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In this paper, a prey-predator model and weak Allee effect in prey growth and its dynamical behaviors are studied in detail. The
existence, boundedness, and stability of the equilibria of the model are qualitatively discussed. Bifurcation analysis is also taken
into account. After incorporating the searching delay and digestion delay, we establish a delayed predator-prey system with Allee
effect. The results show that there exist stability switches and Hopf bifurcation occurs while the delay crosses a set of critical values.
Finally, we present some numerical simulations to illustrate our theoretical analysis.

1. Introduction

Some researchers have conducted extensive research on the
dynamics of interacting prey-predator models to understand
the long-termbehavior of species. Awide variety of nonlinear
coupled ordinary differential equation models are proposed
and analyzed for the interaction between prey and their
predators. The classic predator-prey model is the Lotka-
Volterra model, which was independently proposed by Lotka
in the United States in 1925 and Volterra in Italy in 1926 [1, 2].
The model was developed on the basis of a single-population
growth model and has wide applicability. The mathematical
form of the Lotka-Volterra model is𝑑𝑥𝑑𝑡 = 𝑟𝑥 − 𝑎𝑥𝑦𝑑𝑦𝑑𝑡 = 𝑐𝑥𝑦 − 𝑚𝑦 (1)

In population dynamics,when the population density is very
low, there is a positive correlation between the population
unit growth rate and the population density. This phe-
nomenon can be called the Allee effect [3–5], starting with
Allee’s research [6]. The Allee effect is classified according
to the density-dependent properties at low density. If the
population density is low, a strong Allee effect will appear. If

the proliferation rate is positive and increases, the Allee effect
will be weak. Demographic Allee effects can be either weak or
strong [7, 8].When the density is below the critical threshold,
the population affected by the strong Allee effect will have a
negative average growth rate. Under deterministic dynamics,
we find that populations that do not exceed this thresholdwill
be extinct.Many jobs only consider the strongAllee effect, but
in the work of Allee it is clear that the Allee effect also has a
weak Allee effect [8–13].

Today, it is widely believed that the Allee effect greatly
increases the likelihood of local and global extinction and
can produce a rich variety of dynamic effects [14–16]. And
it is interesting and important to study the impact of Allee
effect on the predator-prey models [17–19]. In this paper, we
introduced a predator-prey model with weak Allee effect:

𝑑𝑥𝑑𝑡 = 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑎𝑥𝑦𝑑𝑦𝑑𝑡 = 𝑐 (𝑎𝑥) 𝑦 − 𝑚𝑦𝑥 (0) ≥ 0𝑦 (0) ≥ 0
(2)
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Here, the weak Allee effect term is 𝑃(𝑥) = 𝑥/(𝑥 + 𝐴), where𝐴 > 0 is described as a “weak Allee effect constant” ([12]).𝑥 is the prey population and 𝑦 is the predator population,𝑚 is the intrinsic death rate of predators, 𝑐 is the conversion
efficiency from prey to predator, 𝐾 is the carrying capacity, 𝑟
is the intrinsic growth rate of prey, and 𝑎 is the prey capture
rate by their predators. It is more realistic to introduce time
delay on the basis of traditional predator-prey model because
it exists almost everywhere in biological activities and is
considered as one of the reasons for the regular change of
population density [20–26]. Therefore, in order to make the
system established in this paper biologically closer to reality,
incorporating the searching delay and digestion delay in the
system (2) is interesting. Based on the above considerations,
We establish a predator-preymodel with time delay and weak
Allee effect, as follows:𝑑𝑥 (𝑡)𝑑𝑡 = 𝑟𝑥 (𝑡) (1 − 𝑥 (𝑡)𝐾 ) 𝑥 (𝑡)𝑥 + 𝐴− 𝑎𝑥 (𝑡 − 𝜏1) 𝑦 (𝑡 − 𝜏1)𝑑𝑦 (𝑡)𝑑𝑡 = 𝑐 (𝑎𝑥 (𝑡 − 𝜏2)) 𝑦 (𝑡 − 𝜏2) − 𝑚𝑦 (𝑡)𝑥 (0) ≥ 0𝑦 (0) ≥ 0

(3)

where the time delay 𝜏𝑖 (𝑖 = 1, 2) is the controlling or
perturbed parameters, 𝜏1 is the searching delay, and 𝜏2 is the
digestion delay.

