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In this paper, we mainly study the solution and properties of the multiterm time-fractional diffusion equation. First, we obtained
the stochastic representation for this equation, which turns to be a subordinated process. Based on the stochastic representation, we
calculated the mean square displacement (MSD) and time average mean square displacement, then proved some properties of this
model, including subdiffusion, generalized Einstein relationship, and nonergodicity. Finally, a stochastic simulation algorithm was
developed for the visualization of sample path of the abnormal diffusion process. The Monte Carlo method was also employed to
show the behavior of the solution of this fractional equation.

1. Introduction

Recently, the diffusion equations that generalize the usual
one have received considerable attention due to the broad-
ness of their physical applications, in particular, to the anom-
alous diffusion. In fact, fractional diffusion equations and the
nonlinear fractional diffusion equations have been success-
fully applied to several physical situations such as percolation
of gases through porous media [1], thin saturated regions in
porous media [2], standard solid-on-solid model for surface
growth [3], thin liquid films spreading under gravity [4], in
the transport of fluid in porous media and in viscous finger-
ing [5], modeling of non-Markovian dynamical processes in
protein folding [6], relaxation to equilibrium in a system
(such as polymer chains and membranes) with long temporal
memory [7], and anomalous transport in disordered systems
[8], diffusion on fractals [9], and the multiphysical transport
in porous media, such as electroosmosis [10, 11]. Moreover,
some underlying processes can be more accurately and flexibly
modeled by multiterm FPDEs. For example, the multiterm
time-fractional diffusion-wave equation is a satisfying mathe-
matical model for viscoelastic damping [12]. In [13], a two-
term fractional diffusion equation has been successfully used
for distinguishing different states in solute transport.

The multiterm time-fractional advection-diffusion equa-
tions are linear integrodifferential equations. They are
obtained from their corresponding classical multiterm
advection-diffusion equations by replacing the first-order
time derivative by fractional derivative, which reads

P Dtð ÞC x, tð Þ = −v
∂
∂x

C x, tð Þ +D
∂2

∂x2
C x, tð Þ, ð1Þ

where PðDtÞ =∑r
i=1 liD

αi
t with 0 < αr <⋯<α1 < 1; here, the

Dαi
t is the Caputo fractional derivative of order αi with respect

to t as defined as

Dαi
t f tð Þ = 1

Γ 1 − αið Þ
ðt
0

f ′ τð Þ
t − τð Þαi dτ, 0 < αi < 1: ð2Þ

There are growing interests in studying these equations
because of their importance in modeling many physical, bio-
logical, medical, chemical, and many other fields. For exam-
ple, the over diagnostic ultrasound frequencies, acoustic
absorption in biological tissue exhibits a power law with a
noninteger frequency [14, 15]. Also, in a complex inhomoge-
neous conducting medium, experimental evidence shows
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that the sound waves propagate with the power law of nonin-
teger order. For further applications on physics and on real
phenomena [16–18], the Caputo time-fractional operator
has been widely used instead of the second time derivative
to model mathematically such problems in order to discuss
the effect of the memory on the studied system [19].

Many analytic and numeric methods are employed to
solve this equation. Daftardar-Gejji and Bhalekar considered
the multiterm time-fractional diffusion-wave equation using
the method of separation of variables [20]. Luchko [21]
studied the well-posedness of the multiterm time-fractional
diffusion equation based on an approximate maximum prin-
ciple. Jiang et al. studied the multiterm time-space fractional
advection-diffusion equation based on the spectral represen-
tation of the fractional Laplacian operator [22]. Meshless
analysis based on improved moving least-squares approxi-
mation was introduced to solve the two-dimensional two-
sided space-fractional wave equation in [23]. Using the
method of series expansion, Ye et al. [24] studied the multi-
term time-space fractional partial differential equations in
2D and 3D domains. An efficient operational formulation
of the spectral tau method for a multiterm time-space frac-
tional differential equation with Dirichlet boundary condi-
tions was proposed in [25]. Liu et al. presented numerical
approximations for multiterm time-fractional diffusion
equations by using the spectral method in [26] and for multi-
term time-fractional wave equations by means of FDMs in
[27], respectively. In [28], the authors used finite difference
rules to get the approximate solutions of the time-fractional
multiterm wave equations. Recently, the stochastic representa-
tion method was introduced to solve the fractional diffusion
equation. In [29], Kolokoltsov built the relation between the
stochastic process and time-fractional diffusion equations with
Caputo or Riemann-Liouville derivatives. These generalized
Caputo derivatives were further extended to nonmonotone
processes, yielding two-sided and even multidimensional
extensions. Based on the stochastic representation, the math-
ematical properties of the related fractional equation were
discussed in [30–32]. These papers inspired the research of
this paper.

