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In this paper, based on a bilinear differential equation, we study the breather wave solutions by employing the extended homoclinic
test method. By constructing the different forms, we also consider the interaction solutions. Furthermore, it is natural to analyse
dynamic behaviors of three-dimensional plots.

1. Introduction

Recently, great attention has been paid to the study about
exact solutions of nonlinear partial differential equations.
So, it becomes more important to seek exact solutions
of nonlinear partial differential equations (NLPDEs),
which occur in many fields, such as chemistry, biology,
optics, classical mechanics, acoustics, engineering, and
social sciences. At present, many mathematicians have
proposed a large number of methods to seek exact solu-
tions, such as Bäcklund transformation [1], Hirota bilin-
ear methods [2], homoclinic breather limit approach [3,
4], and Darboux transformation [5–12]. Among these
methods, the Hirota bilinear method is one of the most
critical and powerful methods. Recently, some new exact
solutions of nonlinear partial differential equations have
been constructed [13–22] by means of bilinear operator
theories, so it has become an important research direction
to study the dynamic properties of these new equations.
In this article, the breather wave solutions will be dis-
cussed. On the basis of lump solution [23], the interac-
tion solutions will be obtained.

The two mixed Calogero-Bogoyavlenskii-Schiff (CBS)
and Bogoyavlensky-Konopelchenko (BK) equations [23] are
usually written as

ut + u2x,y + 3uxuy + δ1uy + δ2w2y + δ3ux + δ4 3u2x + u3x
� �

+ δ5 3w2
2y +w4y

� �
+ δ6 3uyw2y + u3y

� �
= 0,

ð1Þ

whereux =w andδi, i = 1,⋯, 6, are arbitrary constants.When
the constants satisfy δ3 = δ4 = δ5 = δ6 = 0, and δ5 = δ6 = 0, the
Calogero-Bogoyavlenskii-Schiff (CBS) and Bogoyavlensky-
Konopelchenko (CBS-BK) equations will become a general-
ized Calogero-Bogoyavlenskill-Schiff (gCBS) equation [24]
and a generalized Calagero-Bogoyavlenskii Konopelchenko
equation [25], respectively. The CBS equation was first
constructed by Bogoyavlenskii and Schiff in different ways
[26, 27]. Namely, Bogoyavlenskii used the modified Lax
formalism, whereas Schiff derived the same equation by
reducing the self-dual Yang-Mills equation. In 2019, a
class explicit lump solutions of the CBS-BK equation are
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constructed by using the Hirota bilinear approaches by
Ren et al. [23]. The (2 + 1)-dimensional CBS equation also
can be derived from the Korteweg-de Vries equation [28,
29]. Moreover, the BK equation is used as the interaction
of a Rieman wave propagation [30], so we called the
(2 + 1)-dimensional nonlinear partial differential equation
(1) as gCBS-BK equation. These two equations have been
widely studied in different ways [29, 31–40].

2. The Bilinear Equation for gCBS-BK Equation

If we take

u = 2∂x ln f , ð2Þ

where f ðx, y, tÞ is an unknown real function, the bilinear
equation of Equation (1) can be presented

DtDx +D3
xDy + δ1DxDy + δ2D

2
y + δ3D

2
x

h
+ δ4D

4
x + δ5D

4
y + δ6DxD

3
y

i
f · f = 0,

ð3Þ

where Dt ,Dx are all bilinear derivative operators and D
-operator [2] is defined by

Dm
x D

n
t a x, tð Þ · b x, tð Þ = ∂t − ∂t ′ð Þn ∂x − ∂x′

� �m
a x, tð Þb x′, t′

� ����
x
′=x,t′=t,

ð4Þ

wherem and n are the positive integers, aðx, tÞ is the function
of x and t, and bðx, tÞ is the function of the formal variables
x′ and t ′.

3. Breather Wave Solutions of CBS-
BK Equation

In this section, we will use the extended homoclinic text
method [41, 42] to get the breather wave solutions of Equa-
tion (1). To start with,

f x, y, tð Þ = k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ + a9, ð5Þ

where ξ1 and ξ2 are defined by

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,

(
ð6Þ

where ai, i = 1,⋯, 8, k1, and k2 are all real numbers.
Substituting Equation (5) into Equation (3), we can get the
following.where a1, a5, and a7 are some free real numbers.

