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In this paper, we study the following Schrödinger-Poisson equations
−Δu + u + ϕu = u5 + λaðxÞjujp−1u, x ∈ℝ3,
−Δϕ = u2, x ∈ℝ3,

(
where the

parameter λ > 0 and p ∈ ð0, 1Þ. When the parameter λ is small and the weight function aðxÞ fulfills some appropriate conditions,
we admit the Schrödinger-Poisson equations possess infinitely many negative energy solutions by using a truncation technology
and applying the usual Krasnoselskii genus theory. In addition, a byproduct is that the set of solutions is compact.

1. Introduction and Main Results

In the present paper, we are interested in the existence of
infinitely many negative energy solutions of the following
Schrödinger-Poisson equations:

−Δu + u + ϕu = u5 + λa xð Þ uj jp−1u, x ∈ℝ3,
−Δϕ = u2, x ∈ℝ3,

(
ð1Þ

where the parameter λ > 0, p ∈ ð0, 1Þ, and aðxÞ is a positive
continuous weight function satisfying a ∈ L2/ð1−pÞðℝ3Þ.

In recent decades, the Schrödinger-Poisson system has
been studied widely by many authors, because it has strong
physical background and interesting meaning. It arises in
nonlinear quantum mechanics models and semiconductor
theory. From a physical viewpoint, the system describes the
interaction between identical charged particles, when the
magnetic effects could be ignored in the interaction with each
other and its solution is a standing wave for such a stationary
system. The nonlinearity models the mutual interaction

between many charged particles. The system consists of a
Schrödinger equation coupled with a Poisson equation,
which implies that the potential is determined by the charge
of the wave function. The nonlocal term ϕu means that the
particles interact with its own electric field. For more infor-
mation about the mathematical and physical background of
the system, we refer the readers to see papers [1–4] and the
references therein.

The studies of the Schrödinger-Poisson system have been
focused on the existence of positive solutions, ground state
solutions, multiplicity of solutions, radial solutions and the
semiclassical limit solutions, concentration behavior of solu-
tions, and sign-changing solutions. See references [5–17] and
the references therein.

When the nonlinear term is presented as a subcritical
growth, there are many results in the literature. Ruiz [18]
studied the following system:

−Δu + u + λϕu = up, x ∈ℝ3,
−Δϕ = u2, x ∈ℝ3,

(
ð2Þ
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where the parameter λ > 0 and p ∈ ð1, 5Þ. When λ is small,
the author showed that there exists at least one positive radial
solutions for p ∈ ½2, 5Þ, and at least two positive radial solu-
tions for p ∈ ð1, 2Þ. In particular, if λ ≥ 1/4, the author proved
that p = 2 is a threshold of existence and nonexistence of pos-
itive radial solutions. When λ = 1 in system (2), Azzollini and
Pomponio [19] established the existence of ground state
solution for p ∈ ð2, 5Þ. For related system and more results,
please refer readers to see [20–28].

In the paper, we are concerned with a critical growth of
nonlinearity term and perturbation of low order terms. In
this case, there are some results in the references. As regards
the following relevant system,

−Δu + V xð Þu + λϕu = u5 + μup, x ∈ℝ3,
−Δϕ = u2, x ∈ℝ3,

(
ð3Þ

where the parameter λ, μ > 0 and p ∈ ð1, 5Þ, under some suit-
able conditions, existence of a nontrivial solution was proved
in [19] for 3 < p < 5 and in [29] for 1 < p < 5. Here, we would
like to mention some other papers [30–34] for related results.
We note that the existence of solutions is very seriously
depending on the range of the p. As far as we know, there
is no result of Schrödinger-Poisson system involving the
combination with a critical nonlinearity and sublinear terms.

The compactness of the imbedding H1ðℝ3Þ into Lpðℝ3Þ
ð2 ≤ p ≤ 6Þ does not hold, and the nonlocal term ϕuu and
the critical nonlinear term u5 appear in the system, which
cause many difficulties for us using the variational methods
in a standard way to solve the Schrödinger-Poisson system.

