z, y + k2zh ig + k1a, k2ah ia
= x, yh ig + x, k2zh ig + k1z, yh ig

+ k1z, k2zh ig + k1k2 = k1k2 − k1k2 = 0:

ð77Þ

In light of Theorem 26, we conclude that g′ is isometric
to some T∗-extension of g′/I ′.

Define Φ : g′⟶ g/I, x + λa↦ x − λz + I. Then

Φ x1 + λ1að Þ,⋯,Φ xn + λnað Þ½ �g/I
= x1 − λ1z + I,⋯,xn − λnz + I½ �g/I
= x1,⋯,xn½ �g + I =Φ x1,⋯,xn½ �g

� �
=Φ x1 + λ1a,⋯,xn + λna½ �g′
� �

,

ð78Þ

where we use the fact that I⊥ is abelian and adð∧n−1gÞðI⊥Þ ⊆ I.
Moreover, Φα = αΦ: In fact, for x + λa ∈ g′, we have

Φα x + λað Þ =Φ α xð Þ + λα að Þð Þ =Φ α xð Þ + λað Þ
= α xð Þ − λz + I = α xð Þ − λα zð Þ + I

= α x − λz + Ið Þ = αΦ x + λað Þ:
ð79Þ
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It’s clear thatΦ is surjective and ker Φ = I ′, so g′/I ′ ≅ g/I,
hence the theorem follows.

Now, we show that there exists an isotropic Hom-ideal in
every finite-dimensional metric n-ary multiplicative Hom-
Nambu-Lie superalgebra and investigate the nilpotent length
of g/I.

Proposition 30. Suppose that ðg, ½·,⋯, · �, α, h,igÞ is a finite-
dimensional metric n-ary multiplicative Hom-Nambu-Lie
superalgebra.

(1) For any graded subspace V ⊆ g, CðVÞ≔ fx ∈ g ∣
½x, g,⋯,g�g ⊆Vg = ½g,⋯,g, V⊥�⊥g

(2) gm = CmðgÞ⊥, where C0ðgÞ = 0, Ci+1ðgÞ = CðCiðgÞÞ
(3) If g is nilpotent of length k, then gi ⊆ Ck−iðgÞ

Proof. The relation

C Vð Þ, g,⋯,g, V⊥� �
g

D E
g
= g,⋯,g, C Vð Þ½ �g, V⊥
D E

g

⊆ V , V⊥	 

g
= 0

ð80Þ

shows that CðVÞ ⊆ ½g,⋯,g, V⊥�⊥g . Notice that

g,⋯,g, g,⋯,g, V⊥� �⊥
g

h i
g
, V⊥

� �
g

= g,⋯,g, V⊥� �⊥
g
, g,⋯,g,V⊥� �

g

D E
g
= 0,

ð81Þ

which implies ½g,⋯,g, ½g,⋯,g, V⊥�⊥g �g ⊆ ðV⊥Þ⊥ =V , i.e.,

½g,⋯,g, V⊥�⊥g ⊆ CðVÞ. Hence, (1) follows.By induction, (2)
and (3) can be proved easily.

Theorem 31. Every finite-dimensional nilpotent metric n-ary
multiplicative Hom-Nambu-Lie superalgebra ðg, ½·,⋯, · �, α,
h,igÞ over an algebraically closed field of characteristic not 2
such that αðgÞ = g is isometric to (a nondegenerate ideal of
codimension 1 of) a T∗-extension of a nilpotent n-ary multi-
plicative Hom-Nambu-Lie superalgebra whose nilpotent
length is at most a half of the nilpotent length of g.

