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Solving nonclassical symmetry of partial differential equations (PDEs) is a challenging problem in applications of symmetry
method. In this paper, an alternativemethod is proposed for computing the nonclassical symmetry of PDEs.Themethod consists of
the following three steps: firstly, a relationship between the classical and nonclassical symmetries of PDEs is established; then based
on the link, we give three principles to obtain additional equations (constraints) to extend the systemof the determining equations of
the nonclassical symmetry.The extended system ismore easily solved than the original one; thirdly, we useWu’smethod to solve the
extended system. Consequently, the nonclassical symmetries are determined. Due to the fact that some constraints may produce
trivial results, we name the candidate constraints as “potential” ones. The method gives a new way to determine a nonclassical
symmetry. Several illustrative examples are given to show the efficiency of the presented method.

1. Introduction

The classical Lie symmetry (CLS) method, proposed by
Sophus Lie in 1870s, has been widely used to solve nonlinear
PDEs in mathematics, physics, and mechanics [1, 2]. When
solving PDEs, it is not sufficient to use CLS method. There
already have been several generalizations of the methods
such as nonclassical symmetry, Q-conditional symmetry,
conditional symmetry, reduction operators, weak symmetry,
and hierarchy conditional symmetry [3–8]. In this article,
we consider the standard nonclassical symmetry method
proposed in [3, 4]. The nonclassical symmetr yields exact
solutions to PDEs, which cannot be derived from CLS of the
PDEs. The nonclassical symmetry method is also related to
B ̈𝑎cklund transformations, functionally invariant solutions,
direct method, and so forth [9–13].

Closely related to our article, the very interesting ref-
erences [14–16] have to be mentioned. In paper [14], the
authors clarified the possibility of some bogus transformation
in mechanics of continua that may be computed which yield
trivial results. Particularly, they discuss why the invariance
with respect to some well-known transformations must be

used with care and explain why some of these universal
transformations are useless to obtain invariant solutions of
physical significance. In paper [15], the authors gave a deep
insight into the relationship between potential symmetry and
potential nonclassical symmetry of PDEs. They showed the
link by potential symmetries and reduction of order two
for PDEs. In paper [16], the authors discussed the problem
of compatibility of a PDE of second order with several
invariance surface conditions. Particularly, they revealed
the relationships of some reduction methods for evolution
equations based on invariant surface conditions related to
functional separation of variables with nonclassical and
weak point symmetries. These three papers made significant
progress on applications of symmetry methods.

Likely, in this paper, we discuss a relationship between
CLS and nonclassical symmetry of PDEs and some of its
applications are given.

As well known, to use symmetry methods in the analysis
of PDEs, the exact expressions of the symmetries are the
prerequisites. While determining a symmetry, there is an
inevitable step in which one solves the system of deter-
mining equations exactly. Nowadays, in using the symbolic
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computation programs [17–19], the calculations of the CLS
become routine tasks. For the nonclassical symmetry, many
algorithms and packages [20–22] can produce the system
of determining equations. However, it is a difficult and
challenging problem to solve the system, since it is nonlinear,
unlike the situation of the CLS. It is difficult to deal with such
system directly, even if one has been aided by computer. Up
to now, the nonclassical symmetries of many equations have
not been solved yet. Hence, it is necessary to overcome the
difficult problem to extend the applications of the nonclas-
sical symmetry method. More practically, it is useful to get
some particular nonclassical symmetry when we cannot get
whole set of the nonclassical symmetry due to the complexity
of the determining equations. Some ansatz are usually used to
get the nonclassical symmetry [23] of specific form.However,
there are no systematic principles to follow.

It is worth mentioning that a system of polynomial
formed differential equations can be viewed as one of dif-
ferential polynomials, and the zero set of the polynomial
system is equivalent to the solution of the system of the
differential equations [19–22, 24, 25]. There are two main
methods to deal with the set of zero points of a polynomial
system. One is Groebner basis method used in [20]; another
is Wu’s method [21, 22, 24, 26]. In this paper, Wu’s method
is used as main computational tool to deal with the system
of differential polynomials corresponding to the system of
determining equations of nonclassical symmetries of PDEs.

Wu’s method, proposed by Chinese mathematician
Wentsun Wu in 1970s [26, 27], is one of the fundamental
algorithmic methods in geometry algebra and computer
algebra fields. Wu’s method is designed to deal with the set
of zero points of a system of polynomials. The main idea
of the method is to characterize the set of zero points of a
polynomial system by series of sets of zero points of so-called
characteristic sets of the polynomial system. The zero set of
characteristic set is easily determined due to its good order
andpassive structure.Thebasic results ofWu’smethod are the
well-ordering principle and zero decomposition theorem (see
Theorem 5). Wu gave an algorithm, called Wu’s algorithm,
to realize this procedure. In our paper, we take the left-hand
side PS of the determining equations PS=0 of symmetries of
PDEs as a differential polynomial system. Then the problem
of solving the determining equations can be equivalently
transformed to the one of determining the set of zero points of
the differential polynomial system.ThenWu’smethod is used
to determine the set of zero points of the polynomial system.
Consequently, one obtains the corresponding symmetries of
the PDEs.

In this article, we explore a constraints method for
solving the system of determining equations through finding
a relationship between CLS and nonclassical symmetries
of PDEs. Based on the link, we get three principles to
obtain additional equations (constraints) to the system of
determining equations. By attaching the “constraints” on the
system of determining equations, we get an extended system
of the determining equations. Here, it is emphasized that
the “constraints” are added on the system of determining
equations not on the original PDEs. Then, Wu’s method is
used in dealing with the extended system. In the extended

system, the original determining equations are reduced by the
added additional equations, so the system becomes simpler.
Consequently, a nonclassical symmetry is easily determined
by solving this reduced system. Hence, the proposed method
in this article differs from the existing “differential constraint”
methods in [8, 14–16] and references therein.

Hopefully, the proposed method would be a complement
to other existing methods. Particularly, we intend to present
the following results in this article.

(R1) A set of identities showing the intrinsic relationship
between the CLS and nonclassical symmetry of PDEs are
derived.

(R2) A concept of the potential constraints is put forward.
It serves additional auxiliary equations to the system of
determining equations of the nonclassical symmetry.

(R3)We suggest three principles of getting the constraints
from the identities given in (R1).

(R4) Assembling (R1)–(R3) and combining Wu’s method
of differential form, we propose a method of solving the
system of determining equations that lead to determining
nonclassical symmetries of PDEs.

(R5) Examples of finding nonclassical symmetries of
several mathematical physics equations are given to show the
efficiency of the presented method.

The given method can be used not only in nonclassical
symmetry computation but also in symmetry classification
problems.

2. Preliminary

In the following part, we give some preliminaries used in the
article.

2.1. Notations andBasic Results. Suppose𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑝)
and 𝑈 = (𝑢1, 𝑢2, . . . , 𝑢𝑞) are independent and dependent
variables, respectively. A multi-index 𝛼 = {𝛼1, . . . , 𝛼𝑝} ∈ N

𝑝
0

(N0 is the set of nonnegative integers) denotes the derivative
operator 𝐷𝛼 = 𝜕|𝛼|/𝜕𝛼1𝑥1𝜕𝛼2𝑥2 ⋅ ⋅ ⋅ 𝜕𝛼𝑝𝑥𝑝 with order |𝛼| = ∑𝑝𝑖=1 𝛼𝑖.
Let 𝑈𝛼 = {𝐷𝛼𝑢𝑖, 𝑖 = 1, 2, . . . , 𝑞} for an index 𝛼 ∈ N

𝑝
0 . Use

notation 𝜕𝑈 = {𝑈𝛼, 𝛼 ∈ N
𝑝
0 } to denote the set of all derivatives

of 𝑈 with respect to 𝑋. Let K𝑋 be a characteristic zero
field of differential functions of𝑋. LetK𝑋[𝑈] be differential
polynomial ring in the indeterminates 𝜕𝑈 over K𝑋. In a
differential polynomial system D, Z(D) is the set of zero
points ofD in some extended field ofK𝑋.

2.2. Symmetry of PDEs. We consider 𝑘th order PDEs system

𝐹 [𝑈] = 𝐹 (𝑋,𝑈𝛼) = 0, |𝛼| ≤ 𝑘, (1)

with independent variables𝑋 and dependent variables𝑈. We
suppose that 𝐹 consisted of polynomials in its arguments. In
this paper, we only consider PDEs (1) that are nondegenerate
in the sense of Olver [2]; that is, the system hasmaximal rank.

The associated Lie algebra element of Lie symmetry is the
infinitesimal generator

X = 𝜉 ⋅ 𝜕𝑋 + 𝜂 ⋅ 𝜕𝑈, (2)
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where 𝜕𝑋 = (𝜕𝑥1 , 𝜕𝑥2 , . . . , 𝜕𝑥𝑝)𝑇 and 𝜕𝑈 = (𝜕𝑢1 , 𝜕𝑢2 , . . . , 𝜕𝑢𝑞)𝑇
are derivative operator vectors with respect to 𝑋 and 𝑈 and𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑝) and 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑞) are the vectors of
infinitesimal functions of the generator (2), in which 𝜉𝑖 = 𝜉(𝑧)
and 𝜂𝑗 = 𝜂𝑗(𝑧) are functions of 𝑧 = 𝑋∪𝑈.The dot is the inner
product of the involved vectors.

In the CLS method, the system of determining equations
of generator is produced from the invariance criterion:
PrX(𝐹) = 0 when 𝐹 = 0. Here PrX is the prolongation
of X on the space of 𝑈. Solving the infinitesimals functions𝜉(𝑧) and 𝜂(𝑧) explicitly from the determining equations, one
obtains generator (2).

Remark 1. In Lie’s theory, the generator (2) corresponds to
one parameter transformation group (symmetry for short).
Hence, in this connection, the generator (2) is equivalently
called symmetry.

In the standard nonclassical symmetry method, nonclas-
sical symmetry (2) is found by requiring the PDEs (1) and the
invariant surface conditions,

𝜓 = 𝜉 ⋅ 𝑈𝑋 − 𝜂 = 0, (3)

are simultaneously invariant under symmetry transforma-
tions (2), where𝑈𝑋 = (𝑢𝑖,𝑥𝑗)𝑇 is Jacobian matrix for𝑈. In this
case, the invariance criterion is given fromPrX(F) = 0, which
holds on the manifold defined by (1) and the differential con-
sequences of (3). From this criterion, one derives the system
of determining equations for the nonclassical symmetry. By
solving the determining equations, one finds the generator
(2), that is, the nonclassical symmetry of system (1). However,
this is a hard task in general. To this end, we still need to
continue to explore effective methods. This paper is one of
the attempts.