Case 1.

a5 = 0,

a7 = −
a6 3a1a22δ6 − a1a

2
6δ6 + 4a32δ5 − 4a2a26δ5 + a31 + a1δ1 + 2a2δ2

� �
a1

,

a9 = 0:
ð7Þ

Substituting Equation (7) into Equation (5), through the
transformation (2), we have

u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ ,

ð8Þ

where ξ1 and ξ2 are given by

ξ1 = a1x + a2y + a3t + a4,

ξ2 = a6y −
a6 3a1a22δ6 − a1a

2
6δ6 + 4a32δ5 − 4a2a26δ5 + a31 + a1δ1 + 2a2δ2

� �
a1

t + a8,

8><
>:

ð9Þ

where ai, i = 1,⋯, 8, δ1, δ2, δ5, and δ6 are real numbers.
Figure 1 described the evolution of solution (8).

Case 2.

a2 = 0,

a3 =
a1a7
a5

,

a6 = 0,
a9 = 0,

ð10Þ

Substituting Equation (10) into Equation (5), through the
transformation (2), we have
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Figure 1: Spatiotemporal structure of solution (8) with the
parameter selections a1 = 1, a2 = 1, a3 = 1, a6 = 1, k1 = 1, δ1 = 1, δ2
= 1, δ5 = 1, and δ6 = 1.
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u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ ,

ð11Þ

where ξ1 and ξ2 are determined by

ξ1 = a1x +
a1a7
a5

t + a4,

ξ2 = a5x + a7t + a8,

8<
: ð12Þ

where a1, a4, a5, a7, and a8 are real numbers. Therefore, the
dynamic behavior can be performed in Figure 2.

Case 3.

a2 = 0,

a3 =
a1 2a21a5δ4 + 2a35δ4 + a7
� �

a5
,

a6 = 0,
a9 = 0,

k1 = −
k22a

2
5

4k21
:

ð13Þ

Substituting Equation (13) into Equation (5), through the
transformation (2), we have

where ξ1 and ξ2 are given by

ξ1 = a1x +
a1 2a21a5δ4 + 2a35δ4 + a7
� �

a5
t + a4,

ξ2 = a5x + a7t + a8,

8><
>: ð15Þ

where a1, a4, a5, a7, a8, k1, k2, and δ4 are free real numbers.
Figure 3 described the evolution of solution (14).

Case 4. Substituting a1, k1, and a7 into Equation (5), through
the transformation (2), we have

u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ :

ð16Þ

The evolution of solution (16) is described in Figure 4.
ξ1 and ξ2 are given by

where a2, a3, a4, a5, a6, a8, δ1, and δ2 are real numbers.
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Figure 2: Spatiotemporal structure of solution (11) with the
parameter selections a1 = 1, a5 = 1, and a7 = 1.
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Figure 3: Spatiotemporal structure of solution (14) with the
parameter selections a1 = 1, a5 = 1, a7 = 1, k1 = 1, k2 = 1, and δ4 = 1.

u x, y, tð Þ = − 2k22a25/4k21
� �

a1 exp ξ1ð Þ + 2k22a25/4k21
� �

a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ , ð14Þ

ξ1 = −
a2a5
a6

x + a2y + a3t + a4,

ξ2 = a5x + a6y +
8a22a46δ5 − 8a66δ5 + 4a22a35a6 + 4a35a36 − 3a22a25δ3 − 3a32a35a6δ1 − 3a22a26δ2 − 3a25a26δ3 − 3a5a36δ1 + a46δ2

3a5 a22 + a26
� � t + a8,

8>>><
>>>:

ð17Þ
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Case 5.

a2 = 0,

a3 =
a1 a21a6 − 2a5δ3
� �

2a5
,

a7 = a36δ6 +
a21a6
2 + a25a6 − a5δ3 − a6δ1:

ð18Þ

Substituting Equation (18) into Equation (5), through the
transformation (2), we have

u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ :

ð19Þ

The evolution of solution (19) is described in Figure 5.
ξ1 and ξ2 are given by

ξ1 = a1x +
a1 a21a6 − 2a5δ3
� �

2a5
t + a4,

ξ2 = a5x + a6y + a36δ6 +
a21a6
2 + a25a6 − a5δ3 − a6δ1

� �
t + a8,

8>>><
>>>:

ð20Þ

where a1, a4, a5, a6, a8, k1, k2, δ3, and δ6 are free real num-
bers. The three-dimensional dynamic figure can be drawn
as Figure 5.

