
Research Article
Existence of Solution of Space–Time Fractional Diffusion-Wave 
Equation in Weighted Sobolev Space

Kangqun Zhang 

Department of Mathematics and Physics, Nanjing Institute of Technology, Nanjing 211167, China

Correspondence should be addressed to Kangqun Zhang; chkqnju@hotmail.com

Received 2 July 2019; Accepted 20 August 2019; Published 7 February 2020

Academic Editor: Zine El Abiddine Fellah

Copyright © 2020 Kangqun Zhang. �is is an open access article distributed under the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we consider Cauchy problem of space-time fractional diffusion-wave equation. Applying Laplace transform and Fourier 
transform, we establish the existence of solution in terms of Mittag-Leffler function and prove its uniqueness in weighted Sobolev 
space by use of Mikhlin multiplier theorem. �e estimate of solution also shows the connections between the loss of regularity and 
the order of fractional derivatives in space or in time.

1. Introduction

In this paper, we focus space-time fractional diffusion-wave 
equation

where �퐶0 (�휕/�휕�푡)�훼1 stands for the Caputo fractional partial deriv-
ative operator of order �1, �훼1 ∈ (0, 1) ∪ (1, 2), (−Δ)�훼2/2 is the 
fractional Laplace differential operator of order �2, �훼2 ∈ (1, 2).

Fractional derivatives describe the property of memory 
and heredity of many materials, which is the major advantage 
compared with integer order derivatives. Fractional diffu-
sion-wave equations are obtained from the classic diffusion 
equation and wave equation by replacing the integral order 
derivative terms by fractional derivatives of order 
�훼 ∈ (0, 1) ∪ (1, 2). It has attracted considerable attention 
recently for various reasons, which include modeling of anom-
alous diffusive and subdiffusive systems, description of frac-
tional random walk, wave propagation phenomenon, 
multiphase fluid flow problems, and electromagnetic theory. 
Nigmatullin [1, 2] pointed out that many of the universal elec-
tromagnetic, acoustic, and mechanical responses can be mod-
eled accurately using the fractional diffusion-wave equations. 
Schneider and Wyss [3] presented the diffusion and wave 
equations in terms of integro-differential equations, and 
obtained the associated Greens functions in closed form in 
terms of the Foxs functions. Mbodje and Montseny [4] 

investigated the existence, uniqueness, and asymptotic decay 
of the wave equation with fractional derivative feedback, and 
showed that the method developed can easily be adapted to a 
wide class of problems involving fractional derivative or inte-
gral operators of the time variable. In fact, more numerical 
algorithms present an efficient method in solving the related 
problem [5–8]. �e development of analytical methods is 
delayed since there are no analytic solutions in many cases 
[9–12]. Additional background, survey, and more applications 
of this field in science, engineering, and mathematics can be 
found in [13–20] and the references therein.

�e fractional wave equation has been researched in all 
probability for the first time in [21] with the same order in 
space and in time, i.e., �1 = �2, where an explicit formula for 
the fundamental solution of this equation was established. 
�en this feature was shown to be a decisive factor for inher-
iting some crucial characteristics of the wave equation like a 
constant propagation velocity of both the maximum of its 
fundamental solution and its gravity and mass centers in [22]. 
Moreover, the first, the second, and the Smith centrovelocities 
of the damped waves described by the fractional wave equation 
are constant and depend just on the equation order.

While   the fractional wave equation contains fractional 
derivatives of the same order in space and in time, we establish 
existence of solution of Cauchy problem to fractional wave 
equation (1) with different order in space and in time in 
weighted Sobolev spaces. �e powers of the weighted show 
the connections between the loss of the regularity and the 

(1)�퐶
0( �휕

�휕�푡)
�훼1�푢 + (−Δ)�훼2/2�푢 = �푓(�푡, �푥), in (0, +∞) × R

�푛,
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orders of the fractional derivatives in space or in time. �e 
main tools are Laplace transform, Fourier transform, Mikhlin 
multiplier theorem, and Mittag-Leffler functions. Applying 
the same technique, we also obtain the existence of solution 
of fractional diffusion equation.

�is paper is organized as follows: In Section 2, the related 
fractional calculus definition and Laplace transform are intro-
duced, the explicit solution of fractional differential equation 
is given by use of Mittag-Leffler functions. In Section 3, based 
on the main result given in Section 2, we show the existence 
and uniqueness of solution of space-time fractional diffu-
sion-wave equation.