2.3. Basic Concepts and Results of Wu’s Method. In the
following, we give some concepts and basic results of Wu’s
method used in this article. More details on the method can
be found in [21, 22, 24–28].

Definition 2. A finite differential polynomial system,

ASC: A1,A2, . . . ,A𝑠, (4)

is called a differential ascending chain in a differential
polynomial rank ≺ if it satisfies the following two conditions:

(a)A1 ≺ A2 ≺ ⋅ ⋅ ⋅ ≺ A𝑠;
(b) A𝑗 is reduced with respect to A𝑖 (the terms in A𝑗

cannot be eliminated byA𝑖) for 𝑖 = 1, 2, . . . , 𝑗 − 1.
In Wu’s method, the basic reduction algorithm yields the

pseudoreduction formula for a differential polynomial𝑓with
respect to a differential ascending chainASC. That is, there
exist differential polynomials 𝑄𝛼 such that

IS ⋅ 𝑓 = ∑
𝑔𝛼∈ASC

𝑄𝛼𝐷𝛼𝑔𝛼 + 𝑟, (5)

where the differential polynomial 𝑟 is reduced with respect to
ASC (𝑟 cannot be reduced further byASC), and it is called

the pseudoremainder of 𝑓with respect to theASC, denoted
by 𝑟 = Prem(𝑓/ASC). The reduction formula is derived
from eliminating the terms in 𝑓 by each element in ASC
until the procedure cannot be continuous.The IS or IS(ASC)
(called IS product of ASC) is a product of initials (the
coefficients of the leading derivatives of polynomials) and
separants (partial derivatives of differential polynomials with
respect to leading derivatives) of the differential polynomials
inASC.

In a differential polynomial system PS, we define

Prem( PS
ASC

) = {Prem(
𝑓

ASC
for 𝑓 ∈ PS} . (6)

Definition 3. Under a differential ascending chain rank
(order) [26, 29], a lowest-order differential ascending chain
contained in a differential polynomial system PS is called a
base set of the PS.

The concept of differential characteristic set of a differ-
ential polynomial system is the core of Wu’s method. Its
definition is given below.

Definition 4. For a differential polynomial system PS, if
there exists a differential ascending chain CS satisfying the
properties (𝑎1), (𝑎2), and (𝑎3),

(a1) Z(𝑃𝑆) ⊂ Z(𝐶𝑆),
(a2) Prem(PS/CS) = 0,
(a3) Prem(IP/CS)=0,

where IP is nonzero integrability polynomial of CS, then
we call the differential ascending chain CS the differential
characteristic set of the PS.

The differential characteristic set of a differential poly-
nomial system has many well-ordering algebraic properties,
such as admitting triangular structure and containing all
integrability conditions (passive). It reveals the essential
properties of the zero set of a differential polynomial system.

In [26], Wu provided differential characteristic set algo-
rithm (also called Wu’s algorithm) to find a differential
characteristic set for any given finite differential polynomial
system. Based on the algorithm, we have the fundamental
results of Wu’s method shown in the following theorems.

Theorem 5. Let PS be a finite differential polynomial system;
then the well-ordering principle,

Z(CS
IS

) ⊂ Z (PS) ⊂ Z (CS) ,
Z (PS) = Z(CS

IS
) ∪ Z (PS, IS) ,

(7)

and zero decomposition,

Z (PS) = ⋃
𝑘

Z(CS𝑘
IS𝑘

) = ⋃
𝑗

Z( ICS𝑗
IS𝑗

) , (8)

hold true, where C𝑆 and 𝐶𝑆𝑘(𝐼𝐶𝑆𝑗) are the differential char-
acteristic sets (the irreducible differential characteristic sets)
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of PS and its extensions obtained by adding some differential
polynomials to PS.

Remark 6. Theorem 5 gives not only relationship between
zero sets of original PS and its differential characteristic set CS
but also a judgment on the compatibility of the PS. If we have
Z(CS) = 0, thenZ(PS) = 0 by (7), which implies that PS= 0has
no solution; equivalently PS is no consistence. This property
is used in the present article to find nontrivial constraints
in the system of determining equations (see examples in the
following sections).

In the following we give examples to show the efficiency
of Wu’s method and the reason why we use it.

Example 7. First we give an application of Wu’s method for
solving a linear system of variable coefficient overdetermined
equations.

To compute the potential symmetries of the nonlinear
wave equation 𝑢𝑡𝑡 = ((1/𝑢2)𝑢𝑥)𝑥 + (1/𝑢)𝑥 with the potential
system given by V𝑡 = (1/𝑢2)𝑢𝑥 + 1/𝑢, V𝑥 = 𝑢𝑡, and
infinitesimal generator 𝑋 = 𝜉(𝑥, 𝑡, 𝑢, V)𝜕𝑥 + 𝜏(𝑥, 𝑡, 𝑢, V)𝜕𝑡 +𝜂(𝑥, 𝑡, 𝑢, V)𝜕𝑢 + 𝜙(𝑥, 𝑡, 𝑢, V)𝜕V, we have to exactly solve the
system of determining system PS = 0. Here the left-hand side
differential polynomial system is

PS

=
{{{{{{{

𝜉V − 𝜏𝑢, 𝜂𝑢 − 𝜙V + 𝜉𝑥 − 𝜏𝑡, 𝜂V + 𝑢 (𝜂𝑡 − 𝜙𝑥) + 𝜏𝑥, 𝑢2𝜉𝑢 − 𝜏V,
𝑢𝜉V + 𝑢2𝜉𝑡 − 𝜏𝑥, 𝑢 (𝜂𝑢 − 𝜙V − 𝜉𝑥 + 𝜏𝑡) + 2 (𝜏V − 𝜂) ,
𝑢 (𝜙V − 𝜏𝑡) − (𝜏V + 𝜂𝑥 − 𝜂) + 𝑢2𝜙𝑡, 𝑢2𝜙𝑢 − 𝑢𝜏𝑢 − 𝜂V,

}}}}}}}
(9)

inK𝑋[𝜕𝑈] with X = (𝑥, 𝑡, 𝑢) and 𝑈 = (𝜉, 𝜙, 𝜂, 𝜏). Under the
basic rank 𝑥 ≺ 𝑡 ≺ 𝑢 ≺ V ≺ 𝜉 ≺ 𝜙 ≺ 𝜂 ≺ 𝜏, executing Wu’s
algorithm, we obtain the differential characteristic set of the
PS as follows:

CS =

{{{{{{{{{{{{{{{{{{{{{{{{{

𝜉𝑡V, 𝜉𝑡𝑡, 𝜉𝑥𝑡, 𝜙V, 𝜙𝑡, 𝜙𝑢 + 2𝜉𝑡,
𝜉𝑡 + 𝑢𝜉𝑡𝑢, 𝜙𝑥 + 2𝑢𝜉𝑡; 𝜏𝑥 − 𝑢𝜉V − 𝑢2𝜉𝑡,

𝜉V + 𝑢𝜉𝑢V + 𝑢𝜉𝑡 − 𝜉𝑥V, 𝜏𝑡 + 𝑢𝜉𝑢 − 𝜉𝑥 − 𝑢−1𝜂,
𝜉VV + 𝜉𝑥 − 𝜉𝑥𝑥, 𝜂𝑥 + 𝑢𝜉𝑥, 𝜂𝑡 + 𝑢𝜉𝑡, 𝜏𝑢 − 𝜉V, 𝜏V − 𝑢2𝜉𝑢,

𝜉𝑥 + 𝑢2𝜉𝑢𝑢 + 2𝑢𝜉𝑢 − 𝜉𝑥𝑥, 𝑢𝜂𝑢 − 𝜙 + 𝑢2𝜉𝑢,
𝜉𝑥 + 𝑢𝜉𝑥𝑢 − 𝜉𝑥𝑥; 𝜂V + 𝑢𝜉V + 2𝑢2𝜉𝑡;

}}}}}}}}}}}}}}}}}}}}}}}}}

(10)

with IS = 𝑢�≡0.Hence one has
Z (PS) = Z (CS) , (11)

by Theorem 5 (see (7)). This shows the equivalence between
solving PS = 0 and CS = 0. Compared with original system
PS = 0, the well-ordering (triangular form) structure of the
differential characteristic set CS makes the determination
of Z(PS) easier through solving Z(CS). The zero set of 𝜉
is obtained from the first part (the first eight equations)
of CS; the zero sets of 𝜙, 𝜂, and 𝜏 are obtained from the
following parts of the CS sequentially by using the previously
determined zero sets step by step. Hence, we easily have
infinitesimal functions

Z (PS)

=
{{{{{{{

𝜉 = 𝑐1𝑡𝑢 + 𝑐2 − 𝑐1V + 𝑒𝑥𝐴 (V, 𝑒𝑥𝑢) ,
𝜏 = (𝑐3 − 𝑐1V) 𝑡 − 𝑐1𝑢 + 𝑐4 + 𝐵 (V, 𝑢𝑒𝑥) ,

𝜂 = 𝑐3𝑢 − 𝑐1 (𝑡 + 𝑢V) − 𝑢𝑒𝑥𝐴 (V, 𝑒𝑥𝑢) , 𝜙 = −2𝑐1 (ln 𝑢 + 𝑥)

}}}}}}}
(12)

with𝐴𝑉−𝐵𝑈 = 0,𝐵𝑉−𝑈2𝐴𝑈 = 0,𝑉 = V, and𝑈 = 𝑢𝑒𝑥. Hence
the the nonlinearwave equation admits four parameters finite
symmetries and an infinite dimensional symmetry.

Example 8. In the example, we show the application of Wu’s
method for solving the system of nonlinear overdetermined
equations.