Proof. Define J =∑∞
i=0g

i ∩ CiðgÞ. Since g is nilpotent, the sum
is finite. Proposition 30 (2) says ðgiÞ⊥ = CiðgÞ, then gi ∩ CiðgÞ
is isotropic for all i ≥ 0. Since

gi ⊇ gj ⊇ gj ∩ Cj gð Þ, if i < j, ð82Þ

we have

gj ∩ Cj gð Þ� �⊥ ⊇ gi
� �⊥ = Ci gð Þ ⊇ Ci gð Þ ∩ gi, if i < j: ð83Þ

It follows that

gi ∩ Ci gð Þ, g j ∩ Cj gð Þ	 

g
= 0,∀i, j ≥ 0: ð84Þ

Therefore, J is an isotropic graded ideal of g. Let k denote
the nilpotent length of g. Using Proposition 30 (3) we can
conclude that g½ðk+1Þ/2� ⊆ C½ðk+1Þ/2�ðgÞ. This implies that

g½ðk+1Þ/2� is contained in J . By Theorem 29, there is a maxi-
mally isotropic graded ideal I of g containing J ⊇ g½ðk+1Þ/2�. It
means that g/I has nilpotent length at most ½ðk + 1Þ/2�, and
the theorem follows.

Remark 32.Most results concerning T∗-extensions in [20, 24,
26, 27] are contained in this section as special cases.

Appendix

Proof of Theorem 33. We now check that δm+1 ∘ δm = 0: In
fact, for f ∈ Cmðg, VÞ, one gets

δm+1 ∘ δm fð Þ� �
X1,⋯,Xm+2, zð Þ

=〠
i<j

−1ð Þi −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1 ∣ð Þδmf

� α X1ð Þ,⋯, dα X ið Þ ,⋯, X i,X j

� �
α
,⋯,α Xm+2ð Þ, α zð Þ

� �
+ 〠

m+2

i=1
−1ð Þi −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣Xm+2∣ð Þδmf

� α X1ð Þ,⋯, dα X ið Þ ,⋯,α Xm+2ð Þ,X i · z
� �

+ 〠
m+2

i=1
−1ð Þi+1 −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þαm+1 X ið Þ

· δmf X1,⋯,cX i ,⋯,Xm+2, z
� �

+ −1ð Þm+1 δmf X1,⋯,Xm+1,ð Þ ·Xm+2ð Þ•ααm+1 zð Þ,
= 〠

s<t<i<j
aijst f

�
α2 X1ð Þ,⋯, dα2 X sð Þ ,⋯, α X sð Þ, α X tð Þ½ �α,⋯,

� dα2 X ið Þ ,⋯,α X i,X j

� �
α
,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
+ 〠

s<i<t<j
~aijst f
�
α2 X1ð Þ,⋯, dα2 X sð Þ ,⋯, dα2 X ið Þ ,⋯,

� α X sð Þ, α X tð Þ½ �α,⋯,α X i,X j

� �
α
,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
+ 〠

s<i<j<t
aijst f

�
α2 X1ð Þ,⋯, dα2 X sð Þ ,⋯, dα2 X ið Þ ,⋯,

� α X i,X j

� �
α
,⋯, α X sð Þ, α X tð Þ½ �α,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
− 〠

i<s<t<j
aijst f

�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 X sð Þ ,⋯,

� α X sð Þ, α X tð Þ½ �α,⋯,α X i,X j

� �
α
,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
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− 〠
i<s<j<t

~aijst f
�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 X sð Þ ,⋯,

� α X i,X j

� �
α
,⋯, α X sð Þ, α X tð Þ½ �α,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
− 〠