2. Laplace Transform and Fractional Calculus 
In this section, we recall some necessary definitions and prop-
erties of fractional calculus, then use Laplace transform to 
consider initial value problem of the related fractional differ-
ential equation.

Definition 1 ([19]).  �e Riemann-Liouville fractional integral 
of order � of a function �푓 : (0,∞) → R is defined by

Definition 2 ([19]).  �e Riemann-Liouville fractional deriva-
tive of order �훼 ∈ (0, 1) ∪ (1, 2) of a function �푓 : (0,∞) → R is 
defined by

Definition 3 ([19]).  �e Caputo fractional derivative of order 
� of a function �푓 : (0,∞) → R is defined by

�e Mittag-Leffler function �퐸�훼,�훽(�푧) [23] is represented by

where R(�훼) and R(�) denotes the real part of the complex 
numbers � and �, respectively.

Lemma 1 ([23]).   

Lemma 2 ([23]).  Let �훼 < 2, �훽 ∈ R and (�휋�훼/2) < �휇 < min{�휋, �휋�훼}.  
�en we have the following estimate

(2)0�퐼�훼�푡 �푓(�푡) = 1
Γ(�훼)∫

�푡

0
(�푡 − �푠)�훼−1�푓(�푠)�푑�푠, R�훼 > 0.

(3)0�퐷�훼
�푡 �푓(�푡) = �푑⌈�훼⌉

�푑�푡⌈�훼⌉ 0�퐼
⌈�훼⌉−�훼
�푡 (�푡).

(4)

�퐶
0�퐷�훼

�푡 �푓(�푡) = { 0�퐷�훼
�푡 �푓(�푡)(�푓(�푡) − �푓(0+)), �훼 ∈ (0, 1)

0�퐷�훼
�푡 �푓(�푡)(�푓(�푡) − �푓(0+) − �푡�푓�耠(0+)), �훼 ∈ (1, 2).

(5)�퐸�훼,�훽(�푧) =
∞∑
�푘=0

�푧�푘
Γ(�훼�푘 + �훽) , R(�훼) > 0,R(�훽) > 0,

(6)
�푑
�푑�푦�퐸�훼,�훽(�푦) = �퐸�훼,�훽−1(�푦) − (�훽 − 1)�퐸�훼,�훽(�푦)

�훼�푦 ,

(7)

�푑�푚

�푑�푦�푚 (�푦�훽−1�퐸�훼,�훽(�푦�훼)) = �푦�훽−�푚−1�퐸�훼,�훽−�푚(�푦�훼), R(�훽 − �푚) > 0, �푚 ∈ N.

where � denotes a positive constant.

Lemma 3 ([24]).  For any �훼 > 0, �훽 > 0 and �휆 ∈ C, there is

with R�푠 > ‖�휆‖1/�훼, where R� denotes the real part of the complex 
number �, the Laplace transform of a function �푓(�푡) is defined 
by

�e initial value problem of fractional differential equation 
for �훼 ∈ (0, 1),

where �퐶0��훼
�푡  stands for a Caputo fractional derivative operator, 

�0 is a constant number.

Theorem 1 ([24]).  Consider the problem (11), then there is a 
explicit solution which is given in the integral form

�e initial value problem of fractional differential equation 
for �훼 ∈ (1, 2),

where �퐶0��훼
�푡  denotes a Caputo fractional derivative operator, ��

(�푖 = 0, 1) is a constant number.

Theorem 2.  Consider the problem (13), then there is a explicit 
solution which is given in the integral form

Proof.  According to Definition 1–3, taking Laplace transform 
with respect to � in both sides of Eq. (13), we obtain

�e inverse Laplace transform using Lemma 3 yields

(8)
�儨�儨�儨�儨�儨�퐸�훼,�훽(�푦)�儨�儨�儨�儨�儨 ≤ �푀

1 + �儨�儨�儨�儨�푦�儨�儨�儨�儨 , �휇 ≤ �儨�儨�儨�儨arg�푦�儨�儨�儨�儨 ≤ �휋.