The latter parts of the paper are described as follows.
In Section 2, we discuss the boundedness, the stability of
the equilibria, and bifurcation of the model (2) in detail. In
Section 3, we investigated local stability property of interior
equilibrium point of the model (3) with time delay; the
Hopf bifurcation around the positive equilibrium point is
also studied. In Section 4, we verify the previous theoretical
derivation by numerical simulation.

2. A Predator-Prey Model with
Weak Allee Effect

We easily see that model (2) exhibits three equilibrium points𝐸0 = (0, 0), 𝐸1 = (𝐾, 0), and 𝐸∗ = (𝑥∗, 𝑦∗). Here 𝑥∗ =𝑚/𝑐𝑎, 𝑦∗ = (𝐾𝑟𝑥∗ − 𝑟𝑥∗2)/𝑎𝐾(𝑥∗ + 𝐴). And for the positive
equilibrium point(s), we have𝑚/𝑐𝑎 < 𝐾.
2.1. Boundedness

Theorem 1. For the solution (𝑥(𝑡), 𝑦(𝑡)) of model,

lim sup
𝑡→∞

(𝑥 (𝑡) + 1𝑐 𝑦 (𝑡)) ≤ 𝐾 (𝑚 + 𝑟)24𝑟𝑚 . (4)

Proof. We define 𝜒 = 𝑥(𝑡) + (1/𝑐)𝑦(𝑡). Then we can easily see
that along the solution of system (2),

𝑑𝜒𝑑𝑡 = 𝑑𝑥𝑑𝑡 + 1𝑐 𝑑𝑦𝑑𝑡= 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑎𝑥𝑦 + 1𝑐 𝑐 (𝑎𝑥) 𝑦 − 1𝑐𝑚𝑦= 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑚𝑐 𝑦.
(5)

Thus, we see that for all large 𝑡 > 0𝑑𝜒𝑑𝑡 + 𝑚𝜒 = 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑚𝑐 𝑦 + 𝑚𝑥 + 𝑚1𝑐𝑦= 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 + 𝑚𝑥
≤ 𝑟𝑥 (1 − 𝑥𝐾) + 𝑚𝑥 = 𝑥(𝑟 + 𝑚 − 𝑟𝐾𝑥)≤ 𝐾4𝑟 (𝑚 + 𝑟)2 .

(6)

Hence the standard comparison argument shows that

lim sup
𝑡→∞

(𝑥 (𝑡) + 1𝑐 𝑦 (𝑡)) ≤ 𝐾 (𝑚 + 𝑟)24𝑟𝑚 . (7)

2.2. Stability Analysis

Theorem2. (1) Trivial equilibriumpoint𝐸0 is always a saddle-
node point.

(2) 𝐸1 is stable for 𝑎 < 𝑚/𝑐𝐾 and is a saddle point
otherwise.

(3) Coexistence equilibrium 𝐸∗ is locally asymptotically
stable for 𝐴 < 𝑥∗2/(𝐾 − 2𝑥∗) and is unstable node otherwise.
Proof. Let

𝑓 (𝑥, 𝑦) = 𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑎𝑥𝑦𝑔 (𝑥, 𝑦) = 𝑐 (𝑎𝑥) 𝑦 − 𝑚𝑦. (8)

So, the Jacobian matrix for the model (2) is given by 𝐽 =( 𝜕𝑓/𝜕𝑥 𝜕𝑓/𝜕𝑦𝜕𝑔/𝜕𝑥 𝜕𝑔/𝜕𝑦 ) where𝜕𝑓𝜕𝑥 = −2𝑟𝐾𝑥3 + 𝑟𝐾𝑥2 − 3𝑟𝐴𝑥2 + 2𝑟𝐴𝐾𝑥𝐾 (𝑥 + 𝐴)2 − 𝑎𝑦,𝜕𝑓𝜕𝑦 = −𝑎𝑥,𝜕𝑔𝜕𝑥 = 𝑐𝑎𝑦,𝜕𝑔𝜕𝑦 = 𝑐𝑎𝑥 − 𝑚.
(9)
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So we get