To compute the nonclassical symmetry for the Burgers
equation 𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥 = 0 with generator (as example just
consider the case 𝜏 ≡ 1) X = 𝜕𝑡 + 𝜉(𝑥, 𝑡, 𝑢)𝜕𝑥 + 𝜂(𝑥, 𝑡, 𝑢)𝜕𝑢,
we have to solve the nonlinear system PS=0; here

PS = {𝜉𝑢𝑢, 𝜂𝑡 + 𝑢𝜂𝑥 + 𝜂𝑥𝑥 + 2𝜂𝜉𝑥, 𝜂𝑢𝑢 + 2𝑢𝜉𝑢 − 2𝜉𝜉𝑢
− 2𝜉𝑥𝑢, 2𝜂𝑥𝑢 + 2𝜂𝜉𝑢 − 𝜉𝑡 + 𝑢𝜉𝑥 − 2𝜉𝜉𝑥 − 𝜉𝑥𝑥 + 𝜂} . (13)

After usingWu’s algorithm on the polynomial system, we
obtain its zero decomposition (see (8)):

Z (PS) = Z (CS1) ∪ Z (CS2) ∪ Z (CS3) . (14)

Here

CS1 = {𝜂𝑥𝑥, 𝜉𝑥𝑥, 𝜉𝑢, 𝜂𝑢 + 𝜉𝑥, 𝜂𝑡 + 𝑢𝜂𝑥 + 2𝜉𝑥𝜂, 𝑢𝜉𝑥 − 𝜉𝑡
− 2𝜉𝑥𝜉 + 𝜂} ,

CS2 = {𝜂, 𝑢 − 𝜉} ,
CS3 = {𝜂𝑢𝑢 − 𝑢 + 𝜉, 1 + 2𝜉𝑢, 𝜂𝑡 + 𝑢𝜂𝑥 + 𝜂𝑥𝑥

+ 2𝜂𝜉𝑥, 2𝜂𝑥𝑢 − 𝜉𝑡 + 𝑢𝜉𝑥 − 2𝜉𝜉𝑥 − 𝜉𝑥𝑥, 2𝜂𝑡𝑢 + 2𝜂𝑥
+ 𝑢𝜉𝑡 + 4𝜂𝑢𝜉𝑥 − 𝑢2𝜉𝑥 + 2𝑢𝜉𝜉𝑥 + 2𝜉2𝑥 + 𝜉𝑥𝑡 + 2𝜉𝜉𝑥𝑥
+ 𝜉𝑥𝑥𝑥} .

(15)
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Since CS1 represents the CLS of the equation and
Z(PS)\Z(CS1) ̸= 0, one knows that Burgers equation has
the nontrivial nonclassical symmetries that correspond to
solutions to the reduced systems CS1 = 0 and CS2 = 0. They
are easily solved even by hand. Particularly,

Z (CS1) = {𝜉 = 𝑐1𝑡𝑥 + 𝑐2𝑥 + 𝑐4𝑡 + 𝑐5𝑐1𝑡2 + 2𝑐2𝑡 + 𝑐3 ; 𝜂

= 𝑐1 (𝑥 − 𝑡𝑢) − 𝑐2𝑢 + 𝑐4𝑐1𝑡2 + 2𝑐2𝑡 + 𝑐3 } ;
Z (CS2) = {𝜉 = 𝑢, 𝜂 = 0} ;
Z (CS3) = {𝜉 = −1

2𝑢 + 𝛼 (𝑥, 𝑡) , 𝜂 = 1
4𝑢3

− 1
2𝛼 (𝑥, 𝑡) 𝑢2 − 𝛽 (𝑥, 𝑡) 𝑢 + 𝛾 (𝑥, 𝑡)} ,

(16)

where 𝛼(𝑥, 𝑡), 𝛽(𝑥, 𝑡), 𝛾(𝑥, 𝑡) satisfy the PDE system

𝛼𝑡 + 𝛼𝑥𝑥 + 2𝛽𝑥 + 2𝛼𝛼𝑥 = 0,
𝛽𝑡 + 𝛽𝑥𝑥 − 𝛾𝑥 + 2𝛽𝛼𝑥 = 0,

𝛾𝑡 + 𝛾𝑥𝑥 + 2𝛾𝛼𝑥 = 0.
(17)

Remark 9. The above two examples are just to show the
fundamental effect of Wu’s algorithm. In practices, due to
more complexity and heavy symbolic computations, the
solving of the systemof determining equations of nonclassical
symmetries of PDEs cannot be always realized directly as in
examples.We need some additional reasonable constraints to
the system so that it is solved. As a result, the symmetries
are derived. To this end, in the next section, we establish
a relationship between CLS and nonclassical symmetry of
PDEs from which one obtains some principles to get the
additional constraints on the system of determining system
of the nonclassical symmetry.

3. A Potential Constraints Method

3.1. An Identity. Let

X
󸀠 = 𝜉󸀠𝑖𝜕𝑥𝑖 + 𝜂󸀠𝑗𝜕𝑢𝑗

X = 𝜉𝑖𝜕𝑥𝑖 + 𝜂𝑗𝜕𝑢𝑗 ,
(18)

be the generators of the CLS and nonclassical symmetry of
PDEs, respectively. 𝜉󸀠 = (𝜉󸀠1, 𝜉󸀠2, . . . , 𝜉󸀠𝑝) and 𝜂󸀠 = (𝜂󸀠1, 𝜂󸀠2, . . . ,𝜂󸀠𝑞); 𝜉 = (𝜉1, 𝜉2, . . . , 𝜉𝑝) and 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑞). Let D󸀠 = 0
and D = 0 be the systems of the determining equations
for X󸀠 and X in the sense of the definition in [3, 4, 20].
From the viewpoints in [20, 25], we call the left-hand sides
D󸀠 ⊂ K𝑧[𝜉󸀠, 𝜂󸀠] and D ⊂ K𝑧[𝜉, 𝜂] of the two systems the
determining polynomial systems of the CLS and nonclassical
symmetry, respectively. Consequently, the zero sets Z(D󸀠)
and Z(D) represent the solution sets of the two systems of
the determining equations, that is, the sets of the CLS and
nonclassical symmetry of the PDEs.

Due to the fact that the CLS is a subset of the nonclassical
symmetry, on the CLS, the infinitesimal functions ofX󸀠 and
X have relations

𝜉󸀠𝑖 = 𝜉𝑖,
𝜂󸀠𝑗 = 𝜂𝑗,

𝑖 (𝑗) = 1, 2, . . . , 𝑝 (𝑞) .
(19)

Remark 10. Since only the regular case of the nonclassical
symmetries is investigated in this article, without loss of
generality, suppose that 𝜉1�=0. Then, according to the fact that
ifX is a symmetry of PDEs then𝑓X so is, for any differential
function 𝑓, set 𝜉1 = 1. In this case, (19) becomes

𝜉󸀠𝑖 = 𝑎𝜉𝑖,
𝜂󸀠𝑗 = 𝑎𝜂𝑗,

𝑖 (𝑗) = 2, . . . , 𝑝 (𝑞) , where 𝑎 = 𝜉󸀠1.
(20)

In evolutionary equations, 𝜉1 is the coefficient of 𝜕𝑡 in
generator X corresponding to the time variable; it is usually
notated by 𝜏. In regular case of the nonclassical symmetries,
we set 𝜏 = 1.

We take a differential polynomial rank ≺ on 𝐾𝑧[𝜉󸀠, 𝜂󸀠]
with 𝑧 = 𝑋∪𝑈 and 𝜉󸀠1 with the highest rank.This rank induces
a corresponding differential polynomial rank on 𝐾𝑧[𝜉, 𝜂, 𝜉󸀠1]
by matching 𝜉󸀠𝑖 󳨀→ 𝜉𝑖, 𝜂󸀠𝑗 󳨀→ 𝜂𝑗. Let 𝐶󸀠 be the differential
characteristic set ofD󸀠 in the differential polynomial rank ≺
on𝐾𝑧[𝜉󸀠, 𝜂󸀠]. In [25], it is proven that Z(𝐶󸀠) = Z(D󸀠) in PDEs;
that is, Z(𝐶󸀠) represents the CLS of the PDEs.

Because of the linearity of𝐶󸀠, the initials of the differential
polynomials in𝐶󸀠 are polynomials in 𝑧. Hence the IS product
of 𝐶󸀠 is not zero; that is,

IS (𝐶󸀠) �≡0. (21)

Suppose that D󸀠󸀠 is the subset of 𝐶󸀠 consisting of differ-
ential polynomials whose leading derivatives are the ones of𝜉󸀠1. Substituting (20) into 𝐶󸀠 andD󸀠󸀠, one obtains differential
polynomial systems belonging to K𝑧[𝜉, 𝜂, 𝜉󸀠1] (still denote
them as 𝐶󸀠 and 𝐷󸀠󸀠). Since the linearity of both 𝐶󸀠 and
transformations (20) in (𝜉, 𝜂), the rank and initials of each
differential polynomial in differential ascending chain 𝐶󸀠
are not changed after transformations (20) are applied to𝐶󸀠. Hence, the complement set 𝐶󸀠 \ D󸀠󸀠 and set D󸀠󸀠 keep
the differential ascending chain structure and property (21)
under transformations (20). Then we do the reduction 𝑅 =
Prem((𝐶󸀠 \D󸀠󸀠)/D󸀠󸀠) by formula (5). After removing the fac-
tors on 𝜉󸀠1(�=0) from 𝑅 (the resulting differential polynomial
system is denoted again as 𝑅), we have the projection

𝐶 = 𝑅 ∩K𝑧 [𝜉, 𝜂] . (22)

In the reduction for obtaining𝑅, the operation on (𝜉, 𝜂) is not
involved; 𝐶 inherits the differential ascending chain property
of the 𝐶󸀠 \ D󸀠󸀠. In addition, through transformations (20),
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the set Z(𝐶) represents the CLS expressed by the infinitesimal
functions 𝜉 and 𝜂 of the nonclassical symmetry.Therefore, we
have

Z (𝐶) ⊆ Z (D) . (23)

For the sake of the following statement, we denote

𝐶 = {𝑞1, 𝑞2, . . . , 𝑞𝑚} , (24)

as well as

D = {𝑝1, 𝑝2, . . . , 𝑝𝑛} , (25)

for the determining polynomial systems of the CLS and
nonclassical symmetry of the PDEs.

One of main results of this paper is given below.

Theorem 11. There exist differential polynomials coefficients
differential operatorsD𝑖] such that the identities,

I𝑆𝑖 ∗ 𝑝𝑖 =
𝑚∑
]=1

D
𝑖
]𝑞], 𝑖 = 1, 2, . . . , 𝑛, (26)

hold for all differential functions 𝜉 and 𝜂 and IS products 𝐼𝑆𝑖 of𝐶 for 𝑝𝑖.
Proof. By formula (5), we have the remainders 𝑟𝑖 =
Prem(𝑝𝑖/𝐶) reduced to 𝐶 for each 𝑝𝑖 ∈ D. From (23), we
have 𝑟𝑖 = 0 on Z(𝐶). Thus the irreducibility of 𝐶 implies that𝑟𝑖 ≡ 0. The theorem is proven.