(9)L[�푡�훽−1�퐸�훼,�훽(�휆�푡�훼)] = �푠�훼−�훽(�푠�훼 − �휆)−1,

(10)L[�푓](�푠) = ∫∞

0
�푒−�푠�푡�푓(�푡)�푑�푡.

(11){ �퐶
0�퐷�훼

�푡 �푢(�푡) = �휆�푢(�푡) + �푓(�푡), �푡 > 0,
�푢(0) = �푢0,

(12)�푢(�푡) = �푢0�퐸�훼,1(�휆�푡�훼) + ∫�푡

0
(�푡 − �푠)�훼−1�퐸�훼,�훼(�휆(�푡 − �푠)�훼)�푓(�푠)�푑�푠.

(13)
{
{
{

�퐶
0�퐷�훼

�푡 �푢(�푡) = �휆�푢(�푡) + �푓(�푡), �푡 > 0,
�푢(0) = �푢0,�푢�耠(0) = �푢1,

(14)
�푢(�푡) = �푢0�퐸�훼,1(�휆�푡�훼) + �푢1�푡�퐸�훼,2(�휆�푡�훼)

+ ∫�푡

0
(�푡 − �푠)�훼−1�퐸�훼,�훼(�휆(�푡 − �푠)�훼)�푓(�푠)�푑�푠.

(15)
L[�푢](�푠) = �푠�훼−1(�푠�훼 − �휆)−1�푢0 + �푠�훼−2(�푠�훼 − �휆)−1�푢1 + (�푠�훼 − �휆)−1L[�푓(�푡)].

(16)L
−1[�푠�훼−1(�푠�훼 − �휆)−1] = �퐸�훼,1(�휆�푡�훼)

(17)L
−1[�푠�훼−2(�푠�훼 − �휆)−1] = �푡�퐸�훼,2(�휆�푡�훼),
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�en substitute (15–18) into (13) which yields �eorem 2.� ☐

3. Fourier Transform and the Main Result 

In this section, based on the results of �eorem 2, Mikhlin 
multiplier theorem, Mattag-Leffler function and Fourier 
transf orm, we establish the existence and uniqueness 
of solution of Cauchy problem of space-time fractional 
diffusion-wave equation in weighted Sobolev space.

Definition 4 ([25]).  �e fourier transform of fractional 
laplace operator (−Δ)� is defined by

where � satisfies (−Δ)��푓 ∈ �퐿�(R�), �푝 ∈ [1,+∞).
For more details of Fourier transformation, one can refer 

to [26, 27].
First, we consider the fractional wave equation, i.e., the 

case �훼1 ∈ (1, 2). Taking Fourier transformation of space vari-
ables � on Eq. (1) with initial data �푢(0, �푥) = �휑1(�푥), (�휕/�휕�푡)�푢(0, �푥) = �휑2(�푥) yields

where �̂푢(�푡, �휉) = F[(�푢(�푡, ⋅) ].
Set � = −�儨�儨�儨�儨��儨�儨�儨�儨�2 in (13), according to �eorem 2, the solution 

of (20) is given by
  

In terms of (2) in Lemma 1 and Lemma 2, by mathematical 
induction, we conclude.

Lemma 4.  For each �푘 ∈ Z
+ and any R(�훼) > 0, �훽 ∈ R, 

0 ≤ �훿 ≤ 1, there exists a positive constant �� such that

Proof.  For �푘 = 1, Lemmas 1 (6) and 2.5 imply (22) holding.

For �푘 = 2, �푦2(�푑2/�푑�푦2) = (�푦(�푑/�푑�푦))2 − �푦(�푑/�푑�푦). �en it is 
enough to show (�푦(�푑/�푑�푦))2(�푦�훿�퐸�훼,�훽(�푦))  is bounded since 
�푘 = 1 holds. By a direct computation in terms of (6) that

(18)

L
−1[(�푠�훼 − �휆)−1L[�푓(�푡)]]
= L

−1[(�푠�훼 − �휆)−1] ∗ �푓(�푡)
= �푡�훼−1�퐸�훼,�훼(�휆�푡�훼) ∗ �푓(�푡)

= ∫
�푡

0
(�푡 − �푠)�훼−1�퐸�훼,�훼(�휆(�푡 − �푠)�훼�푓(�푠)�푑�푠 .