𝐽
= (−2𝑟𝑥3 + 𝑟𝐾𝑥2 − 3𝑟𝐴𝑥2 + 2𝑟𝐴𝐾𝑥𝐾 (𝑥 + 𝐴)2 − 𝑎𝑦 −𝑎𝑥𝑐𝑎𝑦 𝑐𝑎𝑥 − 𝑚) . (10)

First, it can be concluded by calculating the Jacobian matrix
of the model (2) at 𝐸0 given by

𝐽0 = (0 00 −𝑚) . (11)

And hence 𝐸0 is always a saddle-node point. Then, by
evaluating the Jacobian matrix of the model (2) at 𝐸1, we find

𝐽1 = ( −𝑟𝐾𝐾 + 𝐴 −𝑎𝐾0 𝑐𝑎𝐾 − 𝑚) . (12)

First eigenvalue −𝑟𝐾/(𝐾 + 𝐴) is negative; hence 𝐸1 is stable
if 𝑐𝑎𝐾 − 𝑚 < 0 implying 𝑎 < 𝑚/𝑐𝐾, and 𝐸1 is a saddle point
when 𝑎 > 𝑚/𝑐𝐾. Finally, the Jacobian matrix for the model
(2) evaluated at 𝐸∗ is given by

𝐽∗
= (−2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗𝐾(𝑥∗ + 𝐴)2 − 𝑎𝑦∗ −𝑚𝑐𝑐𝑎𝑦∗ 0 ) . (13)

The characteristic polynomial is

𝐻(𝜆) = 𝜆2 − 𝑇𝜆 + 𝐷 (14)

where𝑇 = −𝑟𝑥∗(𝑥∗2+2𝐴𝑥∗−𝐴𝐾)/𝐾(𝑥∗+𝐴)2 and𝐷 = 𝑚𝑎𝑦∗.
Thus, we have the following conclusions. (1) If 𝑇 < 0 and𝐴 < 𝑥∗2/(𝐾 − 2𝑥∗), then the positive equilibrium is locally
asymptotically stable. (2) If 𝑇 > 0 and 𝐴 > 𝑥∗2/(𝐾 − 2𝑥∗),
then the positive equilibrium is unstable.

Theorem 3. 𝐸1 = (𝐾, 0) is globally stable when 𝑎 < 𝑚/𝑐𝐾.
Proof. Consider the Lyapunov function:

𝑉 (𝑥, 𝑦) = ∫𝑥
𝐾

𝑢 − 𝐾𝑢 𝑑𝑢 + 1𝑐 𝑦. (15)

The derivative of 𝑉 along the solution of the model is

�̇� = 𝑥 − 𝐾𝑥 𝑑𝑥𝑑𝑡 + 1𝑐 𝑑𝑦𝑑𝑡= 𝑥 − 𝐾𝑥 [𝑟𝑥 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴 − 𝑎𝑥𝑦]
+ 1𝑐 [𝑐 (𝑎𝑥) 𝑦 − 𝑚𝑦]= (𝑥 − 𝐾) [𝑟 (1 − 𝑥𝐾) 𝑥𝑥 + 𝐴] − 𝑎 (𝑥 − 𝐾) 𝑦 + 𝑎𝑥𝑦− 𝑚𝑐 𝑦

= (𝑥 − 𝐾) 𝑟𝐾𝑥 − 𝑟𝑥2𝐾 (𝑥 + 𝐴) − 𝑎 (𝑥 − 𝐾) 𝑦 + 𝑎𝑥𝑦 − 𝑚𝑐 𝑦
= −𝑟𝑥 (𝑥 − 𝐾)2𝐾 (𝑥 + 𝐴) + 𝑎𝐾𝑦 − 𝑚𝑐 𝑦 ≤ 𝑎𝐾𝑦 − 𝑚𝑐 𝑦.