This theorem shows the intrinsic connection between the
CLS and nonclassical symmetry of PDEs. Thus we have the
following corollary.

Corollary 12. PDEs admit nontrivial nonclassical symmetry
if and only if Z(𝐶) is a proper subset of Z(D); that is, Z(𝐶) ⊂
Z(D).

Summarizing the above procedure, we have an algorithm
to obtain identities (26) in the following steps.

Step 1. Calculate the systems of determining equationsD󸀠 =0 and D = 0 of the CLS and nonclassical symmetry for the
given PDEs.

Step 2. Calculate differential characteristic set 𝐶󸀠 of D󸀠 by
Wu’s algorithm and getD󸀠󸀠.

Step 3. Substitute (20) into 𝐶󸀠 and D󸀠󸀠 and calculate 𝐶 as in
(22).

Step 4. Establish (26) by reduction formula (5) in Wu’s
method.

Remark 13. In Step 2, sinceD󸀠 is linear (the system of deter-
mining polynomials of the CLS), its differential characteristic
set 𝐶󸀠 is calculated easily by Wu’s algorithm [25, 26].

The following is an illustrative example to show the above
procedure of obtaining the relations (26).

Example 14. We establish relation (26) for the nonlinear heat
equation

𝑢𝑡 = 𝑢𝑥𝑥 − 𝑢3. (27)

Step 1. The system of determining equations of the nonclas-
sical symmetry X = 𝜕𝑡 + 𝜉𝜕𝑥 + 𝜂𝜕𝑢 (see Remark 10) and
CLS X󸀠 = 𝜏󸀠𝜕𝑡 + 𝜉󸀠𝜕𝑥 + 𝜂󸀠𝜕𝑢 of the equation is given by
D = {𝑝1, 𝑝2, 𝑝3, 𝑝4} = 0, where

𝑝1 = 𝜉𝑢𝑢,
𝑝2 = 𝜂𝑥𝑥 − 𝜂𝑡 + 𝑢3𝜂𝑢 − 2 (𝑢3 + 𝜂) 𝜉𝑥 − 3𝑢2𝜂,
𝑝3 = 2𝜂𝑥𝑢 − 𝜉𝑥𝑥 + 𝜉𝑡 − (3𝑢3 + 2𝜂) 𝜉𝑢 + 2𝜉𝜉𝑥,
𝑝4 = 𝜂𝑢𝑢 − 2𝜉𝑥𝑢 + 2𝜉𝜉𝑢,

(28)

andD󸀠 = 0, in which

D
󸀠 = {2𝜉󸀠𝑥 − 𝜏󸀠𝑡 , 𝜏󸀠𝑢, 𝜏󸀠𝑥, 𝜂󸀠𝑢𝑢, 𝜂󸀠𝑡 − 𝜂󸀠𝑥𝑥 + 𝑢3 (𝜏󸀠𝑡 − 𝜂󸀠𝑢)
+ 3𝑢2𝜂󸀠, 𝜉󸀠𝑥𝑥 − 2𝜂󸀠𝑥𝑢 − 𝜉󸀠𝑡 , 𝜉󸀠𝑢} .

(29)

Step 2. The differential characteristic set of D󸀠 under rank𝜉󸀠 ≺ 𝜂󸀠 ≺ 𝜏󸀠 is
𝐶󸀠
= {𝜏󸀠𝑢, 𝜏󸀠𝑥, 𝑢𝜏󸀠𝑡 + 2𝜂󸀠, 𝜉󸀠𝑢, 𝑢𝜉󸀠𝑥 + 𝜂󸀠, 𝜉󸀠𝑡 , 𝜂󸀠𝑥, 𝜂󸀠𝑡 , 𝜂󸀠 − 𝑢𝜂󸀠𝑢} .

(30)

Hence

D
󸀠󸀠 = {𝜏󸀠𝑢, 𝜏󸀠𝑥, 𝑢𝜏󸀠𝑡 + 2𝜂󸀠} . (31)

And IS(𝐶󸀠) = 𝑢�≡0.
Step 3. After substituting transformations (20) with 𝑎 = 𝜏󸀠,
the sets 𝐶󸀠 andD󸀠󸀠 become

𝐶󸀠 = {𝜏󸀠𝜉𝑢, 𝜏󸀠 (𝜂 + 𝑢𝜉𝑥) , 𝜉𝑡𝜏󸀠 + 𝜉𝜏󸀠𝑡 , 𝜏󸀠𝜂𝑥, 𝜂𝑡𝜏󸀠
+ 𝜂𝜏󸀠𝑡 , 𝜏󸀠 (𝜂 − 𝑢𝜂𝑢)} ∪D

󸀠󸀠, (32)

and

D
󸀠󸀠 = {𝜏󸀠𝑢, 𝜏󸀠𝑥, 𝑢𝜏󸀠𝑡 + 2𝜏󸀠𝜂} . (33)

Then computing reduction Prem((𝐶󸀠\D󸀠󸀠)/D󸀠󸀠) and deleting
common factor 𝜏󸀠�=0, we have irreducible passive differential
chain 𝐶 = {𝑞1, . . . , 𝑞6} under the corresponding rank 𝜉 ≺ 𝜂
with

𝑞1 = 𝑢𝜉𝑡 − 2𝜉𝜂,
𝑞2 = 𝑢𝜉𝑥 + 𝜂,
𝑞3 = 𝜉𝑢,
𝑞4 = 𝑢𝜂𝑡 − 2𝜂2,
𝑞5 = 𝑢𝜂𝑢 − 𝜂,
𝑞6 = 𝜂𝑥.

(34)
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Step 4. Using Wu’s reduction formula (5), one obtains rela-
tions (26) as follows:

𝑃1 = I1𝑝1 = 𝐷𝑢𝑞3,
𝑃2 = I2𝑝2 = 𝑢𝐷𝑥𝑞6 + 𝑢3𝑞5 − 𝑞4 − 2 (𝑢3 + 𝜂) 𝑞2,
𝑃3 = I3𝑝3

= 2𝐷𝑥𝑞5 − 𝐷𝑥𝑞2 + 3𝑞6 − 𝑢 (3𝑢3 + 2𝜂) 𝑞3 + 2𝜉𝑞2
+ 𝑞1,

𝑃4 = I4𝑝4 = 𝐷𝑢𝑞5 − 2𝑢𝐷𝑥𝑞3 + 2𝑢𝜉𝑞3,

(35)

with initials I1 = 1, I2 = I3 = I4 = 𝑢�=0 of 𝐶.
Remark 15. Since Z(𝐶) and Z(D) represent the CLS and non-
classical symmetry, the identities (26) (also see the identities
(35) for (27)) reveal the relationship between the determining
polynomial systems of the CLS and nonclassical symmetry
of PDEs. This connection between the CLS and nonclassical
symmetry provides us a way to get additional equations
that can be used to reduce the system of the nonlinear
determining equations of the nonclassical symmetry (see
examples given in next section).

In practical computations, we use the following necessary
and sufficient conditions for a generator (18) being a nonclas-
sical symmetry of PDEs.

Theorem 16. The operator X in 8 is a nontrivial nonclassical
symmetry of the PDEs (1) if and only if the infinitesimal
functions (𝜉, 𝜂) = (𝜉2, . . . , 𝜉𝑝, 𝜂2, . . ., 𝜂𝑞) ∈ Z(D/𝐶) or,
equivalently, at (𝜉, 𝜂) all 𝑝𝑖 ∈ D are zero and at least one of𝑞𝑗 ∈ 𝐶 is not zero.

The theorem is easily proven by Corollary 12.
For example, for (27), 𝜉 = (3/√2)𝑢, 𝜂 = −(3/2)𝑢3make all𝑝𝑖 = 0(𝑖 = 1, 2, 3, 4) in (35), but it is obvious that 𝑞3�=0. Hence

X = 𝜕𝑡 + 3𝑢/√2𝜕𝑥 − (3/2)𝑢3𝜕𝑢 is a nontrivial nonclassical
symmetry of the equation.

3.2. Potential Constraints. The determining equations of the
nonclassical symmetry are solved relatively easily through
extending some additional auxiliary equations, which are
named potential constraint (PC).

Definition 17. An additional differential equation that is
compatible with the system of the determining equations
of the nonclassical symmetry of PDEs is called potential
constraint (PC) for the system. The PC is called nontrivial
if it provides a nontrivial nonclassical symmetry. An idea
for obtaining suitable PCs comes from the following zero
decomposition of the systemD; that is,

Z (D) = Z (D ∪J) ∪ Z(D

J
)

= Z (D ∪J) ∪ Z(D ∪ Q
J

)
∪ Z (D ∪ /J ∗Q)

(36)

for an arbitrary differential polynomial J and differential
polynomial set 𝑄. D ∪ J and D ∪ 𝑄 are extensions of the
system D. Then, it is relatively easy to find the nonclassical
symmetry of the considered PDEs from the subsets Z(D∪J)
and Z(D∪𝑄/J) of Z(D) by properly selecting some specific
differential polynomialJ and𝑄. Consequently, we have PCs
J = 0 or 𝑄 = 0. For this reason, it is obvious that Theorems
11 and 16 and identities in (26) provide feasible basis.

Particularly, the first subset Z(D ∪ J) in the above
decomposition results in the following two principles for
selecting a PC.

Principle 1. Take the coefficient of 𝜉 or 𝜂 in some identities of
(26) whose right-hand sides are collected in terms of 𝜉 and 𝜂
asJ.

Principle 2. Take the coefficient that is polynomial in 𝜉𝑖 or 𝜂𝑗
of someD𝑖]𝑞𝑖 in some identities of (26) asJ.

Example 18. Using (35), we give some examples to show how
to use the principles.

Case 1 (use Principle 1). LetJ = 𝑞2, which is the coefficient of𝜉 in the third identity𝑃3. AddingJ toD, we get the extended
system D ∪ J = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑞2}. Using Wu’s method
to the extended system, we get its nontrivial differential
characteristic set CS = {3𝜂+𝑢𝜉2, 𝜉𝑢, 𝜉2−3𝜉𝑥, 𝜉𝑡}, which implies
that J = 0 is a PC for the system D. By calculating CS, we
get 𝜉 = −3/(3𝑐1 + 𝑥) and 𝜂 = −3𝑢/(3𝑐1 + 𝑥)2. By 𝑞1�=0 and𝑝𝑖 = 0 (𝑖 = 1, 2, 3, 4), we deduce thatJ = 0 is a nontrivial PC
for the systemD byTheorem 16.