i<j<s<t
aijst f

�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯,α X i,X j

� �
α
,⋯,

� dα2 X sð Þ ,⋯, α X sð Þ, α X tð Þ½ �α,⋯,α2 Xm+2ð Þ, α2 zð Þ
�

+ 〠
k<i<j

~bijk f
�
α2 X1ð Þ,⋯, dα2 Xkð Þ ,⋯, dα2 X ið Þ ,⋯,

� α Xkð Þ, X i,X j

� �
α

h i
α
,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
− 〠

i<k<j
bijk f

�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 Xkð Þ ,⋯,

� α Xkð Þ, X i,X j

� �
α

h i
α
,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
− 〠

i<j<k

~bikj f
�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 X j

� �
,⋯,

� X i,X j

� �
α
· α Xkð Þ,⋯,α2 Xm+2ð Þ, α2 zð Þ

�
+ 〠

k<i<j
cijk f

�
α2 X1ð Þ,⋯, dα2 Xkð Þ ,⋯, dα2 X ið Þ ,⋯,

� α X i,X j

� �
α
,⋯,α2 Xm+2ð Þ, α Xkð Þ · α zð Þ

�
− 〠

i<k<j
~cijk f
�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 Xkð Þ ,⋯,

� α X i,X j

� �
α
,⋯,α2 Xm+2ð Þ, α Xkð Þ · α zð Þ

�
− 〠

i<j<k
cijk f

�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯,α X i,X j

� �
α
,⋯,

� dα2 Xkð Þ ,⋯,α2 Xm+2ð Þ, α Xkð Þ · α zð Þ
�

−〠
i<j

~dij f
�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 X j

� �
,⋯,

� α2 Xm+2ð Þ, X i,X j

� �
α
· α zð Þ

�
+ 〠

k<i<j
eijkα

m+1 Xkð Þ

· f
�
α X1ð Þ,⋯, dα Xkð Þ ,⋯, dα X ið Þ ,⋯, X i,X j

� �
α
,⋯,

� α Xm+2ð Þ, α zð Þ
�
− 〠

i<k<j
~eijkα

m+1 Xkð Þ · f
�
α X1ð Þ,⋯,

� dα X ið Þ ,⋯, dα Xkð Þ ,⋯, X i,X j

� �
α
,⋯,α Xm+2ð Þ, α zð Þ

�
− 〠

i<j<k
eijkα

m+1 Xkð Þ · f
�
α X1ð Þ,⋯, dα X ið Þ ,⋯, X i,X j

� �
α
,

⋯, dα Xkð Þ ,⋯,α Xm+2ð Þ, α zð Þ
�
−〠

i<j
~gijα

m X i,X j

� �
α

� �
· f α X1ð Þ,⋯, dα X ið Þ ,⋯, dα X j

� �
,⋯,α Xm+2ð Þ, α zð Þ

� �
+ 〠

i<j≤m+1
hij
�
f
�
α X1ð Þ,⋯, dα X ið Þ ,⋯, X i,X j

� �
α
,⋯,

� α Xm+1ð Þ,
�
· α Xm+2ð Þ

�
•ααm+1 zð Þ

+ 〠
m+1

k=1
−1ð Þk+m −1ð Þ∣Xk∣ ∣Xk+1 ∣+⋯+∣Xm+1∣ð Þ

· f α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,
� �

· Xk,Xm+2½ �α
� �

•ααm+1 zð Þ

+ 〠
s<t<i

csti f
�
α2 X1ð Þ,⋯, dα2 X sð Þ ,⋯,

� α Xsð Þ, α X tð Þ½ �α,⋯, dα2 X ið Þ ,⋯,α2 Xm+2ð Þ, α X i · zð Þ
�

+ 〠
s<i<t

~csti f
�
α2 X1ð Þ,⋯, dα2 X sð Þ ,⋯, dα2 X ið Þ ,⋯,

� α Xsð Þ, α X tð Þ½ �α,⋯,α2 Xm+2ð Þ, α X i · zð Þ
�

− 〠
i<s<t

csti f
�
α2 X1ð Þ,⋯, dα2 X ið Þ ,⋯, dα2 X sð Þ ,⋯,

� α Xsð Þ, α X tð Þ½ �α,⋯,α2 Xm+2ð Þ, α X i · zð Þ
�

+〠
k<i

~dik f
�
α2 X1ð Þ,⋯, dα2 Xkð Þ ,⋯, dα2 X ið Þ ,⋯,

� α2 Xm+2ð Þ, α Xkð Þ · X i · zð Þ
�
−〠

i<k
dik f

�
α2 X1ð Þ,⋯,

� dα2 X ið Þ ,⋯, dα2 Xkð Þ ,⋯,α2 Xm+2ð Þ, α Xkð Þ · X i · zð Þ
�

+〠
k<i

pkiα
m+1 Xkð Þ · f

�
α X1ð Þ,⋯, dα Xkð Þ ,⋯, dα X ið Þ ,⋯,

� α Xm+2ð Þ,X i · z
�
−〠

i<k
~pkiα

m+1 Xkð Þ · f
�
α X1ð Þ,⋯,

� dα X ið Þ ,⋯, dα Xkð Þ ,⋯,α Xm+2ð Þ,X i · z
�
+ 〠

m+1

i=1
−1ð Þi+m

� −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣Xm+2∣ð Þ· f α X1ð Þ,⋯,α X ið Þ∧,⋯,α Xm+1ð Þ,ð Þ·α Xm+2ð Þð Þ•ααm X i ·zð Þ

+ f α X1ð Þ,⋯,α Xmð Þ,ð Þ · α Xm+1ð Þð Þ•ααm Xm+2 · zð Þ
+ 〠

s<t<i
estiα

m+1 X ið Þ · f
�
α X1ð Þ,⋯, dα X sð Þ ,⋯,

� X s,X t½ �α,⋯, dα X ið Þ ,⋯,α Xm+2ð Þ, α zð Þ
�

+ 〠
s<i<t

~estiα
m+1 X ið Þ · f

�
α X1ð Þ,⋯, dα X sð Þ ,⋯, dα X ið Þ ,⋯,

� X s,X t½ �α⋯,α Xm+2ð Þ, α zð Þ
�
− 〠

i<s<t
estiα

m+1 X ið Þ

· f
�
α X1ð Þ,⋯, dα X ið Þ ,⋯, dα X sð Þ ,⋯, X s,X t½ �α⋯,

� α Xm+2ð Þ, α zð Þ
�
+〠

k<i
~pikα

m+1 X ið Þ · f
�
α X1ð Þ,⋯,

� dα Xkð Þ ,⋯, dα X ið Þ ,⋯,α Xm+2ð Þ,Xk · z
�

−〠
i<k

pikα
m+1 X ið Þ · f

�
α X1ð Þ,⋯, dα X ið Þ ,⋯, dα Xkð Þ ,⋯,

� α Xm+2ð Þ,Xk · z
�
+〠

k<i
~gkiα

m+1 X ið Þ ·
�
αm Xkð Þ

· f X1,⋯,cXk ,⋯,cX i ,⋯,Xm+2, z
� ��

−〠
i<k

gkiα
m+1 X ið Þ

· αm Xkð Þ · f X1,⋯,cX i ,⋯,cXk ,⋯,Xm+2, z
� �� �

− 〠
m+1

i=1
−1ð Þi+m −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þαm+1 X ið Þ

· f X1,⋯,cX i ,⋯,Xm+1,
� �

·Xm+2
� �

•ααm zð Þ
� �
− −1ð Þ∣Xm+2∣ ∣f ∣+∣X1∣+⋯+∣Xm+1 ∣ð Þαm+1 Xm+2ð Þ
· f X1,⋯,Xm,ð Þ ·Xm+1ð Þ•ααm zð Þð Þ
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− 〠
s<t≤m+1