(19)F[(−Δ)�훼�푓](�휉) = �儨�儨�儨�儨�휉�儨�儨�儨�儨2�훼F[�푓](�휉),

(20)

{
{
{

�퐶
0 ( �휕

�휕�푡)
�훼1 �̂푢(�푡, �휉) = −�儨�儨�儨�儨�휉

�儨�儨�儨�儨
�훼2 �̂푢(�푡, �휉) +�̂푓(�푡, �휉), in (0, +∞) × R

�푛,
�̂푢(0, �휉) = �̂휑1(�휉),
�휕
�휕�푡 �̂푢(0, �휉) = �̂휑2(�휉),

(21)
�̂푢(�푡, �휉) = �̂휑1(�휉)�퐸�훼1 ,1(−

�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2�푡�훼1) + �̂휑2(�휉)�푡�퐸�훼1 ,2(−

�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2�푡�훼1)

+ ∫
�푡

0
(�푡 − �푠)�훼1−1�퐸�훼1 ,�훼1

(−�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2(�푡 − �푠)�훼1)�̂푓(�푠, �휉)�푑�푠.

(22)
�儨�儨�儨�儨�푦�儨�儨�儨�儨�푘

�儨�儨�儨�儨�儨�儨�儨�儨�儨
�푑�푘

�푑�푦�푘 (�푦�훿�퐸�훼,�훽(�푦))
�儨�儨�儨�儨�儨�儨�儨�儨�儨
≤ �퐶�푘.

(23)

(�푦 �푑
�푑�푦)

2
(�푦�훿�퐸�훼,�훽(�푦)) =

1
�훼�푦

�푑
�푑�푦(�푦

�훿(�퐸�훼,�훽−1(�푦) − (�훽 − 1)�퐸�훼,�훽(�푦)))

+ �훿�푦 �푑
�푑�푦(�푦

�훿�퐸�훼,�훽(�푦)).

�is also reduces to the case for �푘 = 1. Hence, (22) holds for 
�푘 = 2.

In the following we conclude that (�푦(�푑/�푑�푦))�푘(�푦�훿�퐸�훼,�훽(�푦)) 
is bounded for any � ∈ Z

+ by mathematical induction. Assume 
for �푘 − 1, there exist

where �� are constants. �en by use of (25), we have
  

It follows (24) and (26) that (22) is holding.� ☐

Corollary 1.  For each �훾 ∈ �푍+ and any �훼 > 0, �훽 ∈ R, 0 ≤ �훿 ≤ 1, 
there exists a positive constant �� such that

where �푦 = −|�휉|�2�푡�1.
Next, we choose the version of Mihlin’s multiplier theorem 

given in [28] as our Lemma.

Lemma 5.  Let �푎(�휉) be the symbol of a singular integral 
operator � in R�. Suppose that �푎(�휉) ∈ �퐶∞(R�푛\{0}), and there 
is some positive constant � for all �휉 ̸= 0 such that

�en, � is a bounded linear operator from ��(R�) into itself for 
1 < �푝 < +∞, and its operator norm depends only on �, �, and 
�.

Theorem 3.  Set 1 < �푝 < +∞, �훼� ∈ (1, 2), �푖 = 1, 2. Suppose 
�휑� ∈ �퐿�(R�), �푖 = 1, 2, �푓 ∈ �퐶∞

0 ((0, +∞), �퐿�푝(R�푛)), then there is 
a unique solution � of Cauchy problem of space-time fractional 
wave equation which is represented by

and satisfies

(24)�儨�儨�儨�儨�푦�儨�儨�儨�儨�푘−1
�儨�儨�儨�儨�儨�儨�儨�儨�儨
�푑�푘−1

�푑�푦�푘−1 (�푦�훿�퐸�훼,�훽(�푦))
�儨�儨�儨�儨�儨�儨�儨�儨�儨
≤ �퐶�푘−1,

(25)
�푦�푘−1 �푑�푘−1

�푑�푦�푘−1 = �푘−1∑
�푖=1

�푏�푖(�푦 �푑
�푑�푦)

�푖
,

(26)

�푦�푘( �푑
�푑�푦)

�푘
(�푦�훿�퐸�훼,�훽(�푦)) = �푦 �푑

�푑�푦(
�푘−1
∑
�푖=1

�푏�푖(�푦
�푑
�푑�푦)

�푖
(�푦�훿�퐸�훼,�훽(�푦)))

=
�푘
∑
�푖=1

�푑�푖(�푦
�푑
�푑�푦)

�푖
(�푦�훿�퐸�훼,�훽(�푦)).