In this paper, we introduce the stochastic representation
method to solve this multiterm time-fractional diffusion
equation. This paper is organized as follows. In Section 2,
we derive a subordinated process, whose PDF is rightly the
solution of this equation, where the parent process is a classi-
cal diffusion process and the subordinator is the inverse time
of the sum of Lévy motions with different parameter. Taking
advantage of this result, we study the properties of this multi-
term time-fractional diffusion equation in Section 3. We also
employ the Monte Carlo method to simulate the solution for
this equation in the next section. Section 5 presents our
conclusions.

2. Stochastic Representation

In this section, we will give the stochastic representation of
the multiterm time-fractional diffusion equation.

Let UαðτÞ be the increasing Lévy motion with Laplace
transform Ee−kUαðτÞ = e−τk

α

, then we get the following theorem.

Theorem 1. The subordinated process YðtÞ = XðEtÞ is the sto-
chastic representation of the multiterm time-fractional
advection-diffusion equation (1), where the parent process
and subordinator of Yt is defined as

dX τð Þ = vdτ +
ffiffiffiffiffiffi
2D

p
dB τð Þ, ð3Þ

Et = inf τ > 0 : Aτ > tf g, ð4Þ
respectively. Here, Et is independent of BðτÞ and Aτ =∑r

i=0
Uαi

ðliτÞ, Uαi
ðτÞ are also independent with each other for dif-

ferent i.

Proof. Following the same procedure shown in [33], we first
establish the relation between the PDF gðτ, tÞ of Et and the
PDF uðt, τÞ of Aτ. From the definition of Et (see Equation
(4)), we have PðEt < τÞ = PðAτ > tÞ [34], therefore

g τ, tð Þ = ∂
∂τ

ð∞
t
u y, τð Þdy = −

∂
∂τ

ðt
0
u y, τð Þdy: ð5Þ

So, the Laplace transform of gðτ, tÞ can be expressed as

ĝ τ, kð Þ =
ð∞
0
e−ktg τ, tð Þdt = −

∂
∂τ

ð∞
0
u y, τð Þ

ð∞
y
e−ktdtdy

= −
1
k
∂
∂τ

ð∞
0
e−kyu y, τð Þdy = −

1
k
∂
∂τ

Ee−kAτ

= 〠
r

i=1
lik

αi−1
 !

e
−τ〠

r

i=1
lik

αi

 !
:

ð6Þ

Here, the Ee−kAτ = e−τ∑
r
i=0 lik

αi is obtained from the defini-
tion of AðτÞ. Then, using the total probability formula and
the independence between XðτÞ and Et , we can get the PDF
pðx, tÞ of YðtÞ, given by

p x, tð Þ =
ð∞
0
f x, τð Þg τ, tð Þdτ, ð7Þ

where f ðx, τÞ is the PDF of the parent process XðτÞ. So the
Laplace transform of the above equation yields

p̂ x, kð Þ =
ð∞
0
f x, τð Þĝ τ, kð Þdτ

= 〠
r

i=1
lik

αi−1
 !ð∞

0
f x, τð Þe

−τ〠
r

i=1
lik

αi

 !
dτ:

ð8Þ

Thus, the following relation between f ðx, τÞ and pðx, τÞ
holds

p̂ x, kð Þ = 〠
r

i=1
lik

αi−1
 !

f̂ x, 〠
r

i=1
lik

αi

 !
: ð9Þ
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Since the process XðτÞ is given by the Itô stochastic dif-
ferential equation (3), its PDF f ðx, τÞ obeys the classical
advection-dispersion equation [35]

∂f x, τð Þ
∂τ

= −
∂
∂x

v +D
∂2

∂x2

" #
f x, τð Þ: ð10Þ

The Laplace transform of the above equation with respect
to τ yields

kf̂ x, kð Þ − f x, 0ð Þ = −
∂
∂x

v +D
∂2

∂x2

" #
f̂ x, kð Þ: ð11Þ

By changing the variable k to∑r
i=1 lik

αi and using the rela-
tion (9), the above equation yields

〠
r

i=1
lik

αi−1
 !

kp̂ x, kð Þ − p x, 0ð Þð Þ

= −
∂
∂x

v +D
∂2

∂x2

" #
p̂ x, kð Þ:

ð12Þ

Since the Laplace transform of the Caputo fractional
derivative is given by LfDα

t f ðtÞ, sg = sα f̂ ðsÞ − sα−1 f ð0Þ, by
comparing the above equation with the Laplace transform
of Equation (3), we get Cðx, tÞ = pðx, tÞ. So the subordinated
process YðtÞ = XðEtÞ is called the stochastic representation of
the multiterm time-fractional diffusion equation.

3. Some Properties

The superiority of the stochastic representation approach to
the fractional differential equation is that it not only helps
us to understand the physical process by providing a
description of the dynamical system governed by the frac-
tional differential equation but also provides a way to get
the properties of the corresponding equations. For simplic-
ity, we retain two terms for the time-fractional operator,
i.e., 0 < α2 < α1 ≤ 1.