Motivated by works mentioned above, particularly, by
the results in [16, 24, 29, 35], we overcome these difficulties
mentioned above and obtain the existence of infinitely many
negative energy solutions to system (1) for p ∈ ð0, 1Þ and
small λ > 0.

We denote by S the best constant for the Sobolev space
D1,2ðℝ3Þ imbedding into the Lebesgue space L6ðℝ3Þ, namely,
D1,2ðℝ3Þ↪ L6ðℝ3Þ,

S≔ inf
u∈D1,2 ℝ3ð Þ\ 0f g

Ð
ℝ3 ∇uj j2dxÐ
ℝ3 uj j6dx� �1/3 : ð4Þ

Now, we give our main result as follows.

Theorem 1. Assume p ∈ ð0, 1Þ. Then, there exists a positive
constant Λ such that system (1) possesses infinitely many neg-
ative energy solutions for any λ ∈ ð0,ΛÞ. Moreover, the set of
solutions obtained above is compact.

Remark 2.When λ ≤ 0, the system (1) has no solution, which
follows from Pohožaev’s identity (see [36]). To some extent,
we extend the results in [16, 24, 29, 35].

Remark 3. The key ingredient in the proof of Theorem 1 is
the genus theory, which plays an important role in obtaining
infinitely many solutions of Schrödinger-Poisson equations
(1). We followed the methods of Yao and Mu in [37], where

the authors studied nonlocal problem of Kirchhoff-type in
high dimension (N ≥ 4).

The remainder of this paper is organized as follows. In
Section 2, we present the abstract framework of the problem
as well as some preliminary results. Theorem 1 shall be
proved in Section 3.

2. Preliminaries and Functional Setting

In this section, we will define some notations and establish
the variational setting for Schrödinger-Poisson equations
(1) and list some fundamental results.

(i) Let H1ðℝ3Þ be the usual Sobolev space endowed
with the standard inner product and induced norm

u, vh i =
ð
ℝ3
∇u ⋅ ∇v + uvdx,

uk k =
ð
ℝ3

∇uj j2 + u2dx
� �1/2 ð5Þ

(ii) Lpðℝ3Þ is the usual Lebesgue space equipped with
the norm

uj jp =
ð
ℝ3

uj jpdx
� �1/p

, for 1 ≤ p <∞,

uj j∞ = ess sup u xð Þj j
x∈ℝ3

ð6Þ

(iii) D1,2ðℝ3Þ is the completion of C∞
0 ðℝ3Þ with respect

to the norm

uk kD1,2 ℝ3ð Þ ≔
ð
ℝ3

∇uj j2dx
� �1/2

ð7Þ

(iv) The letters C and Ciði = 1, 2,⋯Þ denote various pos-
itive constants which may vary from line to line and
whose exact values are irrelevant

(v) The notations → and ⇀ mean strong convergence
and weak convergence in corresponding to func-
tional setting, respectively

(vi) We use oð1Þ to denote any infinitely small quantity
that tends to zero as n→∞

For any u ∈H1ðℝ3Þ, the Lax-Milgram theorem implies
that there exists a unique ϕu ∈D

1,2ðℝ3Þ such that, for any
v ∈D1,2ðℝ3Þ,

ð
ℝ3
∇ϕu ⋅ ∇vdx =

ð
ℝ3
u2vdx, ð8Þ
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that is, ϕu is the weak solution of −Δϕ = u2. Furthermore,

ϕu xð Þ = 1
4π

ð
ℝ3

u2 yð Þ
x − yj j dy: ð9Þ

We then can rewrite Schrödinger-Poisson equations
(1) as the following:

−Δu + u + ϕuu = u5 + λa xð Þup, x ∈ℝ3, ð10Þ

and energy functional associated with equation (10) is

I uð Þ = 1
2

ð
ℝ3

∇uj j2 + u2dx + 1
4

ð
ℝ3
ϕuu

2dx

−
1
6

ð
ℝ3
u6dx −

λ

p + 1

ð
ℝ3
a xð Þ uj jp+1dx:

ð11Þ

It is readily seen that the energy functional I belongs
to C1ðH1ðℝ3Þ,ℝÞ and that

I ′ uð Þ, v
D E

=
ð
ℝ3
∇u ⋅ ∇v + uvdx +

ð
ℝ3
ϕuuvdx

−
ð
ℝ3

uj j4uvdx − λ
ð
ℝ3
a xð Þ uj jp−1uvdx,

ð12Þ

for any v ∈H1ðℝ3Þ. Hence, if u ∈H1ðℝ3Þ is a critical point
of functional I, then u is a solution of equation (10) and
ðu, ϕuÞ ∈H1ðℝ3Þ ×D1,2ðℝ3Þ is a solution of system (1).
We denote ΦðuÞ≔ ϕu for simple expressions.

In what follows, we start to state our preliminary results.

Lemma 4. Φ satisfies the following results:

(1) Φ is continuous in H1ðℝ3Þ and Φ ≥ 0

(2) If un ⇀ u inH1ðℝ3Þ, thenΦðunÞ⇀ΦðuÞ inD1,2ðℝ3Þ
(3) ΦðtuÞ = t2ΦðuÞ for any t ∈ℝ
(4) kϕukD1,2ðℝ3Þ ≤ Ckuk2. Furthermore,

Ð
ℝ3ϕuu

2dx ≤ ~C

kuk4

The proof is omitted here and refers to [18, 29].

Lemma 5. Assume fung is a ðPSÞc for functional I in H1ðℝ3Þ.
Then, fung is bounded in H1ðℝ3Þ.

Proof. Arguing by contradiction, assume kunk→∞ as n→
∞. According to the Sobolev and Hölder inequality and
p ∈ ð0, 1Þ, we find that

c + 0 1ð Þ = I unð Þ − 1
4 I ′ unð Þ, un
D E

= 1
4 unk k2 − λ

1
p + 1 −

1
4

� �ð
ℝ3
a xð Þ unj jp+1dx

+ 1
12

ð
ℝ3
u6ndx ≥

1
4 unk k2

− λ
1

p + 1 −
1
4

� �
aj j2/ 1−pð Þ unj jp+12

≥
1
4 unk k2 − λC unk kp+1 ���!n→∞ ∞:

ð13Þ

This is a contradiction, and fung is bounded in H1

ðℝ3Þ.

Lemma 6. Suppose fung is a ðPSÞc for functional I inH1ðℝ3Þ.
Then, fung has a convergent subsequence in H1ðℝ3Þ provided
that c < ð1/3ÞS3/2.

Proof. By Lemma 5, we know that fung is bounded inH1ðℝ3Þ,
and up to a subsequence, there exists a u ∈H1ðℝ3Þ such that

un ⇀ u inH1 ℝ3� �
,

un → u inLploc ℝ3� �
for p ∈ 1, 6ð Þ,

un → u a:e inℝ3:

ð14Þ

In light of Lions’ second concentration compactness
lemma [38], there exist an at most countable index set J,
a sequence of points fxjgj∈J ⊂ℝ3, and values fμ jgj∈J ,
fνjgj∈J ⊂ℝ+ such that

∇unj j2 ⇀ dμ ≥ ∇uj j2 +〠
j∈J
μjδxj,

u6n ⇀ dv = u6 +〠
j∈J
vjδxj,

Sv1/3j ≤ μj,

ð15Þ

in the measure sense, where δxj is the Dirac mass at xj.