Case 2 (use Principle 2). Take the coefficient of 𝑞2 in the
second identity 𝑃2 as J = 𝑢3 + 𝜂. After executing Wu’s
method for the systemD ∪J, we have an empty differential
characteristic set.This shows that differential equationJ = 0
is not compatible withD. So it is not a PC for the systemD.

Case 3 (use Principle 2). LetJ = 3𝑢3 + 2𝜂 be the coefficient
of 𝑞3 in the third identity𝑃3.The differential characteristic set
of the extended systemD ∪J is {3𝑢3 + 2𝜂, 9𝑢2 − 2𝜉2} which
directly yields 𝜉 = ±3𝑢/√2, 𝜂 = −3𝑢3/2. Since 𝑞3�=0 and all𝑝𝑖 = 0 at current (𝜉, 𝜂), the equation J = 0 is an additional
nontrivial PC.

One may choose other cases of J = 0 as candidate
PCs, but no new symmetry is found. Actually, one finds by
directly solving the determining equations D = 0 that the
nonclassical symmetries in Cases 1 and 3 are complete set of
the nonclassical symmetries of (27). Here, it was seen that the
auxiliary constrains J = 0 make the solving of the system
of determining equations D = 0 be easier and lead to the
complete nonclassical symmetry set of (27).

The example shows that identity (26) combining Prin-
ciples 1 and 2 efficiently yields the nontrivial PCs. It also
indicates that a nonclassical symmetry of PDEs may be zero
point of some partial terms of a polynomial in identities (26).
This is the reason why we introduce Principles 1 and 2.
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For the second subset Z(D ∪ 𝑄/J) in decomposition of
Z(D), if taking 𝑄 as a differential ascending chain and J is
its IS product, then we get the reduction of the systemDwith
respect to𝑄. In fact, letD = {𝑝𝑘 = Prem(𝑝𝑘/𝑄) : 𝑝𝑘 ∈ D} be
the set of pseudoremainders of 𝑝𝑘 ∈ D with respect to 𝑄 in
the sense ofWu’s reduction (5); that is, for each 𝑝𝑘 ∈ D, there
exist operatorsD𝑘𝑖 such that

I𝑆𝑘 ∗ 𝑝𝑘 = ∑
𝑞𝑘𝑖 ∈𝑄

D
𝑘
𝑖 𝑞𝑘𝑖 + 𝑝𝑘. (37)

Thus, we have

Z(D ∪ Q
J

) = Z(D ∪ Q
J

) (38)

withJ = ∏ IS𝑘. The right-hand side of (38) is the zero set of
the reduced differential polynomial systemD, which is more
easily solved. Practically, we take the subset 𝑄 ⊂ 𝐶. Hence,
more practically, we have the third principle to obtain PCs.

Principle 3. Take 𝑄 as a differential ascending chain or some
proper subset of 𝐶.

In the next section, application of Principle 3 will be seen
in Example 18.

4. More Examples

Because the determining equations involve arbitrary sym-
bolic parameters [13], the symmetry classification problem
for PDEs with arbitrary parameters is a difficult job for
symmetry analysis. Finding classifying equations is the key
step to successfully solve the problem. In the following, we
give an example to show that ourmethod can be used to solve
the problem efficiently.

Example 19. We consider the symmetry classification prob-
lem for the nonlinear heat equation

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓 (𝑢) , (39)

with source 𝑓(𝑢)�=0 [11]. Now we give the solution of the
problem by using our method as compared with the method
used in [11].

For the nonclassical symmetryX = 𝜕𝑡 +𝜉𝜕𝑥 +𝜂𝜕𝑢 of (39),
we have relations (26) as follows:

𝑝1 = 𝐷𝑢𝑞2,
𝑝2 = 𝐷𝑢𝑢𝑞1 − 2𝐷𝑥𝑞2 + 2𝜉𝑞2,
𝑝3 = 2𝐷𝑥𝑢𝑞1 + (3𝑓 (𝑢) − 2𝜂) 𝑞2 − 𝐷𝑥𝑞3 + 2𝜉𝑞3 + 𝑞4,
𝑝4 = 𝐷𝑥𝑥𝑞1 − 𝑓 (𝑢)𝐷𝑢𝑞1 − 𝐷𝑡𝑞1 + 𝑓󸀠 (𝑢) 𝑞1

+ 2 (𝑓 (𝑢) − 𝜂) 𝑞3,

(40)

where
𝑞1 = 𝜂,
𝑞2 = 𝜉𝑢,
𝑞3 = 𝜉𝑥,
𝑞4 = 𝜉𝑡

(41)

is the differential characteristic set of the CLS of (39) for
arbitrary function 𝑓(𝑢).

From the third identity in above identities, selecting the
partial term J = (3𝑓(𝑢) − 2𝜂)𝑞2, we have two cases for the
candidate PCJ = 0.
Case 1. Let 𝑝5 = 2𝜂 − 3𝑓(𝑢) and 𝑞2 = 𝜉𝑢�=0. We execute
Wu’s algorithm on the extended systemD ∪ {𝑝5} and obtain
a necessary condition on parameter 𝑓 as follows:

3𝑓(4)2 − 2𝑓󸀠󸀠󸀠𝑓(5) = 0, (42)

for the system having a nontrivial differential characteristic
set. This is a classifying equation for symmetry classification
of (39). It has general solutions,

𝑓 (𝑢) = (𝑎𝑢 + 𝑏) ln (𝑎𝑢 + 𝑏) + 𝑐 (𝑎𝑢 + 𝑏)2
+ 𝑑 (𝑎𝑢 + 𝑏) + 𝑒, 𝑎�=0;

𝑓 (𝑢) = 𝑎𝑢3 + 𝑏𝑢2 + 𝑐𝑢 + 𝑑,
(43)

for arbitrary constants 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒.
Case 2. Let 𝑝6 = 𝑞2 = 𝜉𝑢. In this case, we execute Wu’s
algorithm again on the extended systemD ∪ {𝑝6} and obtain
an additional classifying equation:

𝑓󸀠󸀠󸀠2𝑓(4) − 2𝑓󸀠󸀠𝑓(4)2 + 𝑓󸀠󸀠𝑓󸀠󸀠󸀠𝑓(5) = 0. (44)

It has general solutions,

𝑓 (𝑢) = 𝐴 (𝑎𝑢 + 𝑏)𝜇 + 𝑐 (𝑎𝑢 + 𝑏) + 𝑑;
𝑓 (𝑢) = 𝐴 (𝑎𝑢 + 𝑏) ln (𝑎𝑢 + 𝑏) + 𝑐 (𝑎𝑢 + 𝑏) + 𝑑;
𝑓 (𝑢) = 𝐴 ln (𝑎𝑢 + 𝑏) + 𝑐 (𝑎𝑢 + 𝑏) + 𝑑;
𝑓 (𝑢) = 𝐴𝑒(𝑎𝑢+𝑏) + 𝑐 (𝑎𝑢 + 𝑏) + 𝑑,

(45)

for arbitrary constants 𝐴, 𝑎, 𝑏, 𝑐, and 𝑑 with 𝑎�=0.
Case 3. In other cases, of course, one can similarly select
other partial terms from any of the identities as PCs. For
example, we take coefficient J = 𝑓(𝑢) − 𝜂 of 𝑞3 in the last
identity. However, we are not able to get additional classifying
equation.

Surprisingly, we have seen that functions (43)-(45) recov-
ered all the cases given in [11]. This shows that the complete
nonclassical symmetry classifications of the equation are
determined by the selected PCs𝑝5 = 0 and𝑝6 = 0. Compared
with the directly solving method used in [11], the presented
potential constraint method is much more efficient.
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Example 20. We consider the nonclassical symmetry and
potential nonclassical symmetry of the nonlinear Boussinesq
equation given by

𝑢𝑡𝑡 + 𝛽 (𝑢2)
𝑥𝑥

+ 𝛾𝑢𝑥𝑥𝑥𝑥 = 0 (𝛽𝛾�=0) . (46)

Thenonclassical symmetry and nonclassical reductions of the
equation are studied in [9, 30, 31]. To the authors’ knowledge,
the potential nonclassical symmetry of the equation has not
been considered yet in literatures.

First, we consider the nonclassical symmetry of (46) by
applying our method.

It is easily calculated that the CLS X = 𝜏󸀠(𝑡, 𝑥, 𝑢)𝜕𝑡 +𝜉󸀠(𝑡, 𝑥, 𝑢)𝜕𝑥 + 𝜂󸀠(𝑡, 𝑥, 𝑢)𝜕𝑢 of the equation has determining
polynomial system

D
󸀠

= {𝜂󸀠𝑥, 𝜂󸀠𝑡 , 𝜂󸀠 − 𝑢𝜂󸀠𝑢, 𝜏󸀠𝑢, 𝜏󸀠𝑥, 𝜂󸀠 + 𝑢𝜏󸀠𝑡 , 𝜉󸀠𝑢, 𝜂󸀠 + 2𝑢𝜉󸀠𝑥, 𝜉󸀠𝑡} ,
(47)

with zero points (solutions to the system of determining
equations),

𝜏󸀠 = 𝑐1𝑡 + 𝑐2,
𝜉󸀠 = (1

2) 𝑐1𝑥 + 𝑐3,
𝜂󸀠 = −𝑐1𝑢,

(48)

for arbitrary constants 𝑐1, 𝑐2, and 𝑐3. The differential charac-
teristic set 𝐶 = {𝑞1, . . . , 𝑞6} of D󸀠 through transformations
(20) is obtained by Wu’s algorithm, where

𝑞1 = 𝜂𝑥,
𝑞2 = 𝜉𝑢,
𝑞3 = 𝜂 − 𝑢𝜂𝑢,
𝑞4 = 𝜂2 − 𝑢𝜂𝑡,
𝑞5 = 2𝑢𝜉𝑥 + 𝜂,
𝑞6 = 𝜂𝜉 − 𝑢𝜉𝑡

(49)

are expressed by the infinitesimal functions 𝜉 and 𝜂 of the
nonclassical symmetryX = 𝜕𝑡 + 𝜉𝜕𝑥 + 𝜂𝜕𝑢. The determining
polynomial system of the nonclassical symmetry for the
equation is given byD = {𝑝1, . . . , 𝑝7} as follows:

𝑝1 = 𝜉𝑢,
𝑝2 = 𝜂𝑢𝑢,
𝑝3 = 𝜂𝑢 + 2𝜉𝑥,
𝑝4 = 2𝜂𝑥𝑢 − 3𝜉𝑥𝑥,
𝑝5 = 12𝛾𝜂𝑥𝑥𝑢 − 8𝛾𝜉𝑥𝑥𝑥 + 𝜉𝜉𝑡 + 2 (𝛽𝑢 + 𝜉2) 𝜉𝑥 + 𝛽𝜂,
𝑝6 = 4𝛾𝜂𝑥𝑥𝑥𝑥 + 𝜂𝑡𝑡 + 2𝜂𝜂𝑡𝑢 + 2𝛽𝑢𝜂𝑥𝑥 − 2𝜉𝑡𝜂𝑥

+ 4 (𝜂𝑡 + 𝜂𝜂𝑢 − 𝜉𝜂𝑥) 𝜉𝑥,

𝑝7 = 4𝛾 (4𝜂𝑥𝑥𝑥𝑢 − 𝜉𝑥𝑥𝑥𝑥) − 𝜉𝑡𝑡 − 2𝜉𝜂𝑡𝑢 + 4𝛽𝑢𝜂𝑥𝑢
− 2𝛽𝑢𝜉𝑥𝑥 − 2𝜉𝑡𝜂𝑢 + 4𝜉𝜉2𝑥 − 2𝜉𝑡𝜉𝑥 − 8𝜉𝜂𝑢𝜉𝑥
+ 4𝛽𝜂𝑥.