(16)

2.3. Bifurcation Analysis

2.3.1. Transcritical Bifurcation

Theorem 4. �e model enters into transcritical bifurcation
around 𝐸1 at 𝑎 = 𝑎0, where 𝑎0 = 𝑚/𝑐𝐾.
Proof. One of the eigenvalues of 𝐽1 will be zero if 𝐽1 = 0which
gives 𝑎 = 𝑎0. At this point, the other eigenvalue is −𝑟𝐾/(𝐾 +𝐴). If 𝑉 and𝑊 denote the eigenvectors corresponding to the
eigenvalue 0 of the matrices 𝐽1 and 𝐽1𝑇, respectively, then we
obtain 𝑉 = (−𝑎(𝐾 + 𝐴)/𝑟, 1)𝑇 and𝑊 = (0, 1)𝑇, where 𝐽1𝑇 =( −𝑟𝐾/(𝐾+𝐴) 0
−𝑎𝐾 0

), 𝑉1 = −𝑎(𝐾 + 𝐴)/𝑟, 𝑉2 = 1.𝑊𝑇𝑓𝑎 (𝑥, 𝑦, 𝑎0) = 0,𝑊𝑇 [𝐷𝑓𝑎 (𝑥, 𝑦, 𝑎0) 𝑉] = 𝑐𝐾 ̸= 0,𝑊𝑇 [𝐷2𝑓 (𝑥, 𝑦, 𝑎0) (𝑉, 𝑉)]
= 𝑊𝑇(𝜕2𝑓1𝜕𝑥2 𝑉12 + 2 𝜕2𝑓1𝜕𝑥𝜕𝑦𝑉1𝑉2 + 𝜕2𝑓1𝜕𝑦2 𝑉22𝜕2𝑓2𝜕𝑥2 𝑉12 + 2 𝜕2𝑓2𝜕𝑥𝜕𝑦𝑉1𝑉2 + 𝜕2𝑓2𝜕𝑦2 𝑉22)(𝑥,𝑦,𝑎0)= −2𝑎2 (𝐾 + 𝐴)𝑟 ̸= 0.

(17)

Therefore, by the Sotomayor theorem,we can find that the
model experiences transcritical bifurcation at 𝑎 = 𝑎0 around
the axial equilibrium 𝐸1.
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2.3.2. Hopf Bifurcation. From Theorem 2, model (2) under-
goes bifurcation if 𝐴 = 𝑥∗2/(𝐾 − 2𝑥∗). The purpose of
this section is to show that model (2) undergoes a Hopf
bifurcation if 𝐴 = 𝑥∗2/(𝐾 − 2𝑥∗). We analyze the Hopf
bifurcation occurring at 𝐸∗ = (𝑥∗, 𝑦∗) by choosing as the
bifurcation parameter. Denote

𝐴0 = 𝑥∗2𝐾 − 2𝑥∗ . (18)

When𝐴 = 𝐴0, we have 𝑇 = −𝑟𝑥∗(𝑥∗2 +2𝐴𝑥∗ −𝐴𝐾)/𝐾(𝑥∗ +𝐴)2 = 0. Thus, the Jacobian matrix 𝐽∗ has a pair of imaginary
eigenvalues 𝜆 = ±𝑖√𝑚𝑎𝑦∗. Let 𝜆 = 𝛼(𝐴) ± 𝛽(𝐴)𝑖 be the roots
of 𝜆2 − 𝑇𝜆 + 𝐷 = 0; then𝛼2 − 𝛽2 − 𝛼𝑇 + 𝐷 = 02𝛼𝛽 − 𝑇𝛽 = 0 (19)

and

𝛼 = 𝑇2𝛽 = √4𝐷 − 𝑇22𝑑𝛼𝑑𝐴𝐴=𝐴0 = −𝑟𝑥∗32𝐴𝐾 (𝑥∗ + 𝐴)2 < 0
(20)

By the Poincare-Andronov-Hopf Bifurcation Theorem, we
know that model (2) undergoes a Hopf bifurcation at 𝐸∗ =(𝑥∗, 𝑦∗) when 𝐴 = 𝐴0. However, the detailed nature of the
Hopf Bifurcation needs further analysis of the normal form
of the model. Set 𝑥 = 𝑋 + 𝑥∗ and 𝑦 = 𝑌 + 𝑦∗, to (𝑥∗, 𝑦∗) as
origin of coordinates (𝑋, 𝑌). We have the following model:𝑑𝑋𝑑𝑡 = 𝑎11𝑋 + 𝑎12𝑌 + 𝐹1 (𝑋, 𝑌)𝑑𝑌𝑑𝑡 = 𝑎21𝑋 + 𝑎22𝑌 + 𝐹2 (𝑋, 𝑌) (21)