We next shall prove that the index set J is empty. By
the reduction to absurdity, let us suppose that there exists
a j0 such that νj0

≠ 0. Consider that some cut-off function

ϕ ∈ C∞
0 ðℝ3Þ: ℝ3 → ½0, 1� such that

ϕ ≡ 1 onB xj0 , ε
� �

,

ϕ = 0 onB xj0 , 2ε
� �c

,

∣∇ϕ∣ ≤
2
ε
:

ð16Þ

Obviously, the sequence fϕung is bounded in H1ðℝ3Þ,
and because fung is a ðPSÞc sequence of functional I, then
limn→∞hI ′ðunÞ, ϕuni = 0, i.e., for large n, there is
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ð
ℝ3
un∇un∇ϕdx +

ð
ℝ3

∇unj j2ϕdx +
ð
ℝ3
ϕun∇u

2
nϕdx

= λ
ð
ℝ3
a xð Þ unj jp+1ϕdx +

ð
ℝ3
u6nϕdx + o 1ð Þ:

ð17Þ

Let us start to estimate each terms in the equation
above. Using the Hölder inequality and (15), we compute
simply

0 ≤
ð
ℝ3

un∇un∇ϕj jdx

≤
ð
B2ε xj0ð Þ

unj j2dx
 !1/2 ð

B2ε xj0ð Þ
unj j2 ∇ϕj j2dx

 !1/2

≤ C1

ð
B2ε xj0ð Þ

unj j2 ∇ϕj j2dx
 !1/2

≤ C1

ð
B2ε xj0ð Þ

unj j6dx
 !1/6 ð

B2ε xj0ð Þ
∇ϕj j3dx

 !1/3

≤ C2

ð
B2ε xj0ð Þ

unj j6dx
 !1/6 ��!ε→0 0,

lim
ε→0

lim
n→∞

ð
ℝ3

∇unj j2ϕdx ≥ μj0
,

ð18Þ

lim
ε→0

lim
n→∞

ð
ℝ3
u6nϕdx = lim

ε→0

ð
ℝ3
u6ϕdx + νj0

= νj0
, ð19Þ

lim
ε→0

lim
n→∞

λ
ð
ℝ3
a xð Þ unj jp+1ϕdx

= lim
ε→0

lim
n→∞

λ
ð
B2ε x j0ð Þ

a xð Þ unj jp+1ϕdx

= λlim
ε→0

ð
B2ε x j0ð Þ

a xð Þ uj jp+1ϕdx = 0:

ð20Þ

Together with formulas above, we note

νj0
≥ μ j0

: ð21Þ

By combining this inequality with the third formula in
(15), we show that

νj0
≥ S3/2: ð22Þ

Take a cut-off function ψ ∈ C∞
0 ðℝ3Þ: ℝ3 → ½0, 1� such

that

ψ ≡ 1 onB 0, Rð Þ,
ψ = 0 onB 0, 2Rð Þc,

∣∇ψ∣ ≤
3
R
:

ð23Þ

For simplicity of computation, denote

α≔
1
4

ð
ℝ3
u2dx − λ

1
p + 1 −

1
4

� �ð
ℝ3
a xð Þ uj jp+1dx: ð24Þ

By Hölder’s inequality, we easily know that

α ≥
1
4 uj j22 − λ

1
p + 1 −

1
4

� �
aj j2/ 1−pð Þ uj jp+12 , ð25Þ

since aðxÞ ∈ L2/ð1−pÞðℝ3Þ and p ∈ ð0, 1Þ, there exists some
positive constant Λ such that α > 0 for λ ∈ ð0,ΛÞ. Using
(15), (21), and (22), we obtain

c = lim
n→∞

I unð Þ − 1
4 I ′ unð Þ, un
D E

= lim
n→∞

	 1
4

ð
ℝ3

∇unj j2dx + 1
4

ð
ℝ3
u2ndx

− λ
1

p + 1 −
1
4

� �ð
ℝ3
a xð Þ unj jp+1dx + 1

12

ð
ℝ3
u6ndx




> lim
R→∞

lim
n→∞

� 1
4

ð
ℝ3

∇unj j2ψdx + 1
4

ð
ℝ3
u2nψdx

−
λ 3 − pð Þ
4 p + 1ð Þ

ð
ℝ3
a xð Þ unj jp+1ψdx + 1

12

ð
ℝ3
u6nψdx

�

> lim
R→∞

1
4

ð
ℝ3

∇uj j2ψdx + 1
4 μ j0

+ 1
12

ð
ℝ3
u6ψdx + 1

12 vj0
� �

+ α > 1
4 μj0

+ 1
12 vj0 >

1
4 Svj0 +

1
12 vj0

> 1
4 S

3/2 + 1
12 S

3/2 > 1
3 S

3/2:

ð26Þ

This is a contradiction with the hypothesis, so the
index set J is empty.