Case 6.

a1 = 0,
a3 = −a2 a22δ6 − a25 + δ1

� �
,

a6 = 0:
ð21Þ

Substituting Equation (21) into Equation (5), through the
transformation (2), we have

u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ ,

ð22Þ

where ξ1 and ξ2 are defined by

ξ1 = a2y − a2 a22δ6 − a25 + δ1
� �

t + a4,
ξ2 = a5x + a7t + a8,

(
ð23Þ

where a2, a4, a5, a7, a8, k1, k2, δ1, δ5, and δ6 are some free real
numbers. The figure is given as Figure 6.

Case 7.

a2 = −a6,

a3 =
4a31a6 − 3a21δ3 + 3a1a6δ1 − a26δ2

3a1
,

a7 =
4a31a6 − 3a21δ3 − 3a1a6δ1 − a26δ1

3a1
,

k1 =
k22
4 ,

ð24Þ
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Figure 4: Spatiotemporal structure of solution (16) with the
parameter selections a2 = 1, a5 = 1, a6 = 1, k2 = 1, δ1 = 1, δ2 = 1,
δ3 = 1, and δ5 = 1.
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Figure 5: Spatiotemporal structure of solution (19) a1 = 1, a5 = 1,
a6 = 1, k1 = 1, k2 = 1, δ3 = 1, and δ6 = 1.
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Figure 6: Spatiotemporal structure of solution (22) with the
parameter selections a2 = 1, a5 = 1, a7 = 1, k1 = 1, k2 = 1, δ1 = 1,
δ5 = 1, and δ6 = 1.
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where a1, a6, a7, k2, δ1, δ2, δ3, and δ5 are free real numbers.
Substituting Equation (24) into Equation (5), through the
transformation (2), we have

u x, y, tð Þ = 2k22/4
� �

a1 exp ξ1ð Þ − 2k22/4
� �

a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k22/4
� �

exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ :

ð25Þ

The figure is given as Figure 7.
ξ1 and ξ2 are followed by

ξ1 = a1x + a2y −
4a31a6 + 3a21δ3 + 3a1a6δ1 + a26δ2

3a26δ1
t + a4,

ξ2 = −a1x + a6y +
4a31a6 + 3a21δ3 − 3a1a6δ1 + a26δ1

3a1
t + a8,

8>>><
>>>:

ð26Þ

where a1, a4, a5, a6, a7, a8, k2, δ1, δ2, δ3, and δ5 are free real
numbers.

Case 8.

a3 = −
4a31a6 + 3a21δ3 + 3a1a6δ1 + a26δ2

3a26δ1
,

a5 = −a1,

a7 =
4a31a6 + 3a21δ3 − 3a1a6δ1 + a26δ1

3a1
,

ð27Þ

where a1, a6, a7, k2, δ1, δ2, δ3, and δ5 are free real numbers.
Substituting Equation (27) into Equation (5), through the
transformation (2), we have

u x, y, tð Þ = 2k1a1 exp ξ1ð Þ − 2k1a1 exp −ξ1ð Þ − 2k2a5 sin ξ2ð Þ
k1 exp ξ1ð Þ + exp −ξ1ð Þ + k2 cos ξ2ð Þ :

ð28Þ

The figure is drawn as Figure 8.
ξ1 and ξ2 are defined by

ξ1 = a1x + a2y −
4a31a6 + 3a21δ3 + 3a1a6δ1 + a26δ2

3a26δ1
t + a4,

ξ2 = −a1x + a6y +
4a31a6 + 3a21δ3 − 3a1a6δ1 + a26δ1

3a1
t + a8,

8>>><
>>>:

ð29Þ

where a1, a2, a4, a6, a7, a8, k2, δ1, δ2, δ3, and δ5 are free real
numbers.