where 𝑎11 = (−2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗)/𝐾(𝑥∗ +𝐴)2 − 𝑎𝑦∗, 𝑎12 = −𝑚/𝑐, 𝑎21 = 𝑐𝑎𝑦∗, 𝑎22 = 0, and
𝐹1 (𝑋, 𝑌)= 𝐴1𝑋2 + 𝐴2𝑋𝑌 + 𝐴3𝑌2 + 𝐵1𝑋3 + 𝐵2𝑋2𝑌 + 𝐵3𝑋𝑌2+ 𝐵4𝑌3 + 𝑃1 (𝑋, 𝑌)𝐹2 (𝑋, 𝑌)= 𝐶1𝑋2 + 𝐶2𝑋𝑌 + 𝐶3𝑌2 + 𝐷1𝑋3 + 𝐷2𝑋2𝑌 + 𝐷3𝑋𝑌2+ 𝐷4𝑌3 + 𝑃2 (𝑋, 𝑌)

𝐴1 = −𝑟𝑥∗3 − 3𝑟𝐴𝑥∗2 − 3𝑟𝐴2𝑥∗ + 𝑟𝐴2𝐾𝐾(𝑥∗ + 𝐴)3 ,
𝐴2 = −𝑎2 ,𝐴3 = 0𝐵1= 𝑟𝑥∗3 + (3𝑟𝐴 − 𝑟) 𝑥∗2 + (3𝑟𝐴2 − 2𝑟𝐴) 𝑥∗ − (𝑟𝐴2 + 𝑟𝐴2𝐾)2𝐾 (𝑥∗ + 𝐴)3 ,
𝐵2 = 0,𝐵3 = 0,𝐵4 = 0𝐶1 = 0,𝐶2 = 𝑐𝑎2 ,𝐶3 = 0𝐷1 = 0,𝐷2 = 0,𝐷3 = 0,𝐷4 = 0

(22)

where 𝑃1(𝑋, 𝑌) and 𝑃2(𝑋, 𝑌) are smooth functions of 𝑋 and𝑌 at least of order four. Now, using the transformation𝑢 = 𝑋,
V = −(1/𝛽)(𝑎11𝑋 + 𝑎12𝑌), we obtain𝑑𝑢𝑑𝑡 = −𝛽V + 𝐺1 (𝑢, V)𝑑V𝑑𝑡 = 𝛽𝑢 + 𝐺2 (𝑢, V) (23)

where𝐺1 (𝑢, V) = 𝐹1 (𝑢, − 1𝑎12 (𝑎11𝑢 + 𝛽V))𝐺2 (𝑢, V) = − 1𝛽 (𝑎11𝐹1 (𝑢, − 1𝑎12 (𝑎11𝑢 + 𝛽V))+ 𝑎12𝐹2 (𝑢, − 1𝑎12 (𝑎11𝑢 + 𝛽V)))
(24)

so𝐺1 (𝑢, V) = 𝐴1𝑢2 + 𝐴2𝑢(− 1𝑎12 (𝑎11𝑢 + 𝛽V)) + 𝐵1𝑢3𝐺2 (𝑢, V) = − 1𝛽 [𝑎11 (𝐴1𝑢2+ 𝐴2𝑢(− 1𝑎12 (𝑎11𝑢 + 𝛽V)) + 𝐵1𝑢3)]+ 𝑎12𝑢𝐶2 (− 1𝑎12 (𝑎11𝑢 + 𝛽V))
(25)



Advances in Mathematical Physics 5

Set 𝜎 = 116 [𝜕3𝐺1𝜕𝑢3 + 𝜕3𝐺1𝜕𝑢𝜕V2 + 𝜕3𝐺2𝜕𝑢2𝜕V + 𝜕3𝐺2𝜕V3 ]+ 116𝛽 [𝜕2𝐺1𝜕𝑢𝜕V (𝜕2𝐺1𝜕𝑢2 + 𝜕2𝐺1𝜕V2 )− 𝜕2𝐺2𝜕𝑢𝜕V (𝜕2𝐺2𝜕𝑢2 + 𝜕2𝐺2𝜕V2 ) − 𝜕2𝐺1𝜕𝑢2 𝜕2𝐺2𝜕𝑢2+ 𝜕2𝐺1𝜕V2 𝜕2𝐺2𝜕V2 ]
(26)