Take T > 0 and define

μ∞ ≔ lim
T→∞

lim sup
n→∞

ð
xj j>T

∇unj j2dx,

ν∞ ≔ lim
T→∞

lim sup
n→∞

ð
xj j>T

u6ndx:

ð27Þ

In line with lemma 1.40 in [39], μ∞ and ν∞ fulfill the
following formulas

lim sup
n→∞

ð
ℝ3

∇unj j2dx =
ð
ℝ3
dμ + μ∞,

lim sup
n→∞

ð
ℝ3
u6ndx =

ð
ℝ3
dν + ν∞,

Sν1/3∞ ≤ μ∞:

ð28Þ
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Take a cut-off function φR ∈ C
∞
0 ðℝ3Þ: ℝ3 → ½0, 1� such

that

φR ≡ 0 onB 0, Rð Þ,
φR = 1 onB 0, 2Rð Þc,

∣∇φR∣ ≤
3
R
:

ð29Þ

As above, the sequence fφRung is bounded in H1ðℝ3Þ
and limn→∞hI ′ðunÞ, φRuni = 0, namely,

ð
ℝ3
un∇un∇φRdx +

ð
ℝ3

∇unj j2φRdx +
ð
ℝ3
ϕunu

2
nφRdx

= λ
ð
ℝ3
a xð Þ unj jp+1φRdx +

ð
ℝ3
u6nφRdx + o 1ð Þ:

ð30Þ

We need again to estimate every terms in the equation
above. By the Hölder inequality and the definition of φR, it
follows that

0 ≤ lim
R→∞

lim sup
n→∞

ð
ℝ3

un∇un∇φRj jdx

≤ lim
R→∞

lim sup
n→∞

ð
B 0,2Rð Þ/B 0,Rð Þ

∇unj j2dx
 !1/2

�
ð
B 0,2Rð Þ/B 0,Rð Þ

∇φRj j2u2ndx
 !1/2

≤ C lim
R→∞

ð
B 0,2Rð Þ/B 0,Rð Þ

∇φRj j2u2dx
 !1/2

≤ C lim
R→∞

ð
B 0,2Rð Þ/B 0,Rð Þ

∇φRj j3dx
 !1/3

�
ð
B 0,2Rð Þ/B 0,Rð Þ

u6dx

 !1/6

≤ C1 limR→∞

ð
B 0,2Rð Þ/B 0,Rð Þ

u6dx

 !1/6

= 0,

ð31Þ

lim
R→∞

lim sup
n→∞

ð
ℝ3

∇unj j2φRdx ≥ lim
R→∞

lim sup
n→∞

ð
xj j>R

∇unj j2dx

= μ∞,
ð32Þ

lim
R→∞

lim sup
n→∞

ð
ℝ3
u6nφR

dx = lim
R→∞

lim sup
n→∞

ð
xj j>R

u6nφR
dx

≤ lim
R→∞

lim sup
n→∞

ð
xj j>R

u6ndx = v∞:

ð33Þ

According to the estimates above, we easily show that
μ∞ ≤ ν∞. Combination with (28), we know that ν∞ = 0
or ν∞ ≥ S3/2. If ν∞ ≥ S3/2 holds, then we have