Corollary 2. The subordinated process governed by the multi-
term time-fractional diffusion equation (1) is subdiffusive.

Proof. Taking advantage of the relation between pðx, tÞ and
f ðx, τÞ, we can get the following evaluation formula for the
mean square displacement

X2 Etð Þ� �
=
ð∞
0
g τ, tð Þ

ð∞
0
x2 f x, τð Þdxdτ

= 2D
ð∞
0
τg τ, tð Þdτ,

ð13Þ

where gðτ, tÞ is the PDF of Et and its Laplace transformation
is given by Equation (4). By inverting the Laplace transform,
we can get

g τ, tð Þ = tα1

Γ α1 + 1ð Þ +
tα2

Γ α2 + 1ð Þ
� �
∗ gα1 τ, tð Þ ∗ gα2 τ, tð Þ:

ð14Þ

Here, gαiðτ, tÞ, the PDF of inverse time αi-stable Lévy
motion, can be expressed in the form of a Fox function, i.e.,

1
τ
H1 0

1 1
τ

tαi
1,αið Þ
1,1ð Þ
���h i

: ð15Þ

In order to calculate the mean square displacement, we
can first compute its Laplace transform. By using the Laplace
transform of gðτ, tÞ Equation (4), and inverting the Laplace
transform, we have

X2 Etð Þ� �
0 = 2Dtα1Eα1−α2,α1+1 −tα1−α2ð Þ∝

t2Dα1

Γ α1 + 1ð Þ , t≪ 1,

t2Dα2

Γ α2 + 1ð Þ ,  t≫ 1,

8>>><
>>>:

ð16Þ

where Eα,βðxÞ =∑∞
k=0 ðxk/ðΓðαk + βÞÞÞ is the Mittag-Leffler

function [36]. Here, we have used the equality

ð∞
0
e−pttαk+β−1E kð Þ

α,β ±atαð Þdt = k!pα−β

pα ∓ að Þk+1
: ð17Þ

From Equation (16), we can know the model resembles a
α1 subdiffusion for t⟶ 0 + , and since 0 < α < 1, the model
resembles a α2 subdiffusion for t⟶∞. This result can be
got in another way; to see this, note that UαðτÞ = τ1/αUαð1Þ
in distribution and τ1/α2 grows faster than τ1/α1 for 0 < α2 <
α1 < 1, so the α2-stable subordinator dominates as τ⟶∞
and the α1-stable subordinator dominates as τ⟶ 0 + .

Corollary 3. The generalized Einstein relation holds for the
multiterm time-fractional diffusion equation (1).

Proof. With the help of the stochastic representation, we can
calculate the first moment of XðtÞ of Equation (1) in the pres-
ence of a uniform force field VðxÞ = F,

X Etð Þh iF = F Eth i = Ftα1Eα1−α2,α1+1 −tα1−α2ð Þ: ð18Þ

Comparing the above result with Equation (16) shows
that the generalized Einstein relation holds (the definition
of generalized Einstein relation can be found in [37])

X Etð Þh iF = const × X2 Etð Þ� �
0: ð19Þ

To connect to single-particle tracking experiments, we
now turn to the time-averagedMSD of the stochastic process,
defined by
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δ2 Δð Þ = 1
T − Δ

ðT−Δ
0

x t + Δð Þ − x tð Þ½ �2dt: ð20Þ

The time series xðtÞ of length T (the measurement time)
is thus evaluated in terms of squared differences of the parti-
cle position separated by the so-called lag time Δ, which
defines the width of the window slid along the time series x

ðtÞ. Typically, δ2ðΔÞ is considered in the limit Δ≪ T to
obtain good statistics. It is easy to show that for Brownian

motion, hδ2ðΔÞi = hx2ðΔÞi = 2K1Δ as long as the measure-
ment is sufficiently long. Therefore, we call the process ergo-
dic: ensemble averages and long-time averages are equivalent

in the limit of long measurement times. hδ2ðΔÞi ≠ hx2ðΔÞi
signifies weak ergodicity breaking [38–40].

Corollary 4. The subordinated process YðtÞ = XðEtÞ governed
by the multiterm time-fractional diffusion equation (1) is
weak ergodicity breaking.

Proof. From Equation (16), we have

Y2 Δð Þ� �
∝

2D
Γ α1 + 1ð ÞΔ

α1 : ð21Þ

According to the definition of time-averaged MSD, we

calculate the δ2ðΔÞ of YðtÞ.