where 𝜕3𝐺1𝜕𝑢3 = 6𝐵1,𝜕3𝐺1𝜕𝑢𝜕V2 = 0,𝜕3𝐺2𝜕𝑢2𝜕V = 0,𝜕3𝐺2𝜕V3 = 0,𝜕2𝐺1𝜕𝑢𝜕V = 𝐴2𝛽𝑎12 ,𝜕2𝐺2𝜕𝑢𝜕V = 𝐴2𝑎11𝑎12 ,𝜕2𝐺1𝜕V2 = 0,𝜕2𝐺2𝜕V2 = 0,𝜕2𝐺1𝜕𝑢2 = 2(𝐴1 − 𝐴2𝑎11𝑎12 ) + 6𝐵1𝑢,𝜕2𝐺2𝜕𝑢2 = 2(𝐴2𝑎112𝛽𝑎12 − 𝐴1𝑎11𝛽 ) − 6𝐵1𝑎11𝛽 𝑢.

(27)

So𝜎 = 3𝐵18 + 116𝛽 (𝐴2𝛽𝑎12 (2(𝐴1 − 𝐴2𝑎11𝑎12 ) + 6𝐵1𝑢)− 𝐴2𝑎11𝑎12 (2(𝐴2𝑎112𝛽𝑎12 − 𝐴1𝑎11𝛽 ) − 6𝐵1𝑎11𝛽 𝑢)
− (2(𝐴1 − 𝐴2𝑎11𝑎12 ) + 6𝐵1𝑢)⋅ (2(𝐴2𝑎112𝛽𝑎12 − 𝐴1𝑎11𝛽 ) − 6𝐵1𝑎11𝛽 𝑢))

(28)

If 𝜎 < 0, the equilibrium 𝐸∗ is destabilized through a
Hopf bifurcation that is supercritical and Hopf bifurcation is
subcritical otherwise.

3. Delayed Model with Weak Allee Effect

Let 𝑋(𝑡) = 𝑥(𝑡) − 𝑥∗, 𝑌(𝑡) = 𝑦(𝑡) − 𝑦∗; then the model
(3) can be expressed as in the following matrix form after
linearization:𝑑𝑑𝑡 (𝑋 (𝑡)𝑌 (𝑡))

= 𝐴1 (𝑋 (𝑡)𝑌 (𝑡)) + 𝐴2 (𝑋 (𝑡 − 𝜏1)𝑌 (𝑡 − 𝜏1))+ 𝐴3 (𝑋 (𝑡 − 𝜏2)𝑌 (𝑡 − 𝜏2)) ,𝐴1
= (−2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗𝐾(𝑥∗ + 𝐴)2 00 −𝑚) ,
𝐴2 = (−𝑎𝑦∗ −𝑎𝑥∗0 0 ) ,
𝐴3 = ( 0 0𝑐𝑎𝑦∗ 𝑐𝑎𝑥∗) .

(29)

3.1. Stability Analysis. The characteristic polynomial is𝐻(𝜆) = 𝜆2 − 𝑇𝜆 + 𝐷 (30)

where𝑇 = −2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗𝐾(𝑥∗ + 𝐴)2− 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚,𝐷 = (−2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗𝐾(𝑥∗ + 𝐴)2− 𝑎𝑦∗𝑒−𝜆𝜏1)(𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚) + 𝑐𝑎2𝑥∗𝑦∗𝑒−𝜆𝜏1𝑒−𝜆𝜏2 .
(31)

Let 𝐺 = (−2𝑟𝑥∗3 + 𝑟𝐾𝑥∗2 − 3𝑟𝐴𝑥∗2 + 2𝑟𝐴𝐾𝑥∗)𝐾 (𝑥∗ + 𝐴)2 (32)

So 𝐻(𝜆) = 𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚) 𝜆− 𝑚𝐺 + 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 (33)