C = lim
n→∞

I unð Þ − 1
4 I ′ unð Þ, un
D E� �

> lim
n→∞

� 1
4

ð
ℝ3

∇unj j2dx + 1
4

ð
ℝ3

unj j2dx

−
λ

4

ð
ℝ3
a xð Þ unj jp+1dx + 1

12

ð
ℝ3
u6ndx

�

> 1
4

ð
ℝ3

∇uj j2dx + 1
4 μ∞ + 1

12

ð
ℝ3
u6dx + 1

12 v∞ + α

> 1
4 μ∞

1
12 v∞ > 1

4 Sv
1/3
∞

1
12 v∞ > 1

4 S
3/2 1

12 S
3/2 > 1

3 S
3/2:

ð34Þ

This is a contradiction with the assumption, thus ν∞
= 0 holds. Together (15) and (28) with the empty index
set J , we obtain that

lim sup
n→∞

ð
ℝ3
u6ndx =

ð
ℝ3
u6dx: ð35Þ

By Fatou’s lemma, we prove that

ð
ℝ3
u6dx ≤ lim inf

n→∞

ð
ℝ3
u6ndx ≤ lim sup

n→∞

ð
ℝ3
u6ndx =

ð
ℝ3
u6dx:

ð36Þ

Therefore, un → u in L6ðℝ3Þ. Set wn ≔ un − u, and wn

⇀ 0 in H1ðℝ3Þ. Suppose limn→∞kwnk =w. Since I ′ is
sequentially weakly continuous in H1ðℝ3Þ, we have that
limn→∞I ′ðwnÞ→ 0 and

0 = lim
n→∞

I ′ wnð Þ,wn

D E
= lim

n→∞

�ð
ℝ3

∇wnj j2 +w2
ndx +

ð
ℝ3
ϕwn

w2
ndx

− λ
ð
ℝ3
a xð Þ wnj jp+1dx −

ð
ℝ3
w2

ndx
�

≥ lim
n→∞

ð
ℝ3

∇wnj j2 +w2
ndx − λ

ð
ℝ3
a xð Þ wnj jp+1dx

� �
≥ lim

n→∞
wnk k2 − Cλ wnk kp+1� �

≥w2 − Cλwp+1:

ð37Þ

Thus for small λ > 0, this formula forces w = 0 and
kwnk→ 0 as n→∞, and un → u in H1ðℝ3Þ. The proof
is finished.

3. The Proof of Theorem 1

In this section, we shall utilize the Krasnoselskii genus theory
to establish a minimax class of critical points for proving that
Schrödinger-Poisson equations (1) possess infinitely many
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negative energy solutions. And we next need to introduce the
classical concept and some properties of the genus.

Let E be a real Banach space and Γ denote the family of
sets A ⊂ E \ f0g such that A is closed in E and symmetric with
respect to 0, namely, x ∈ A implies −x ∈ A: For any A ∈ Γ, we
define the genus of A as follows:

γ Að Þ≔min
n
k ∈ℕ : ∃φ

∈ C A,ℝk \ 0f g
� �

such thatφ xð Þ is odd
o
:

ð38Þ

If there is no finite k, then define γðAÞ =∞, and γð∅Þ = 0
by definition of the genus. For A ∈ Γ and δ > 0, we denote by
NδðAÞ a uniform δ-neighborhood of A, that is,

Nδ Að Þ = x ∈ E : dist x, Að Þ ≤ δf g: ð39Þ

In what follows, we shall list some properties of the genus
that prepare for showing our results. More detail content
about the genus may be seen in the references ([40], Proposi-
tions 7.5-7.8).

Proposition 7. Assume A, B ∈ Γ. Then, following several
results hold.

(1) Normalization: if x ≠ 0, then γðfxg ∪ f−xgÞ = 1

(2) Mapping property: if there is an odd map f ∈ CðA, BÞ,
then γðAÞ ≤ γðBÞ

(3) Monotonicity property: if A ⊂ B, then γðAÞ ≤ γðBÞ
(4) Subadditivity: γðA ∪ BÞ ≤ γðAÞ + γðBÞ
(5) Continuity property: if A is compact, then γðAÞ <∞

and there exists a δ > 0 such that NδðAÞ ∈ Γ and
γðNδðAÞÞ = γðAÞ

(6) If there is an odd homeomorphism between A and B,
then γðAÞ = γðBÞ

(7) If SN−1 is the sphere in ℝN , then γðSN−1Þ =N

(8) If γðBÞ <∞, then γðA� BÞ ≥ γðAÞ − γðBÞ
(9) If Y is a subspace of X with codimension k and γðAÞ

≥ k, then A ∩ Y ≠∅.