(50)

For system D, one easily obtains the following two
identities in (26):

𝑢 ∗ 𝑝3 = 𝑞5 − 𝑞3,
2𝑢 ∗ 𝑝4 = 7𝑞1 − 4𝐷𝑥𝑞3 − 3𝐷𝑥𝑞5.

(51)

Since 𝑝3 = 0 for the nonclassical symmetry, the first identity
in the above yields 𝑞3 = 𝑞5. It is easy to check by Wu’s
method that when 𝑞3 = 𝑞5 = 0 only the CLS is obtained.
Hence, for the nontrivial nonclassical symmetry, it has to be𝑞3 = 𝑞5�=0. With second identity above and 𝑝4 = 0 for the
nonclassical symmetry, we have 𝑞1 = 𝐷𝑥𝑞3 = 𝐷𝑥𝑞5. It leads
to 𝜂𝑥𝑢 = 𝜉𝑥𝑥 = 0. Adding 𝑝8 = 𝜂𝑥𝑢 and 𝑝9 = 𝜉𝑥𝑥 to the
systemD and executingWu’smethod on the extended system
D∪ {𝑝8, 𝑝9} under 𝜉�=0 (exclude the trivial case 𝜉 = 0), we get
the differential characteristic set of the extended system given
by

CS = {𝜉u, 𝛽𝜂 + 𝜉𝜉𝑡 + 2 (𝜉2 + 𝛽u) 𝜉x, 𝛽𝜂 + 𝜉𝜉t − 𝜂u (𝜉2
+ 𝛽u) , 𝜂𝜉𝑡 (2𝜉4 − 𝛽2𝑢2 + 3𝛽𝑢𝜉2)
− 𝜉 (𝜂𝑡 (𝜉2 + 𝛽𝑢)2 + 𝑢𝜉2𝑡 (𝜉2 + 2𝛽𝑢)) + 𝛽𝜂2𝜉 (𝜉2

+ 2𝛽𝑢) + 2𝜂𝑥 (𝜉2 + 𝛽𝑢)3 , 𝛽𝜂2𝜉𝜉𝑡 (4𝜉4 − 𝛽2𝑢2

+ 9𝛽𝑢𝜉2) − 𝜂𝑡𝑡 (𝜉2 + 𝛽𝑢)4 + 𝛽2𝜂3 (𝜉2 + 2𝛽𝑢)2

+ 𝜉𝜉𝑡 (𝛽𝑢2𝜉2𝑡 (𝜉2 + 3𝛽𝑢)
+ 2𝜂𝑡 (𝜉2 + 2𝛽𝑢) (𝜉2 + 𝛽𝑢)2)
+ 𝛽𝜂 (𝜂𝑡 (𝛽𝑢 − 𝜉2) (𝜉2 + 𝛽𝑢)2

− 2𝑢𝜉2𝜉2𝑡 (2𝜉2 + 5𝛽𝑢)) , 𝛽2𝜂2𝜉 + (2𝜉3𝜉𝑡
+ 𝛽𝜂 (3𝜉2 + 𝛽𝑢) + 𝛽𝑢𝜉𝜉𝑡) 𝜉𝑡 − (𝜉2 + 𝛽𝑢)2 𝜉𝑡𝑡} ,

(52)

with initial I = 𝜉2 + 𝛽𝑢�=0. Consequently, from the first two
polynomials in CS, we easily get their zero points (solutions
to the system of determining system of the nonclassical
symmetry),

𝜉 = 𝑓 (𝑡) 𝑥 + 𝑔 (𝑡) ,

𝜂 = −(𝜉𝜉𝑡 + 2 (𝛽𝑢 + 𝜉2) 𝜉𝑥)
𝛽 ,

(53)
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and the remaining polynomials in CS yield the conditions

𝑓󸀠󸀠 (𝑡) + 2𝑓 (𝑡) 𝑓󸀠 (𝑡) − 4𝑓 (𝑡)3 = 0,
𝑔󸀠󸀠 (𝑡) + 2𝑓 (𝑡) 𝑔󸀠 (𝑡) − 4𝑓 (𝑡)2 𝑔 (𝑡) = 0, (54)

for the functions 𝑓 and 𝑔. This rediscovered the nonclassical
symmetries given in [9].

In the above procedure of solving determining equations,
PCs 𝑝8 = 0 and 𝑝9 = 0 are obtained just from two identities.
This shows that even the parts of (26) provide nontrivial PCs.

Now, we consider the potential nonclassical symmetry of
(46) through its potential system

𝑢𝑡 + V𝑥 = 0,
V𝑡 − 𝛽𝑢2𝑥 − 𝛾𝑢𝑥𝑥𝑥 = 0. (55)

It is easily calculated that the nonclassical symmetry X =𝜕𝑡 + 𝜉(𝑡, 𝑥, 𝑢, V)𝜕𝑥 + 𝜂(𝑡, 𝑥, 𝑢, V)𝜕𝑢 + 𝜙(𝑡, 𝑥, 𝑢, V)𝜕V of the
system has the determining polynomial systemD consisting
of eleven strong nonlinear differential polynomials and one
of them admitting 35 terms. One hardly deals with this
system directly. Hence, some PCs are necessary for getting a
nontrivial nonclassical symmetry.

By Principle 3, we consider two cases of PCs as taking𝑄 ={𝜂, 𝜙} and 𝑄 = {𝑝12 = 𝜉𝑢, 𝑝13 = 𝜉V}.
Case 1. 𝑄 = {𝜂, 𝜙}.Under this PC, the system of determining
equations is reduced to equation

𝜉𝜉V + 𝜉𝑢 = 0, (56)

with 𝜉𝑡 = 𝜉𝑥 = 0. Its general solution is implicitly given
by 𝐹(𝜉, V − 𝑢𝜉) = 0 for arbitrary functions 𝐹(𝑈,𝑉). Hence,
for any solution 𝜉(𝑢, V) of (56), (46) admits the nonclassical
symmetry X = 𝜕𝑡 + 𝜉𝜕𝑥. For example, we have specific
potential nonclassical symmetries,

X = 𝜕𝑡 + (V + 𝑏)
(𝑢 + 𝑎) 𝜕𝑥 ;

X = 𝜕𝑡 + (𝑢 + √𝑢2 − 2V2) 𝜕𝑥,
(57)

for arbitrary constants 𝑎 and 𝑏 by selecting the functions𝐹(𝑈,𝑉) = 𝑎𝑈−𝑉−𝑏 and𝐹(𝑈,𝑉) = (1/2)𝑈2−𝑉, respectively.
Case 2 (𝑄 = {𝜉𝑢, 𝜉V}). Executing Wu’s method on the
extended systemD ∪ 𝑄, we get the differential characteristic
sets 𝐶1 and 𝐶2 (see Appendix). Thus, the sets Z(C1) and
Z(C2) are easily determined because of their characteristic set
structure.

Z(𝐶1) is given by

𝜉 = 𝑐1𝑡 + 𝑐2,
𝜂 = −(𝑐1𝛽 ) (𝑐1𝑡 + 𝑐2) , (58)

and 𝜙 = 𝜙(𝑡, 𝑥, 𝑢, V), which satisfies the system

𝜙𝑡 = 𝜙 (𝜙𝑢 − 𝑐1)𝜉 − 2𝑐1𝜂,

𝜙𝑥 = (𝑐1𝛽 )𝜙𝑢,

𝜙V = (𝑐1 − 𝜙𝑢)𝜉 .

(59)

Since system (59) is an involution (standard) form, it has
infinite number of solutions. This has been proven in [15].
Particularly, for any initial conditions 𝜙(𝑧0) = 𝑐1, 𝜙1(𝑧0) = 𝑐2,𝜙𝑥(𝑧0) = 𝑐3, 𝜙V(𝑧0) = 𝑐4, and 𝜙𝑢(𝑡0, 𝑥0, 𝑢, V0) = ℎ(𝑢) at𝑧0 = (𝑡0, 𝑥0, 𝑢0, V0) ∈ R𝑛, system (59) has unique Taylor
series solution for any differential function ℎ(𝑢). For example,𝜙 = 𝑐1(𝑢+𝑐1𝑥/𝛽)+(𝑐21 /𝛽)(𝑐1𝑡2+2𝑐2𝑡)+𝑐3 is a solution to system
(59).

Z(C2) is given by (53) for 𝜉 and 𝜂 and
𝜙 = (𝜓 (𝑡, 𝑥) + 𝑢𝑔󸀠 (𝑡)) + (𝑓󸀠 (𝑡)

𝑓 (𝑡) ) (V − 𝑢𝑔 (𝑡))
− V𝑓 (𝑡) ,

(60)

where

𝜓 (𝑡, 𝑥)
= [2𝑓 (𝑡) (12𝑥2𝑓 (𝑡)3 𝑔 (𝑡) + 3𝛽ℎ (𝑡) + 4𝑥3𝑓 (𝑡)4) + 3𝑥 (𝑥𝑓󸀠 (𝑡) + 2𝑔󸀠 (𝑡)) (𝑓 (𝑡) 𝑔󸀠 (𝑡) − 𝑔 (𝑡) 𝑓󸀠 (𝑡) + 2𝑓 (𝑡)2 𝑔 (𝑡)) + 2𝑥𝑓 (𝑡)3 ((2𝑥𝑓󸀠 (𝑡) + 3𝑔󸀠 (𝑡)) 𝑥 + 12𝑔 (𝑡)2)]

(6𝛽𝑓 (𝑡)) . (61)

Here 𝑓(𝑡)(�=0) and 𝑔(𝑡) are solutions to (54) and ℎ(𝑡) satisfies
ℎ󸀠 (𝑡) + (𝑓󸀠 (𝑡)

𝑓 (𝑡) + 4𝑓 (𝑡)) ℎ (𝑡)
− ( 2

𝛽)𝑔 (𝑡) (𝑔󸀠 (𝑡) + 2𝑓 (𝑡) 𝑔 (𝑡))2 = 0.
(62)

The nonclassical symmetries (58)-(59) and (60) are two
groups of potential nonclassical symmetries of (46)-(53).