Let 𝜆(𝜏) = 𝜂(𝜏) + 𝑖𝜔(𝜏), 𝜂(𝜏0) = 0, and 𝜔(𝜏0) = 𝜔0.
Theorem 5. Assume𝐴 < 𝑥∗2/(𝐾−2𝑥∗), when 𝜏1 > 0, 𝜏2 = 0;
we have the following conclusions. (1) When 4𝐹𝐺−2𝐹𝑚+𝐺2+
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𝐹2 + 𝑚2 − 𝐷2 > 0 and −2𝐹𝑚𝐺2 + 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 > 0,
the positive equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically
stable. (2) Hopf bifurcation occurs when 𝜏1 passes the critical
value𝜏1 = 1𝜔0⋅ arccos 𝐸𝐺𝑚 − 𝐸𝐹𝐺 − 𝜔02𝑚𝐷 + 𝜔02𝐹𝐷 + 𝜔02𝐺𝐷 + 𝜔02𝐸𝜔02𝐷2 + 𝐸2 . (34)
Proof. The characteristic equation is𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗ − 𝑚)𝜆 − 𝑚𝐺+ 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝐺 = 0. (35)

Next we suppose that 𝜆(𝜏0) = 𝑖𝜔0 is a solution of 𝐻(𝜆) for
some 𝜏 > 0; then we have− 𝜔02 − 𝑖𝜔0 (𝐺 − 𝑎𝑦∗𝑒−𝑖𝜔0𝜏1 + 𝑐𝑎𝑥∗ − 𝑚) − 𝑚𝐺+ 𝑚𝑎𝑦∗𝑒−𝑖𝜔0𝜏1 + 𝑐𝑎𝑥∗𝐺 = 0. (36)

Then− 𝜔02 − 𝑖𝜔0 (𝐺 − 𝐷𝑒−𝑖𝜔0𝜏1 + 𝐹 − 𝑚) − 𝑚𝐺 + 𝐸𝑒−𝑖𝜔0𝜏1+ 𝐹𝐺 = 0. (37)

Where𝐷 = 𝑎𝑦∗, 𝐸 = 𝑚𝑎𝑦∗, 𝐹 = 𝑐𝑎𝑥∗ we know𝑒−𝑖𝜔0𝜏 = cos𝜔0𝜏 − 𝑖 sin𝜔0𝜏. (38)

So we get− 𝜔02 − 𝑖𝜔0𝐺 + 𝑖𝜔0𝐷 cos𝜔0𝜏1 + 𝜔0𝐷 sin𝜔0𝜏1 − 𝑖𝜔0𝐹+ 𝑖𝜔0𝑚 − 𝑚𝐺 + 𝐸 cos𝜔0𝜏1 − 𝑖𝐸 sin𝜔0𝜏1 + 𝐹𝐺= 0. (39)

Separate real and imaginary parts− 𝜔02 + 𝜔0𝐷 sin𝜔0𝜏1 − 𝑚𝐺 + 𝐸 cos𝜔0𝜏1 + 𝐹𝐺 = 0− 𝜔0𝐺 + 𝜔0𝐷 cos𝜔0𝜏1 − 𝜔0𝐹 + 𝜔0𝑚 − 𝐸 sin𝜔0𝜏1= 0 (40)

Then𝜔0𝐷 sin𝜔0𝜏1 + 𝐸 cos𝜔0𝜏1 = 𝜔02 − 𝐹𝐺 + 𝑚𝐺𝜔0𝐷 cos𝜔0𝜏1 − 𝐸 sin𝜔0𝜏1 = 𝜔0𝐺 + 𝜔0𝐹 − 𝜔0𝑚 (41)

So 𝜔04 + (4𝐹𝐺 − 2𝐹𝑚 + 𝐺2 + 𝐹2 + 𝑚2 − 𝐷2) 𝜔02− 2𝐹𝑚𝐺2 + 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 = 0 (42)

We assume that𝑊 = 𝜔02𝑊2 + (4𝐹𝐺 − 2𝐹𝑚 + 𝐺2 + 𝐹2 + 𝑚2 − 𝐷2)𝑊− 2𝐹𝑚𝐺2 + 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 = 0. (43)