Proposition 8. Assume A ∈ Γ. If γðAÞ ≥ 2, then set A includes
infinitely many points.

We define presently an auxiliary function, which essen-
tially follows the idea and method in [41]. Denote

f tð Þ≔ 1
2 t

2 − λβtp+1 −
1
6S3

t6, ð40Þ

where β is a positive constant and determined below. By the
Hölder and Sobolev inequality, it follows that

I uð Þ = 1
2

ð
ℝ3

∇uj j2 + u2dx + 1
4

ð
ℝ3
ϕuu

2dx

−
λ

p + 1

ð
ℝ3
a xð Þ uj jp+1dx − 1

6

ð
ℝ3
u6dx

≥
1
2 uk k2 − λ

p + 1 aj j2/ 1−pð Þ uj jp+12 −
1
6S3

uk k6

≥
1
2 uk k2 − λβ uk kp+1 − 1

6S3
uk k6 = f uk kð Þ:

ð41Þ

For p ∈ ð0, 1Þ, we observe that f gets its positive unique
maximum (see Figure 1).

To find the critical points of the energy functional I, we
truncate the functional I as the following:

~I uð Þ≔ 1
2

ð
ℝ3

∇uj j2 + u2dx + 1
4

ð
ℝ3
ϕuu

2dx

−
λ

p + 1

ð
ℝ3
a xð Þ uj jp+1dx − ω uð Þ

6

ð
ℝ3
u6dx,

ð42Þ

where ωðuÞ = τð∥u∥Þ and τ ∈ C∞ : ℝ+ → ½0, 1� is a decreasing
function and satisfies

τ tð Þ = 1, t ≤ t0,
τ tð Þ = 0, t ≥ T ,

ð43Þ

where t0 and T are two roots of the function f (see Figure 1)
and t0 < T . As above, we have that ~IðuÞ ≥ ~f ðkukÞ with

~f tð Þ≔ 1
2 t

2 − λβtp+1 −
τ tð Þ
6S3

t6, ð44Þ

and see Figure 2. Obviously, ~I ∈ C1 and if ~IðuÞ ≤ 0, then we
observe that ∥u∥≤t0 and IðuÞ =~IðuÞ.

Therefore, we only need to find some negative critical
values for the truncating functional ~I. To do it, we next shall
give some lemmas for constructing the minimax sequence of
negative critical values of the truncating functional ~I:

t0 T

Figure 1
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Before to state the following results, we give some defini-
tions. Denote

Γk ≔ A ∈ Γ : γ Að Þ ≥ kf g,
Kc ≔ u ∈H1 ℝ3� �

: ~I uð Þ = c,~I ′ uð Þ = 0
n o

, ð45Þ

~I
d ≔ u ∈H1 ℝ3� �

: ~I uð Þ ≤ d
� �

, ð46Þ
and define

ck ≔ inf
A∈Γk

sup
u∈A

~I uð Þ: ð47Þ

Lemma 9. For any positive integer n ∈ℕ, there is a ε =
εðnÞ > 0 satisfying γð~I−εÞ ≥ n.