Hence it is clear that under the current constraints 𝑄 ={𝜉𝑢, 𝜉V} the nonlinear Boussinesq equation does not admit
potential nonclassical symmetry in the sense of 𝜉2V + 𝜂2𝑢�=0.

Particularly, using special ansatz, we have the following
two classes of special solutions to (54) (as well as (62)) given
by

𝑓 (𝑡) = 1
(𝑏 + 2𝑡) ,
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𝑔 (𝑡) = 𝑐1(𝑏 + 2𝑡) + 𝑐2 (𝑏 + 2𝑡) ;
𝑓 (𝑡) = 1

(𝑏 − 𝑡) ,
𝑔 (𝑡) = 𝑐1(𝑏 − 𝑡) + 𝑐2 (𝑏 − 𝑡)4 ,

(63)

for arbitrary constants 𝑏, 𝑐1, and 𝑐2. 𝑐2 of each case corresponds
to nonclassical symmetries with

𝜉 = (2𝑡 + 𝑏) + 𝑥
(2𝑡 + 𝑏) ,

𝜂 = −( 2
𝛽)(2𝜉 + 𝛽𝑢

(𝑏 + 2𝑡)) ;
𝜉 = (𝑡 − 𝑏)4 − 𝑥

(𝑡 − 𝑏) ,
(64)

𝜂 = 2𝑢
(𝑡 − 𝑏) − 𝜉 (3𝑥 + 2 (𝑡 − 𝑏)5)

(𝛽 (𝑡 − 𝑏)2) . (65)

Further reductions of (54) are given as

𝑓 (𝑡) = 𝑝󸀠 (𝑡)
2𝑝 (𝑡) ,

𝑝󸀠 (𝑡)2 = 𝑎𝑝3 (𝑡) + 𝑐,
𝑓󸀠 (𝑡) = 𝑓2 (𝑡) + 𝑑 exp(∫𝑓 (𝑡) 𝑑𝑡) ,

(66)

where 𝑎, 𝑐, and 𝑑 are arbitrary constants. Any solution to the
reduced equations yields nonclassical symmetry of nonlinear
Boussinesq equation (46) through solving 𝑔(𝑡) and ℎ(𝑡) from
(54) and (62). Although the specific nonclassical symmetries
(64) and (65) are covered by the general reductions of (54)
given in [9, 30, 31], they are not solved explicitly in these
materials. In the next section, we show that the nonclassical
symmetries yield a kind of rational function solutions with
blow-up property to the nonlinear Boussinesq equation.

5. Invariant Solutions

We use symmetries (64) and (65) in Section 4 to construct
invariant solutions to nonlinear Boussinesq equation (46). To
end this, solving the characteristic equations 𝑑𝑡 = 𝑑𝑥/𝜉 =𝑑𝑢/𝜂, we have invariants

𝐼1 = (3𝑥 − 4𝑡2 − 4𝑏𝑡 − 𝑏2)
(3√𝑏 + 2𝑡) ,

𝐼2 = (4
9𝛽) (3𝑥 (𝑏 + 2𝑡) + 8𝑡3 + 12𝑏𝑡2 + 6𝑏2𝑡 − 𝑏3)

+ (𝑏 + 2𝑡) 𝑢,

(67)

in symmetry (64), and

𝐼3 = (𝑡 − 𝑏) (1
6 (𝑡 − 𝑏)5 − 𝑥) ,

𝐼4 = (6𝐼23/ (𝑡 − 𝑏)6 + (25/6) (𝑡 − 𝑏)6)
(12𝛽) + 𝑢

(𝑡 − 𝑏)2 ,
(68)

in symmetry (65). Here, 𝑏 is an arbitrary constant.
Corresponding to the two groups of the invariants, let𝐼2 = 𝐹(𝐼1) and 𝐼4 = 𝐺(𝐼3) for two functions 𝐹 and 𝐺 be

determined. Hence, we have
𝑢
= (𝐹 (𝐼1) + (4/9𝛽) (𝑏3 − 6𝑏2𝑡 − 12𝑏𝑡2 − 8𝑡3 − 3𝑥 (2𝑡 + 𝑏)))

(2𝑡 + 𝑏) ;
𝑢
= 1

12𝛽 (12𝛽 (𝑡 − 𝑏)2 𝐺 (𝐼3) − 6 (𝑓 (𝑡, 𝑥)
(𝑡 − 𝑏) )

2 − 25
6 (𝑡 − 𝑏)8) .

(69)

Substituting these into (46), we get the reduced equations

36𝛾𝐹(4) (𝐼1) + (18𝛽𝐹 (𝐼1) + 9𝐼21 + 16𝑏3) 𝐹󸀠󸀠 (𝐼1)
+ 18𝛽𝐹󸀠 (𝐼1)2 + 63𝐼1𝐹󸀠 (𝐼1) + 72𝐹 (𝐼1)
+ 64𝑏3

𝛽 = 0;
36𝛾𝐺(4) (𝐼3) + 3 (6𝛽𝐺 (𝐼3) + 5𝐼3) 𝐺󸀠󸀠 (𝐼3)

+ 18𝛽𝐺󸀠 (𝐼3)2 + 75𝐺󸀠 (𝐼3) − 175
𝛽 = 0,

(70)

respectively. Since the general solutions of the equations
are difficult to solve, we get some special solutions to the
equations as

𝐹 (𝑡) = 𝑒 − 2
𝛽𝑡2,

𝐺 (𝑡) = 5𝜖
3𝛽𝑡 + 𝑐,

(71)

where 𝜖 = −7/2 or 𝜖 = 1 (𝑒 and 𝑐 are arbitrary constants).
Hence, we obtain exact solutions

𝑢 (𝑡, 𝑥) = 2 (𝑏3 − 18𝑏2𝑡 − 36𝑏𝑡2 − 24𝑡3) + 9𝛽𝑒
9𝛽 (𝑏 + 2𝑡)

− 2𝑥2
𝛽 (𝑏 + 2𝑡)2 ;

(72)

and

𝑢 (𝑡, 𝑥) = 1
3𝛽 (𝑡 − 𝑏)2 (3𝛽𝑐 − (5𝜖 (𝑡 − 𝑏) 𝑓 (𝑡, 𝑥)

+ 3𝑓 (𝑡, 𝑥)2
2 (𝑡 − 𝑏)4 +

25
24 (𝑡 − 𝑏)6)) ,

(73)

to (46), where 𝑓(𝑡, 𝑥) = 𝑥 − (1/6)(𝑡 − 𝑏)5.
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Since 𝑢(𝑡, 𝑥) 󳨀→ ∞ when 𝑡 󳨀→ −𝑏/2 or 𝑡 󳨀→ 𝑏,
these solutions are blow-up solutions to (46) and the blow-
ups occur on 𝑡 = −𝑏/2 and 𝑡 = 𝑏. Also these solutions are
rational solutions that are interested in the study of lump-type
soliton solutions to mathematical physics equations (see [32]
and the references therein).

6. Conclusions

We establish a set of intrinsical link identities (26) between
the determining equations of the CLS and nonclassical
symmetry through the corresponding determining polyno-
mial system. From practical examples, we observed that the
infinitesimal functions of a nonclassical symmetry of PDEs
are zero points of some partial terms of the differential
polynomials involved in the identities. By setting the partial
terms to zero, one obtains an additional equation to extend
the original system. As a result, we get auxiliary constraints to
reduce the system of determining equations. Being encour-
aged by the observation, we introduce a concept called
potential constraint to the systemof determining equations of
nonclassical symmetry of PDEs. Correspondingly, the three
principles are suggested to obtain the PCs from the identities
in (26). The PCs can be purposefully obtained from the
relationship (26) from the given principles. Consequently,
we obtain an extended system of the determining equations
system by attaching the obtained PCs to the system. This
system is relatively easy to solve than the original system,
since it has more equations. By calculating the differential
characteristic set of the extended system by Wu’s algorithm,
we reduce the system to differential characteristic set form.
By determining the zero set of the differential characteristic
set, we obtain the nonclassical symmetry of the PDEs.

The method provides a new way and idea to solve a non-
classical symmetry of PDEs. In principle, our method yields
a part of the nonclassical symmetries of PDEs. However, the
examples show that sometimes the method yields whole set
of nonclassical symmetries of PDEs. The method can also be
used to solve symmetry classification problem of PDEs.

Appendix

Differential Characteristic Sets in Example 20

Differential characteristic set 𝐶1 = {𝑞1, 𝑞2, . . . , 𝑞11}, where
𝑞1 = 𝜂V,
𝑞2 = 𝜂𝑢,
𝑞3 = 𝜂𝑥,
𝑞4 = 𝜉V,
𝑞5 = 𝜉𝑢,
𝑞6 = 𝜉𝑥,
𝑞7 = 𝛽𝜂 + 𝜉𝜉𝑡,
𝑞8 = 2𝛽𝜂2 − 𝜉𝜙𝑡 − 𝜉𝜙V𝜙,

𝑞9 = 𝛽𝜂2 + 𝜉2𝜂𝑡,
𝑞10 = 2𝛽𝜂2𝜉 + 𝛽𝜂𝜙 − 𝜉2𝜙𝑡 + 𝜉𝜙𝑢𝜙,
𝑞11 = 2𝛽𝜂3𝜉 + 𝛽𝜂2𝜙 − 𝜂𝜉2𝜙𝑡 − 𝜉2𝜙𝑥𝜙.