(27)
�儨�儨�儨�儨�儨�儨�儨�儨
�儨�儨�儨�儨�휉�儨�儨�儨�儨�훾 �휕�훾

�휕�휉�훾 (�푦
�훿�퐸�훼,�훽(�푦))

�儨�儨�儨�儨�儨�儨�儨�儨
≤ �퐶�훾,

(28)
�儨�儨�儨�儨�儨�儨�儨�儨
�儨�儨�儨�儨�휉�儨�儨�儨�儨�훾 �휕�훾

�휕�휉�훾(
�휕
�휕�푡(�푦

�훿�퐸�훼,�훽(�푦)))
�儨�儨�儨�儨�儨�儨�儨�儨
≤ �퐶�훾,

(29)
�儨�儨�儨�儨�휉�儨�儨�儨�儨|�|

�儨�儨�儨�儨�儨�儨�儨�儨
�휕��푎(�휉)
�휕�휉�

�儨�儨�儨�儨�儨�儨�儨�儨 ≤ �푀, 0 ≤ �儨�儨�儨�儨�훾�儨�儨�儨�儨 ≤ 1 + [�푛]
2 .

(30)
�푢(�푡, �푥) = �휑1(�푥) ∗ F

−1[�퐸�훼1 ,1(−
�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2�푡�훼1)] + �휑2(�푥)

∗ F
−1(�푡�퐸�훼1 ,2(−

�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2�푡�훼1))

+ ∫
�푡

0
(�푡 − �푠)�훼1−1F−1[�퐸�훼1 ,�훼1

(−�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2(�푡 − �푠)�훼1)]

∗ �푓(�푠, �푥)�푑�푠,
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It is easy to verify that �훼1 − 1 − (�훼1�훿/�훼2) > −1 holds for 
0 ≤ �훿 ≤ �훼2 − �휀 and 0 < �휀 ≪ 1, then we have

In terms of (37) and (39), sum up with �훿 = 0, 1, �훼2 − �휀, we 
arrive at the following estimate

with �훿� = (�훼�푘/2), �푘 = 0, 1.
For the term �퐶0 (�휕/�휕�푡)�훼1�푢(�푡, ⋅), we use Eq. (1) to estimate.
  

Combing (39) and (40), we arrive at (31).
�en, we complete �eorem 3.
Last, we consider fractional diffusion equation (1), i.e., the 

case �훼1 ∈ (0, 1). Taking Fourier transformation of space vari-
ables � on Eq. (1) with the initial datum �푢(0, �푥) = �휑(�푥) yields

In terms of �eorem 1, we solve initial value problem of space-
time fractional diffusion equation by taking a similar proce-
dure in proving �eorem 3, then we directly give the conclusion 
without proof.� ☐

Theorem 4.  Set 1 < �푝 < +∞, �훼1 ∈ (0, 1), �훼2 ∈ (1, 2). Suppose 
�휑 ∈ �퐿�(R�), �푓 ∈ �퐶∞

0 ((0, +∞), �퐿�푝(R�푛)), then there is a unique 
solution � of problem (41) which is represented by

and satisfies

(38)

∫
1

0
(1 − �푠)�훼1−1−(�훼1�훿/�훼2)�����푓(�푠�푡, ⋅)�����퐿�푝(R�푛)�푑�푠<∼ sup

�푠∈(0,�푡)

�����푓(�푠, ⋅)�����퐿�푝(R�푛).

(39)

‖�푢(�푡, ⋅)‖�퐿�푘,�푝(R�푛) +
�儩�儩�儩�儩�儩�儩�푡
(�훼1/�훼2)�푢(�푡, ⋅)�儩�儩�儩�儩�儩�儩�̇퐻1,�푝(R�푛)

+ �儩�儩�儩�儩�儩�儩�푡
�훼1(1−(�휀/�훼2))�푢(�푡, ⋅)�儩�儩�儩�儩�儩�儩�̇퐻�훼2−�휀,�푝(R�푛)

<∼
�儩�儩�儩�儩�휑1

�儩�儩�儩�儩�퐿�푝(R�푛)
+ �푡�儩�儩�儩�儩�휑2

�儩�儩�儩�儩�퐿�푝(R�푛) + �푡�훼1 sup
�푠∈(0,�푡)