δ2 Δð Þ
D E

= 1
T − Δ

ðT−Δ
0

Y t + Δð Þ − Y tð Þ½ �2dt

= 2DTα1−1Eα1−α2,α1 −Tα1−α2ð ÞΔ ≠ Y2 Δð Þ� �
:

ð22Þ

The disparity between the ensemble and the -averaged
MSD exists. Even in the limit of long measurement times

T ⟶∞, limT→∞hδ2ðΔÞi∝ ð2DTα2−1/Γðα2 + 1ÞÞΔ:£¬, and
therefore, the disparity still exists, which ends our proof.

4. Stochastic Simulation

The stochastic representation provides two ways to get
the solution of the multiterm time-fractional advection-
diffusion equation (1). One way is to get the analytical solu-
tion by substituting f ðx, τÞ and gðτ, tÞ into Equation (7). The
other way is to simulate the stochastic representation, then
use Monte Carlo to simulate the solution. The Monte Carlo
method is firstly proposed to simulate the solution of frac-
tional order equation [41]. Here, we mainly introduce how
to simulate the sample path of the stochastic representation
and get the simulated solution of the multiterm time-
fractional diffusion equation.

The algorithm of simulation of the subordinated pro-
cess XðEtÞ is divided into two steps. T is the horizon and
Δt = T/N .

Step 1. This step is aimed at simulating the subordinator Et
(see Equation (4)). Since the Uαi

ðτÞ is the strictly increasing
αi-stable Levy motion with independent increments, then

the process Uαi
ðτÞ on the mesh τj = jΔτ (j = 0, 1,⋯, n) can

be simulated as follows:

Uαi
τ0ð Þ = 0,

Uαi
τj
� 	

=Uαi
τj−1
� 	

+ Δτð Þ1/αiZ j,
ð23Þ

where Zj is the i.i.d. strictly increasing αi-stable Levy noise
[42, 43], generated by

Zj =
sin α U + π/2ð Þð Þ½ �

cos Uð Þ1/a × cos U − α U + π/2ð Þð Þ½ �
ω

� � 1−að Þ/a
:

ð24Þ

Here, U is uniform distribution on ð−π/2, π/2Þ, and ω is
exponential distribution with mean 1. Then, we can get the
simulation of the process Aτ j

=Uα1
ðτjÞ +Uα2

ðτjÞ. From the

definition of (4), we know the subordinator Et is the first pas-
sage time of Aτ. So, for every element ti, we only need to find
the element τj such that Aτ j−1

< ti ≤ Aτ j
, then Eti

= τj. Since

Uαi
ðτÞ is a pure-jump process. For every jump of Uα1

ðτÞ +
Uα2

ðτÞ, there is a corresponding flat period of its inverse Et :

These heavy-tailed flat periods of Et represent long waiting
times in which the subdiffusive particle gets immobilized in
the trap. The sample path of Et can be found in Figure 1,
and the corresponding waiting time in Figure 2. From the
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Figure 1: The sample paths of the stochastic process Et , where
α1 = 0:9 and α2 = 0:5.
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Figure 2: The corresponding waiting times with α1 = 0:9 and α2 =
0:5.
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figures, we find the subordinator Et stop at the same time,
which leads the waiting time to be fluctuant.

Step 2. This step is aimed at simulating the process YðtÞ =
XðEtÞ. Since the parent process is driven by Brown motion,
then we employ the Euler scheme to simulate the process X
ðEtÞ, given by

X 0ð Þ = 0,
X Eti

� 	
= X Eti−1

� 	
+ v Eti

− Eti−1

� 	
+

ffiffiffiffiffiffi
2D

p
Eti

− Eti−1

� 	1/2ξi,
ð25Þ

where ξi is the i.i.d. standard normal noise, ξi ~Nð0, 1Þ.
The sample path of XðEtÞ can be found in Figure 3. Then,
the Monte Carlo method can be employed to estimate the
solution of Equation (1) (see Figure 4). From the figure,
we find that the solution of Equation (1) has sharp peak
and heavy tails, in contrast with normal distribution, which
is called the stretched Gaussian distribution. The figure for
log ðpðx, tÞÞ is plotted to show these results more clearly
(see Figure 4). Here, we remark that all the numerical results
are obtained by the software Matlab.

5. Conclusions

In this paper, an advection-diffusion equation with multi-
term time-fractional derivatives is employed. We obtained
its stochastic representation, which is driven by the Brown
motion and the inverse time of the sum of Lévy motions with
different parameters. Then, the mean square displacement
indicates the model is subdiffusive and the generalized Ein-
stein relation is also retained, but weak ergodicity is breaking.
At last, an algorithm is constructed to simulate the sample
paths of the stochastic process. With the help of stochastic
representation, the Monte Carlo method is employed to
approximate the solution of the corresponding equation.
We find that the solution is heavy tailed and sharp peaked,
which is common in statistical physics and finance. So, we
expect that the results obtained here may be useful for the
discussion of the anomalous diffusion systems.
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