(A.1)

Differential characteristic set𝐶2 = {𝑞1, 𝑞2, . . . , 𝑞13}, where
𝑞1 = 𝜂V,
𝑞2 = 𝜉V,
𝑞3 = 𝜉𝑢,
𝑞4 = 𝜂𝑢 + 2𝜉𝑥,
𝑞5 = 𝛽𝜂 + 𝜉𝜉𝑡 − 𝛽𝑢𝜂𝑢 − 𝜉2𝜂𝑢,
𝑞6 = 𝛽𝜂2 + 𝜉2𝜂𝑡 + 2𝛽𝑢2𝜂2𝑢 − 3𝛽𝑢𝜂𝜂𝑢 + 𝑢𝜉2𝜂2𝑢

− 2𝜂𝜉2𝜂𝑢 − 2𝛽𝑢𝜉𝜂𝑥 − 2𝜉3𝜂𝑥,
𝑞7 = 2𝛽2𝜂2 + 2𝛽𝜉2𝜂𝑡 − 2𝛽2𝑢𝜂𝜂𝑢 + 2𝛽𝑢𝜉𝜂𝑢𝜙𝑢

− 2𝛽𝜂𝜉2𝜂𝑢 + 𝜉3𝜂𝑢𝜙𝑢 − 2𝛽𝜉3𝜂𝑥,
𝑞8 = 2𝛽𝑢𝜉2𝜂𝑡 − 3𝛽𝜂2𝜉2 − 3𝜉4𝜂𝑡 − 2𝛽2𝑢2𝜂𝜂𝑢

− 4𝛽𝑢2𝜉2𝜂𝑢𝜙V + 4𝛽2𝑢2𝜉𝜂𝑥 + 2𝛽2𝑢𝜂2
+ 7𝛽𝑢𝜂𝜉2𝜂𝑢 + 6𝜂𝜉4𝜂𝑢 − 2𝑢𝜉4𝜂𝑢𝜙V
+ 6𝛽𝑢𝜉3𝜂𝑥 + 6𝜉5𝜂𝑥,

𝑞9 = 𝛽𝑢𝜂𝜉2𝜂𝑡 − 𝛽𝜂3𝜉2 − 𝜂𝜉4𝜂𝑡 − 2𝛽𝑢2𝜉2𝜂𝑡𝜂𝑢
− 𝑢𝜉4𝜂𝑡𝜂𝑢 − 𝛽2𝑢2𝜂2𝜂𝑢 + 2𝛽2𝑢2𝜂𝜉𝜂𝑥
− 2𝛽𝑢2𝜉2𝜂𝑢𝜙𝑥 + 𝛽2𝑢𝜂3 + 2𝛽𝑢𝜂2𝜉2𝜂𝑢
+ 2𝜂2𝜉4𝜂𝑢 + 2𝛽𝑢𝜂𝜉3𝜂𝑥 − 𝑢𝜉4𝜂𝑢𝜙𝑥
+ 2𝜂𝜉5𝜂𝑥,

𝑞10 = 𝜉6𝜂𝑡𝑡 + 4𝛽2𝑢2𝜉2𝜂𝑡𝑡 + 4𝛽𝑢𝜉4𝜂𝑡𝑡 + 𝛽2𝜂3𝜉2
+ 𝛽𝜂𝜉4𝜂𝑡 − 10𝛽2𝑢2𝜉2𝜂𝑡𝜂𝑢 + 3𝛽2𝑢𝜂𝜉2𝜂𝑡
− 9𝛽𝑢𝜉4𝜂𝑡𝜂𝑢 − 2𝜉6𝜂𝑡𝜂𝑢 − 12𝛽3𝑢3𝜉𝜂𝑢𝜂𝑥
− 3𝛽3𝑢2𝜂2𝜂𝑢 + 18𝛽3𝑢2𝜂𝜉𝜂𝑥
− 10𝛽2𝑢2𝜉3𝜂𝑢𝜂𝑥 + 3𝛽3𝑢𝜂3 − 2𝛽2𝑢𝜂2𝜉2𝜂𝑢
+ 16𝛽2𝑢𝜂𝜉3𝜂𝑥 − 2𝛽𝑢𝜉5𝜂𝑢𝜂𝑥 + 4𝛽𝜂𝜉5𝜂𝑥,

𝑞11 = 8𝛽2𝑢3𝜉2𝜂𝑥𝑥 + 8𝛽𝑢2𝜉4𝜂𝑥𝑥 + 2𝑢𝜉6𝜂𝑥𝑥 + 𝛽𝜂3𝜉2
+ 𝜂𝜉4𝜂𝑡 + 2𝛽𝑢2𝜉2𝜂𝑡𝜂𝑢 + 𝛽𝑢𝜂𝜉2𝜂𝑡 + 𝑢𝜉4𝜂𝑡𝜂𝑢
+ 4𝛽2𝑢3𝜉𝜂𝑢𝜂𝑥 − 𝛽2𝑢2𝜂2𝜂𝑢 − 2𝛽2𝑢2𝜂𝜉𝜂𝑥
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+ 2𝛽𝑢2𝜉3𝜂𝑢𝜂𝑥 + 𝛽2𝑢𝜂3 − 4𝛽𝑢𝜂2𝜉2𝜂𝑢
− 2𝜂2𝜉4𝜂𝑢 − 4𝛽𝑢𝜂𝜉3𝜂𝑥 − 2𝜂𝜉5𝜂𝑥,

𝑞12 = 4𝛽2𝑢3𝜉3𝜂𝑡𝑥 + 4𝛽𝑢2𝜉5𝜂𝑡𝑥 + 𝑢𝜉7𝜂𝑡𝑥 + 𝛽𝜂3𝜉4
+ 𝜂𝜉6𝜂𝑡 − 2𝛽2𝑢3𝜉2𝜂𝑡𝜂𝑢 + 𝛽2𝑢2𝜂𝜉2𝜂𝑡
+ 𝛽𝑢2𝜉4𝜂𝑡𝜂𝑢 + 𝛽𝑢𝜂𝜉4𝜂𝑡 + 𝑢𝜉6𝜂𝑡𝜂𝑢
− 4𝛽3𝑢4𝜉𝜂𝑢𝜂𝑥 − 𝛽3𝑢3𝜂2𝜂𝑢 + 6𝛽3𝑢3𝜂𝜉𝜂𝑥
− 2𝛽2𝑢3𝜉3𝜂𝑢𝜂𝑥 + 𝛽3𝑢2𝜂3 + 4𝛽2𝑢2𝜂𝜉3𝜂𝑥
− 2𝛽𝑢2𝜉5𝜂𝑢𝜂𝑥 + 𝛽2𝑢𝜂3𝜉2 − 3𝛽𝑢𝜂2𝜉4𝜂𝑢
− 2𝜂2𝜉6𝜂𝑢 − 2𝛽𝑢𝜂𝜉5𝜂𝑥 − 𝑢𝜉7𝜂𝑢𝜂𝑥
− 2𝜂𝜉7𝜂𝑥,

𝑞13 = 4𝑢𝜂𝑥𝜙𝑡𝜉7 − 8𝑢2𝛽𝜂2𝑥𝜉7 − 4𝜂𝜂𝑥𝜙𝜉7 − 4𝑢𝜂𝑢𝜂𝑥𝜙𝜉7
+ 4𝑢2𝛽𝜂𝑡𝜂𝑥𝜉6 + 4𝑢2𝛽𝜂𝜂𝑢𝜂𝑥𝜉6 + 2𝜂𝜂𝑡𝜙𝜉6
− 4𝜂2𝜂𝑢𝜙𝜉6 + 2𝑢𝜂𝑡𝜂𝑢𝜙𝜉6 − 2𝑢𝜂𝑡𝜙𝑡𝜉6
+ 2𝑢𝜂𝜂𝑢𝜙𝑡𝜉6 − 24𝑢3𝛽2𝜂2𝑥𝜉5 + 4𝑢𝛽𝜂3𝜂𝑢𝜉5
− 4𝑢2𝛽𝜂𝜂𝑡𝜂𝑢𝜉5 − 14𝑢𝛽𝜂𝜂𝑥𝜙𝜉5
− 12𝑢2𝛽𝜂𝑢𝜂𝑥𝜙𝜉5 + 12𝑢2𝛽𝜂𝑥𝜙𝑡𝜉5
+ 8𝑢3𝛽2𝜂𝑡𝜂𝑥𝜉4 + 10𝑢3𝛽2𝜂𝜂𝑢𝜂𝑥𝜉4
+ 2𝛽𝜂3𝜙𝜉4 + 3𝑢𝛽𝜂𝜂𝑡𝜙𝜉4 − 12𝑢𝛽𝜂2𝜂𝑢𝜙𝜉4
+ 6𝑢2𝛽𝜂𝑡𝜂𝑢𝜙𝜉4 − 2𝑢𝛽𝜂2𝜙𝑡𝜉4 − 4𝑢2𝛽𝜂𝑡𝜙𝑡𝜉4
+ 7𝑢2𝛽𝜂𝜂𝑢𝜙𝑡𝜉4 − 16𝑢4𝛽3𝜂2𝑥𝜉3
+ 2𝑢2𝛽2𝜂2𝜂𝑡𝜉3 + 6𝑢2𝛽2𝜂3𝜂𝑢𝜉3
− 8𝑢3𝛽2𝜂𝜂𝑡𝜂𝑢𝜉3 − 18𝑢2𝛽2𝜂𝜂𝑥𝜙𝜉3
+ 𝑢3𝛽3𝜂2𝜂𝑢𝜙 − 4𝑢3𝛽2𝜂𝑢𝜂𝑥𝜙𝜉3
+ 8𝑢3𝛽2𝜂𝑥𝜙𝑡𝜉3 + 4𝑢3𝛽3𝜂2𝜂𝑥𝜉2
+ 4𝑢4𝛽3𝜂𝜂𝑢𝜂𝑥𝜉2 + 3𝑢𝛽2𝜂3𝜙𝜉2
− 𝑢2𝛽2𝜂𝜂𝑡𝜙𝜉2 − 8𝑢2𝛽2𝜂2𝜂𝑢𝜙𝜉2
+ 4𝑢3𝛽2𝜂𝑡𝜂𝑢𝜙𝜉2 − 4𝑢2𝛽2𝜂2𝜙𝑡𝜉2
+ 6𝑢3𝛽2𝜂𝜂𝑢𝜙𝑡𝜉2 + 2𝑢2𝛽3𝜂4𝜉 − 2𝑢3𝛽3𝜂3𝜂𝑢𝜉
− 10𝑢3𝛽3𝜂𝜂𝑥𝜙𝜉 + 8𝑢4𝛽3𝜂𝑢𝜂𝑥𝜙𝜉
− 𝑢2𝛽3𝜂3𝜙.

(A.2)
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