4. Interaction Solutions of CBS-BK System

4.1. Interaction between a Lump and One-Kink Soliton.With
the help of Maple, we will discuss the interaction between a
lump and one-kink soliton by taking f ðx, y, tÞ as a combina-
tion of positive quadratic function and one exponential func-
tion, that is,

f x, y, tð Þ = ξ21 + ξ22 + exp ξ3ð Þ + a9, ð30Þ

where ξ1, ξ2, and ξ3 are defined by

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = k1x + p1y + q1t + r1,

8>><
>>: ð31Þ

where ai, i = 1,⋯, 9, p1, k1, r1, and q1 are all real numbers. In
order to get the interaction solutions of Equation (1),
substituting Equation (30) into Equation (2),
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Figure 7: Spatiotemporal structure of solution (25) with the
parameter selections a1 = 1, a6 = 1, a7 = 1, k2 = 1, δ1 = 1, δ2 = 1,
δ3 = 1, and δ5 = 1.
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Figure 8: Spatiotemporal structure of solution (28) with the
parameter selections a1 = 1, a6 = 1, a7 = 1, k2 = 1, δ1 = 1, δ2 = 1,
δ3 = 1, and δ5 = 1.
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u x, y, tð Þ = 4a1ξ1 + 4a2ξ2 + 2k1 exp ξ3ð Þ
ξ21 + ξ22 + exp ξ3ð Þ + a9

, ð32Þ

where ξ1, ξ2, and ξ3 are defined by

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = k1x + p1y + q1t + r1,

8>><
>>: ð33Þ

where ai, i = 1,⋯, 9, p1, k1, r1, and q1 are all real numbers.
Substituting Equation (30) into Equation (3), through
complex analysis and calculations, we can have the
following.

Case 1.

a1 = 0,
a6 = 0,
k1 = 0,
δ2 = 0,
δ4 = 0,
δ5 = 0,

q1 =
p1 a2δ6p

2
1 − a3

� �
a2

,

δ1 = −
a7
a5

,

ð34Þ

where a2, a3, a5, a7, p1, and δ6 are free real numbers.
Substituting Equation (34) into Equation (32), we have

Case 2.

a1 = 0,
a5 = 0,
δ2 = 0,
δ5 = 0,
δ6 = 0,

a3 =
a7a2
a6

,

δ1 =
a6k

2
1 + a7
a6

,

q1 = −
a6k

3
1δ4 + a6k1δ3 − a7p1

a6
,

ð36Þ

where a2, a6, a7, k1, p1, δ3, and δ4 are some free real numbers.
Substituting Equation (36) into Equation (32), we have

u x, y, tð Þ = 4a1ξ1 + 4a2ξ2 + exp ξ3ð Þ
ξ21 + ξ22 + exp ξ3ð Þ + a9

, ð37Þ

where ξ1, ξ2, and ξ3 are defined by

ξ1 = a2y +
a7a2
a6

t + a4,

ξ2 = a6y + a7t + a8,

ξ3 = k1x + p1y −
a6k

3
1δ4 + a6k1δ3 − a7p1

a6
t + r1,

8>>>>>><
>>>>>>:

ð38Þ

where a2, a4, a6, a7, a8, k1, p1, r1, δ3, and δ4 are some free real
numbers.

In order to obtain the dynamic feature, we choose Case 2
to analyse. The three-dimensional dynamic graphs are drawn
as Figure 9. We can find that the lump waves and the expo-
nential function waves interact with each other and keep
moving in the opposite direction.

4.2. Interaction between a Lump and Periodic Waves. In order
to get interaction solutions between a lump and periodic
waves, we will take f as the combination of positive function
and hyperbolic cosine function. Therefore, f can be deter-
mined by

f x, y, tð Þ = ξ21 + ξ22 + b1 cos ξ3ð Þ + a9, ð39Þ

where variables are defined by

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = k1x + p1y + q1t + r1,

8>><
>>: ð40Þ

u x, y, tð Þ = 2a5 a5x + a6y + a7t + a8ð Þ
a9 + a2y + a3t + a4ð Þ2 + a5x + a7t + a8ð Þ2 + b1 exp p1y + p1 a2δ6p