�儩�儩�儩�儩�푓(�푠, ⋅)�儩�儩�儩�儩�퐿�푝(R�푛),

(40)

�儩�儩�儩�儩�儩�儩�儩�儩
�퐶
0(

�휕
�휕�푡)

�훼1

�푢(�푡, ⋅)
�儩�儩�儩�儩�儩�儩�儩�儩�̇퐻−�휀,�푝(R�푛)

= �儩�儩�儩�儩−(−Δ)�훼2�푢 + �푓(�푡, �푥)�儩�儩�儩�儩�̇퐻−�휀,�푝(R�푛)
<∼ ‖�푢(�푡, ⋅)‖�̇퐻�훼2−�휀,�푝(R�푛) + �儩�儩�儩�儩�푓(�푡, ⋅)�儩�儩�儩�儩�̇퐻−�휀,�푝(R�푛)
<∼ �푡−�훼1(�儩�儩�儩�儩�휑1

�儩�儩�儩�儩�퐿�푝(R�푛) + �푡�儩�儩�儩�儩�휑2
�儩�儩�儩�儩�퐿�푝(R�푛)

+ �푡�훼1 ( sup
�푠∈(0,�푡)

�儩�儩�儩�儩�푓(�푠, ⋅)�儩�儩�儩�儩�퐿�푝(R�푛) + sup
�푠∈(0,�푡)

�儩�儩�儩�儩�푓(�푠, ⋅)�儩�儩�儩�儩�퐻−�휀,�푝(R�푛))).

(41)
{

�퐶
0 ( �휕

�휕�푡)
�훼1 �̂푢(�푡, �휉) = −�儨�儨�儨�儨�휉

�儨�儨�儨�儨
�훼2 �̂푢(�푡, �휉) +�̂푓(�푡, �휉), in (0, +∞) × R

�푛,
�̂푢(0, �휉) = �̂휑(�휉).

(42)

�푢(�푡, �푥) = �휑1(�푥) ∗ F
−1[�퐸�훼1 ,1(−

�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2�푡�훼1)]

+ ∫
�푡

0
(�푡 − �푠)�훼1−1F−1[�퐸�훼1 ,�훼1

(−�儨�儨�儨�儨�휉
�儨�儨�儨�儨
�훼2(�푡 − �푠)�훼1)]

∗ �푓(�푠, �푥)�푑�푠,

for any positive number �휀 ≪ 1, where �̇�푘,�푝(R�푛) denotes the clas-
sical homogeneous Sobolev space.

Proof.  Taking inverse Fourier transform on (21), it is easy to 
obtain (30). �en, It follows (30) that

Let �푦 = −�����휉�����2(�푡 − �푠)�1, then (27) yields that

According to Corollary 1 and Lemma 5 for 0 ≤ �훿 ≤ �훼2, we have

Substitute (34–36) into (32), we get

(31)

‖�푢(�푡, ⋅)‖�퐿�푝(R�푛) +
�儩�儩�儩�儩�儩�儩�푡

�훼1
�훼2 �푢(�푡, ⋅)�儩�儩�儩�儩�儩�儩�̇퐻1,�푝(R�푛)

+
�儩�儩�儩�儩�儩�儩�儩�푡

�훼1(1− �휀
�훼2
)�푢(�푡, ⋅)

�儩�儩�儩�儩�儩�儩�儩�̇퐻�훼2−�휀,�푝(R�푛)
+
�儩�儩�儩�儩�儩�儩�儩�儩
�푡�훼1(1− �휀

�훼2
)�퐶
0(

�휕
�휕�푡)

�훼1

�푢(�푡, ⋅)
�儩�儩�儩�儩�儩�儩�儩�儩�̇퐻−�휀,�푝(R�푛)

<∼
�儩�儩�儩�儩�휑1

�儩�儩�儩�儩�퐿�푝(R�푛) + �푡�儩�儩�儩�儩�휑2
�儩�儩�儩�儩�퐿�푝(R�푛)

+ �푡�훼1( sup
�푠∈(0,�푡)

�儩�儩�儩�儩�푓(�푠, ⋅)�儩�儩�儩�儩�퐿�푝(R�푛) + sup
�푠∈(0,�푡)