hst
�
f
�
α X1ð Þ,⋯, dα X sð Þ ,⋯, X s,X t½ �α,⋯,

� α Xm+1ð Þ,
�
· α Xm+2ð Þ

�
•ααm+1 zð Þ

− 〠
n−1

i=1
〠
m+1

k=1
−1ð Þm+k −1ð Þ ∣f ∣+∣X1∣+⋯+∣Xm+1∣ð Þ ∣X1

m+2∣+⋯+∣X i−1
m+2∣ð Þ

� −1ð Þ∣Xk∣ ∣Xk+1∣+⋯+∣Xm+1∣ð Þ ·
h
αm+1 X1

m+2
� �

,⋯,f

�
�
α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,Xk ·X i

m+2

�
,⋯,

� αm+1 Xn−1
m+2

� �
, αm+1 zð Þ

i
+ 〠

n−1

i=1
〠
m+1

k=1

� −1ð Þm+k −1ð Þ ∣f ∣+∣X1∣+⋯+∣Xm+1∣ð Þ ∣X1
m+2∣+⋯+∣X i−1

m+2∣ð Þ

� −1ð Þ∣Xk∣ ∣f ∣+∣X1∣+⋯+∣Xk−1∣ð Þ ·
h
αm+1 X1

m+2
� �

,⋯,αm Xkð Þ · f

� X1,⋯,cXk ,⋯,Xm+1,X i
m+2

� �
,⋯,αm+1 Xn−1

m+2
� �

, αm+1 zð Þ
i

− 〠
n−1

i=1
−1ð Þ ∣f ∣+∣X1∣+⋯+∣Xm+1∣ð Þ ∣X1

m+2∣+⋯+∣X i−1
m+2∣ð Þ

·
�
αm+1 X1

m+2
� �

,⋯, f X1,⋯,Xm,ð Þ ·Xm+1ð Þ•ααm
� X i

m+2
� �

,⋯,αm+1 Xn−1
m+2

� �
, αm+1 zð Þ�,

ðA:1Þ
where

aijst = −1ð Þs+i −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ −1ð Þ∣Xs∣ ∣X s+1∣+⋯+∣X t−1∣ð Þ, ~aijst

= −1ð Þ X ij j X sj jaijst ;

bijk = −1ð Þi+k −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ −1ð Þ∣Xk∣ ∣Xk+1∣+⋯+∣X j−1∣ð Þ, ~bijk

= −1ð Þ X ij j Xkj jbijk ;

cijk = −1ð Þi+k −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ −1ð Þ∣Xk∣ ∣Xk+1∣+⋯+∣Xm+2∣ð Þ, ~cijk

= −1ð Þ X ij j Xkj jcijk ;

dij = −1ð Þi+j −1ð Þ∣X i ∣ ∣X i+1∣+⋯+∣Xm+2∣ð Þ −1ð Þ∣X j∣ ∣X j+1∣+⋯+∣Xm+2∣ð Þ, ~dij
= −1ð Þ X ij j X jj jdij ;

eijk = −1ð Þi+k+1 −1ð Þ∣X i ∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ −1ð Þ∣Xk∣ ∣f ∣+∣X1∣+⋯+∣Xk−1∣ð Þ, ~eijk

= −1ð Þ X ij j Xkj jeijk ;

gij = −1ð Þi+j+1 −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þ −1ð Þ∣X j∣ ∣f ∣+∣X1∣+⋯+∣X j−1∣ð Þ, ~gij
= −1ð Þ X ij j X jj jgij ;

hij = −1ð Þi+m −1ð Þ∣X i∣ ∣X i+1∣+⋯+∣X j−1∣ð Þ, ~hij = −1ð Þ X ij j X jj jhij ;
pki = −1ð Þi+k+1 −1ð Þ∣X i ∣ ∣X i+1∣+⋯+∣Xm+2∣ð Þ −1ð Þ∣Xk∣ ∣f ∣+∣X1∣+⋯+∣Xk−1∣ð Þ, ~pki

= −1ð Þ X ij j Xkj jpki:

ðA:2Þ

It can be verified that the sum of terms labeled with the
same letter vanishes. For example, ðl1Þ + ðl2Þ + ðl3Þ + ðl4Þ +
ðl5Þ = 0, in fact,

l1ð Þ + l2ð Þ + l3ð Þ + l4ð Þ + l5ð Þ = 〠
m+1

k=1
−1ð Þk+m −1ð Þ Xkj j Xk+1j j+⋯+ Xm+1j jð Þ

· f α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,
� �

· Xk ,Xm+2½ �α
� �

•ααm+1 zð Þ

+ 〠
m+1

i=1
−1ð Þi+m −1ð Þ X ij j X i+1j j+⋯+ Xm+2j jð Þ · f α X1ð Þ,⋯,ðð

� dα X ið Þ ,⋯, α Xm+1ð Þ,Þ · α Xm+2ð ÞÞ•ααm X i · zð Þ

− 〠
m+1

i=1
−1ð Þi+m −1ð Þ X ij j fj j+ X1j j+⋯+ X i−1j jð Þ · αm+1 X ið Þ

· f X1,⋯, cX i ,⋯,Xm+1,
� �

·Xm+2
� �

•ααm zð Þ
� �

− 〠
n−1

i=1
〠
m+1

k=1
−1ð Þm+k −1ð Þ fj j+ X1j j+⋯+ Xm+1j jð Þ X1

m+2j j+⋯+ X i−1
m+2j jð Þ

� −1ð Þ Xkj j Xk+1j j+⋯+ Xm+1j jð Þ · αm+1 X1
m+2

� �
,⋯, f α X1ð Þ,⋯,ð�

� dα Xkð Þ ,⋯, α Xm+1ð Þ,Xk ·X i
m+2

�
,⋯, αm+1 Xn−1

m+2
� �

, αm+1 zð Þ�

+ 〠
n−1

i=1
〠
m+1

k=1
−1ð Þm+k −1ð Þ fj j+ X1j j+⋯+ Xm+1j jð Þ X1

m+2j j+⋯+ X i−1
m+2j jð Þ

� −1ð Þ Xkj j fj j+ X1j j+⋯+ Xk−1j jð Þ · αm+1 X1
m+2

� �
,⋯, αm Xkð Þ · f�

� X1,⋯, cXk ,⋯,Xm+1,X i
m+2

� �
,⋯, αm+1 Xn−1

m+2
� �

, αm+1 zð Þ�
ðA:3Þ

and

l1ð Þ = 〠
m+1

k=1
−1ð Þk+m −1ð Þ∣Xk∣ ∣Xk+1∣+⋯+∣Xm+1∣ð Þ

� 〠
n−1

i=1
−1ð Þ∣Xk∣ ∣X1

m+2∣+⋯+∣X i−1
m+2∣ð Þ

· f α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,
� ��

· α X1
m+2

� �
∧⋯∧Xk ·X i

m+2∧⋯∧α Xn−1
m+2

� �� �
•ααm+1 zð Þ

= 〠
m+1

k=1
−1ð Þk+m −1ð Þ∣Xk∣ ∣Xk+1∣+⋯+∣Xm+1∣ð Þ

� 〠
n−1

i=1
−1ð Þ∣Xk∣ ∣X1

m+2∣+⋯+∣X i−1
m+2∣ð Þ

�
(
〠
j<i

−1ð Þ ∣f ∣+∣X1∣+⋯+∣Xk∧∣+⋯+∣Xm+1∣ð Þ ∣X1
m+2∣+⋯+∣X j−1

m+2∣ð Þ

·
h
αm+1 X1

m+2
� �

,⋯,f
�
α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,

� α X
j
m+2

� ��
,⋯,αm Xk ·X i

m+2
� �

,⋯,αm+1 Xn−1
m+2

� �
, αm+1 zð Þ

i
+〠

j>i
−1ð Þ ∣f ∣+∣X1∣+⋯+∣Xk∧∣+⋯+∣Xm+1∣ð Þ ∣X1

m+2∣+⋯+∣X j−1
m+2∣+∣Xk∣ð Þ
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·
h
αm+1 X1

m+2
� �

,⋯,αm Xk ·X i
m+2

� �
,⋯,f

�
α X1ð Þ,⋯,

� dα Xkð Þ ,⋯,α Xm+1ð Þ, α X
j
m+2

� ��
,⋯,αm+1 Xn−1

m+2
� �

, αm+1 zð Þ
i

+ −1ð Þ ∣f ∣+∣X1∣+⋯+∣Xk∧∣+⋯+∣Xm+1∣ð Þ ∣X1
m+2∣+⋯+∣X i−1

m+2∣ð Þ

·
h
αm+1 X1

m+2
� �

,⋯,f
�
α X1ð Þ,⋯, dα Xkð Þ ,⋯,α Xm+1ð Þ,Xk

·X i
m+2

�
,⋯,αm+1 Xn−1

m+2
� �

, αm+1 zð Þ
i)