2
1 − a3

� �
/a2

� �
t + r1

� � : ð35Þ
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where ai, i = 1,⋯, 9, p1, k1, r1, and q1 are all real numbers.
Substituting Equation (39) into Equation (2), we can get the
interaction solutions of Equation (1):

u x, y, tð Þ = 4a1ξ1 + 4a2ξ2 − 2b1k1 sin ξ3ð Þ
ξ21 + ξ22 + b1 cos ξ3ð Þ + a9

, ð41Þ

where ξ1, ξ2, and ξ3 are defined by

ξ1 = a1x + a2y + a3t + a4,
ξ2 = a5x + a6y + a7t + a8,
ξ3 = k1x + p1y + q1t + r1,

8>><
>>: ð42Þ

where ai, i = 1,⋯, 9, p1, k1, r1, and q1 are real numbers.
Through long and tedious calculations, we can get the follow-
ing relations between the parameters.where a5, a7, b1, p1, δ1,
δ2, and δ6 are free real numbers.where a5, a6, a7, p1, b1, δ1,
and δ6 are free real numbers.where a2, a3, a5, a7, p1, and δ6

are some free real numbers.where a5, p1, δ1, and δ6 are free
real numbers.

Case 1.

a1 = 0,
a2 = 0,
a3 = 0,
a6 = 0,
q1 = p1 P2

1δ6 − δ1
� �

,

δ3 = −
a7
a5

,

δ4 = −
b21p

2
1δ2
a45

,

δ5 =
δ2
p21

,

ð43Þ
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Figure 9: Spatiotemporal structure of solution (37) with the parameter selections: (a) t = −10, a2 = 1, p1 = 1, a3 = 1, a7 = 1, a5 = 1, and δ6 = 1;
(b) t = 0, a2 = 1, p1 = 1, a3 = 1, a7 = 1, a5 = 1, and δ6 = 1; (c) t = −10, a2 = 1, p1 = 1, a3 = 1, a7 = 1, a5 = 1, and δ6 = 1.
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Case 2.

a1 = 0,
a2 = 0,
a3 = 0,
k1 = 0,
q1 = −p1δ1,

δ2 = −
a5p

2
1δ6
a6

,

δ3 =
a6p

2
1δ6 − 2a6δ1 − 2a7

a5
,

ð44Þ

Case 3.

a1 = 0,
a6 = 0,
k1 = 0,

q1 =
p1 a2p

2
1δ6 + a3

� �
a2

,

δ1 = −
a3
a2

,

δ2 = 0,

δ3 = −
a7
a5

,

δ4 = 0,
δ5 = 0,

ð45Þ

Case 4.

a2 = 0,
a3 = −a1δ3,
k1 = 0,
q1 = p31δ6 − p1δ1,
δ2 = 0,
δ4 = 0,
δ5 = 0,

ð46Þ

When we change the coefficients of the equation, the
value of Equation (47) will be different accordingly. In order
to obtain the dynamic feature, we choose Case 2 to analyse.
Taking Equation (44) into Equation (41), we can get

u x, y, tð Þ = 2a5 a5 + a7t + a8ð Þ
a9 + a24 + a5x + a6y + a7t + a8ð Þ2 + b1 cos p1y − p1δ1t + r1ð Þ :

ð47Þ

With the help of Maple, the three-dimensional dynamic
graphs are drawn as Figure 10. We can find that lump waves
and periodic waves interact with each other and keep moving
in the opposite direction.
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Figure 10: Spatiotemporal structure of solution (47) with the
parameter selections: (a) t = 0, a5 = 1, a6 = 1, a7 = 1, p1 = 1, b1 = 1,
δ1 = 1, and δ6 = 1; (b) t = 10, a5 = 1, a6 = 1, a7 = 1, p1 = 1, b1 = 1, δ1 =
1, and δ6 = 1; (c) a5 = 1, a6 = 1, a7 = 1, p1 = 1, b1 = 1, δ1 = 1, and δ6 = 1.
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5. Conclusions

In this paper, based on a bilinear differential equation, we
study the breather wave solutions and the interaction solu-
tions of the mixed Calogero-Bogoyavlenskii-Schiff and
Bogoyavlensky-Konopelchenko equations. Compared with
the existing results in the literature, our results are new. It will
be extensively used to report many attractive physical phe-
nomena in the fields of acoustics, heat transfer, fluid dynam-
ics, classical mechanics, and so on. It is demonstrated that the
Hirota operators are very simple and powerful in construct-
ing new nonlinear differential equations, which possess nice
math properties. It is interesting to study the interaction
solutions between soliton solutions and period solution by
making f as a combination of exponential function and trig-
onometry function. However, this method can be applied to
those equations which have Hirota bilinear forms. Further-
more, we also can study the quardrilinear forms and even
polylinearity forms of this equation in the future. These ques-
tions may also be interesting and worth studying.
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