�儩�儩�儩�儩�푓(�푠, ⋅)�儩�儩�儩�儩�퐻−�휀,�푝(R�푛))),

(32)

‖�푢(�푡, ⋅)‖�̇퐻�훿,�푝(�푅�푛)
= �儩�儩�儩�儩�儩�儩F−1(�儨�儨�儨�儨�휉�儨�儨�儨�儨�훿�̂푢(�푡, �휉))�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)
≤ �儩�儩�儩�儩�儩�儩F−1(�儨�儨�儨�儨�휉�儨�儨�儨�儨�훿�̂휑1(�휉)�퐸�훼1 ,1(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1))�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)
+
�儩�儩�儩�儩�儩�儩F−1(�儨�儨�儨�儨�휉�儨�儨�儨�儨�훿�̂휑2(�휉)�푡�퐸�훼1 ,2(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1))�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)

+
�儩�儩�儩�儩�儩�儩�儩�儩F

−1(�儨�儨�儨�儨�휉�儨�儨�儨�儨�훿∫
�푡

0
(�푡 − �푠)�훼1−1 �퐸�훼1 ,�훼1

(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2(�푡 − �푠)�훼1)�̂푓(�푠, �휉)�푑�푠)
�儩�儩�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)

<∼
�儩�儩�儩�儩�儩�儩�儩F−1(�̂휑1(�휉)�푡− �훼1�훿

�훼2 (−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1) �훿
�훼2 �퐸�훼1 ,1(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1))�儩�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)

+
�儩�儩�儩�儩�儩�儩�儩F−1(�̂휑2(�휉)�푡1− �훼1�훿

�훼2 (−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1) �훿
�훼2 �퐸�훼1 ,2(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2�푡�훼1))�儩�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)

+ ∫�푡

0
(�푡 − �푠)�훼1−1− �훿�훼1

�훼2 ×
�儩�儩�儩�儩�儩�儩�儩F−1((−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2(�푡 − �푠)�훼1) �훿

�훼2

⋅ �퐸�훼1 ,�훼1
(−�儨�儨�儨�儨�휉�儨�儨�儨�儨�훼2(�푡 − �푠)�훼1)�̂푓(�푠, �휉))

�儩�儩�儩�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛)�푑�푠.

(33)�����휉�����훾
��������
�휕�훾
�휕�휉�훾�푦(

�훿/�훼2)�퐸�훼,�훽(�푦)
�������� ≤ �퐶�훾.

(34)

�儩�儩�儩�儩�儩�儩F
−1(�̂휑1(�휉)�푡−(�훼1�훿/�훼2)�푦�훿/�훼2�퐸�훼1 ,1(�푦))

�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛) <∼ �푡−(�훼1�훿/�훼2)�儩�儩�儩�儩�휑1
�儩�儩�儩�儩�퐿�푝(R�푛),

(35)

�儩�儩�儩�儩�儩�儩F
−1(�̂휑2(�휉)�푡1−(�훼1�훿/�훼2)�푦(�훿/�훼2)�퐸�훼1 ,2(�푦))

�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛) <∼ �푡1−(�훼1�훿/�훼2)�儩�儩�儩�儩�휑1
�儩�儩�儩�儩�퐿�푝(R�푛),

(36)
�儩�儩�儩�儩�儩�儩F

−1(�푦(�훿/�훼2)�퐸�훼1 ,�훼1
(�푦)�̂푓(�푡, �휉))�儩�儩�儩�儩�儩�儩�퐿�푝(R�푛) <∼

�儩�儩�儩�儩�푓(�푡, ⋅)�儩�儩�儩�儩�퐿�푝(R�푛).

(37)

‖�푢(�푡, ⋅)‖�̇퐻�훿,�푝(R�푛)
<∼ �푡−(�훼1�훿/�훼2)(�儩�儩�儩�儩�휑1

�儩�儩�儩�儩�퐿�푝(R�푛) + �푡�儩�儩�儩�儩�휑2
�儩�儩�儩�儩�퐿�푝(R�푛) + �푡�훼1

⋅ ∫
1

0
(1 − �푠)�훼1−1−(�훼1�훿/�훼2)�儩�儩�儩�儩�푓(�푠�푡, ⋅)�儩�儩�儩�儩�퐿�푝(R�푛)�푑�푠).
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