:

ðA:4Þ

Moreover, we have

l3ð Þ = − 〠
m+1

i=1
−1ð Þi+m −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þ

· 〠
n−1

j=1
−1ð Þ ∣f ∣+∣X1∣+⋯+∣X i∧∣+⋯+∣Xm+1 ∣ð Þ ∣X1

m+2∣+⋯+∣X j−1
m+2∣ð Þαm+1 X ið Þ

·
h
αm X1

m+2
� �

,⋯,f X1,⋯,cX i ,⋯,Xm+1,X
j
m+2

� �
,⋯,αm

� Xn−1
m+2

� �
, αm zð Þ

i
= − 〠

m+1

i=1
−1ð Þi+m −1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i−1∣ð Þ

· 〠
n−1

j=1
−1ð Þ ∣f ∣+∣X1∣+⋯+∣X i∧∣+⋯+∣Xm+1 ∣ð Þ ∣X1

m+2∣+⋯+∣X j−1
m+2∣ð Þ

·
(
〠
l<j

−1ð Þ∣X i∣ ∣X1
m+2∣+⋯+∣X l−1

m+2∣ð Þhαm+1 X1
m+2

� �
,⋯,αm X ið Þ · αm

� X l
m+2

� �
,⋯,α ∘ f X1,⋯,cX i ,⋯,Xm+1,X

j
m+2

� �
,⋯,αm+1 Xn−1

m+2
� �

,

� αm+1 zð Þ
i
+〠

l>j
−1ð Þ∣X i∣ ∣f ∣+∣X1∣+⋯+∣X i∧∣+⋯+∣Xm+1 ∣+∣X1

m+2 ∣+⋯+∣X l−1
m+2∣ð Þ

·
h
αm+1 X1

m+2
� �

,⋯,α ∘ f X1,⋯,cX i ,⋯,Xm+1,X
j
m+2

� �
,⋯,αm

� X ið Þ · αm X l
m+2

� �
,⋯,αm+1 Xn−1

m+2
� �

, αm+1 zð Þ
i

+ −1ð Þ∣X i∣ ∣X1
m+2∣+⋯+∣X j−1

m+2∣ð Þ ·
h
αm+1 X1

m+2
� �

,⋯,αm X ið Þ · f

� X1,⋯,cX i ,⋯,Xm+1,X
j
m+2

� �
,⋯,αm+1 Xn−1

m+2
� �

, αm+1 zð Þ
i

+ −1ð Þ∣X i∣ ∣Xm+2 ∣+∣f ∣+∣X1∣+⋯+∣X i∧∣+⋯+∣Xm+1∣ð Þ

·
h
αm+1 X1

m+2
� �

,⋯,α ∘ f X1,⋯,cX i ,⋯,Xm+1,X
j
m+2

� �
,⋯,αm+1

� Xn−1
m+2

� �
, αm X ið Þ · αm zð Þ

i)
:

ðA:5Þ

Since ðl4Þ + ðl1cÞ = 0, ðl2Þ + ðl3dÞ = 0, ðl1aÞ + ðl3bÞ = 0,
ðl1bÞ + ðl3aÞ = 0, one gets ðl1Þ + ðl2Þ + ðl3Þ + ðl4Þ + ðl5Þ =
0: Then δm+1 ∘ δm = 0: Therefore, the proof of Theorem
12 is completed.
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