Proof. To show this lemma, we adopt to the argument
used in [41], which handles with the local problem. Fix any
n and suppose En is an n-dimensional subspace of H1ðℝ3Þ.
Taking v ∈ En with kvk = 1 and t ∈ ð0, t0Þ, by Figures 1 and
2, we observe

~I tvð Þ = I tvð Þ < 0, ð48Þ

then, we can choose ε > 0 and t < t0 such that ~IðtuÞ ≤ −ε for
u ∈ En and kuk = 1. Denote

S≔ u ∈ En : uk k = tf g, ð49Þ

for t < t0, it is easy to know γðSÞ = n and note

S ⊂ u ∈H1 ℝ3� �
: ~I uð Þ ≤ −ε

� �
: ð50Þ

Because En and ℝn are isomorphic and S and Sn−1 are
homeomorphic, it follows from Proposition 7 that

γ u ∈H1 ℝ3� �
: ~I uð Þ≤−ε�� �

≥ γ Sð Þ = n: ð51Þ

Lemma 10. Assume λ ∈ ð0,ΛÞ. If c = ck = ck+1 =⋯ = ck+r for
some integer r ∈ℕ, then γðKcÞ ≥ r + 1:

Proof. We first claim that each ck is negative. Indeed, by
Lemma 4, for every integer k ∈ℕ, there exists ε > 0 such that
γð~I−εÞ ≥ k. Because functional ~I is continuous in H1ðℝ3Þ and

even ~I
−ε ∈ Γk. In virtue of the definition of ck and low bound-

edness of ~I, we know

−∞ < ck = inf
A∈Γk

sup
u∈A

~I uð Þ ≤ sup
u∈~I−ε

~I uð Þ ≤ −ε < 0: ð52Þ

Then, we easily show that Kc is compact by Lemma 6. In
the following argument, we will prove the expected result by
contradiction. Assume γðKcÞ ≤ r, according to the fifth in
Proposition 7, then there exists a closed and symmetric set
U with Kc ⊂U such that γðUÞ = γðKcÞ ≤ r: Due to c < 0, we
can choose U such that U ⊂~I0. Owing to the deformation
lemma [42], there is an odd homeomorphism

η : H1 ℝ3� �
→H1 ℝ3� �

, ð53Þ

such that ηð~Ic+δ −UÞ ⊂~Ic−δ for some δ with 0 < δ < −c. So
~I
c+δ ⊂~I0 and then by the definition of c = ck = cc+k, there exists

A ∈ Γk+r such that supu∈A~I < c + δ, that is, A ⊂~Ic+δ and

η A −Uð Þ ⊂ η ~I
c+δ −U

� �
⊂~Ic−δ: ð54Þ

It means

~I η A −Uð Þð Þ ≤ c − δ: ð55Þ

On the other hand, because of γðAUÞ ≥ γðAÞ − γðUÞ ≥ k
and γðηðAUÞÞ ≥ γðAUÞ ≥ k, then ηðAUÞ ∈ Γk, which implies

sup
u∈η AUð Þ

~I uð Þ ≥ ck = c: ð56Þ

This is a contradiction with (54). Therefore, the proof is
finished.

Proof of Theorem 1. By the analysis above, if ck < 0, then we
know that ~IðuÞ = IðuÞ. Thus, it is sufficient to show that the
truncating functional ~I possesses infinitely many negative
critical values. Noting that ck is nondecreasing with respect
to k, there are only the following two cases:

Case I. There are 1 ≤ k1<⋯<ki<⋯ satisfying −∞<ck1 < ck2<
⋯<cki<⋯<0. In this case, obviously, the functional ~I has infi-
nitely many negative critical values fckg. It is done.

Case II. There is a positive l such that c = ck < 0 for all k ≥ l:
In the case, by Lemma 10, we know γðKcÞ =∞, which
implies that the set Kc has infinitely many points, which
means that the functional ~I possesses infinitely many neg-
ative critical values. Finally, we shall see that the set of
solutions is compact.

Let fukg be a sequence of solutions to the equations (1).
In Case I, we know that 0 ≥ ck =~IðukÞ and ~I ′ðukÞ = 0; by
Lemma 5, we then easily get that there is a u ∈H1ðℝ3Þ satis-
fying uk → u as k→∞: Then, it follows conclusion. In Case

t0

Figure 2
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II, it is trivial to see that the set Kc is compact. Thereupon, the
proof is completed.
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