If 4𝐹𝐺−2𝐹𝑚+𝐺2 +𝐹2 +𝑚2 −𝐷2 > 0 and −2𝐹𝑚𝐺2 +𝐹2𝐺2 +𝑚2𝐺2 − 𝐸2 > 0, then all roots of equation have negative real
parts for all 𝜏1 > 0, 𝜏2 = 0; that is, the equilibrium 𝐸∗ =(𝑥∗, 𝑦∗) is locally asymptotically stable:𝑊
= −𝑀 ± √𝑀2 − 4 (−2𝐹𝑚𝐺2 + 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2)2 (44)

where 𝑀 = 4𝐹𝐺 − 2𝐹𝑚 + 𝐺2 + 𝐹2 + 𝑚2 − 𝐷2. (45)

If−𝑀 > 0,𝑀2 = 4(2𝐹𝑚𝐺2+𝐹2𝐺2+𝑚2𝐺2−𝐸2) and−2𝐹𝑚𝐺2+𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 > 0, there is a unique positive solution;
the equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is unstable. Also if −𝑀 > 0,𝑀2 > 4(−2𝐹𝑚𝐺2+𝐹2𝐺2+𝑚2𝐺2−𝐸2), and −2𝐹𝑚𝐺2+𝐹2𝐺2+𝑚2𝐺2−𝐸2 > 0, then there are two positive solutions.We have−𝜔02 + 𝜔0𝐷 sin𝜔0𝜏1 − 𝑚𝐺 + 𝐸 cos𝜔0𝜏1 + 𝐹𝐺 = 0 (46)

So

sin𝜔0𝜏1 = 𝜔02 + 𝑚𝐺 − 𝐸 cos𝜔0𝜏1 − 𝐹𝐺𝜔0𝐷 (47)

Then, we get

cos𝜔0𝜏1= 𝐸𝐺𝑚 − 𝐸𝐹𝐺 − 𝜔02𝑚𝐷 + 𝜔02𝐹𝐷 + 𝜔02𝐺𝐷 + 𝜔02𝐸𝜔02𝐷2 + 𝐸2 . (48)

It shows that if −𝑀 > 0 and −2𝐹𝑚𝐺2+𝐹2𝐺2+𝑚2𝐺2−𝐸2 > 0,𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗ + 𝑚) 𝜆 + 𝑚𝐺− 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝐺 = 0 (49)

has a pair of imaginary eigenvalues 𝜆 = ±𝑖𝜔0, 𝜂(𝜏1) = 0
when 𝜏1𝑗± = (1/𝜔0±) arccos((𝐸𝐺𝑚 − 𝐸𝐹𝐺 − 𝜔02𝑚𝐷 +𝜔02𝐹𝐷 + 𝜔02𝐺𝐷 + 𝜔02𝐸)/(𝜔02𝐷2 + 𝐸2)) + 2𝜋𝑗/𝜔0±, 𝑗 =0, 1, 2, ⋅ ⋅ ⋅ .
Next verify the cross-sectional conditions:(𝑑R𝑒 (𝜆)𝑑𝜏1 )−1 ̸= 0 (50)

According to𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗ − 𝑚) 𝜆 − 𝑚𝐺 + 𝑚𝑎𝑦∗𝑒−𝜆𝜏1+ 𝑐𝑎𝑥∗𝐺 = 0 (51)

At this time, 𝜏1 = 𝜏1, where 𝜏1 is the value of 𝜏1𝑗 at 𝑗 = 0. We
get 2𝜆 𝑑𝜆𝑑𝜏1 − 𝑑𝜆𝑑𝜏1 (𝐺 − 𝐷𝑒−𝜆𝜏1 + 𝐹 − 𝑚)+ 𝜆𝐷𝑒−𝜆𝜏1 (−𝜏1 𝑑𝜆𝑑𝜏1 − 𝜆)+ 𝐸𝑒−𝜆𝜏1 (−𝜏1 𝑑𝜆𝑑𝜏1 − 𝜆) = 0

(52)
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Then( 𝑑𝜆𝑑𝜏1)−1= −𝜏1𝜆 + 𝐷𝜆 (𝐸 + 𝜆𝐷)+ [2𝜆 − (𝐺 + 𝐹 − 𝑚)]𝜆 [𝜆2 − 𝜆 (𝐺 + 𝐹 − 𝑚) − 𝑚𝐺 + 𝐹𝐺] .(𝑑R𝑒 (𝜆)𝑑𝜏1 )−1
= − 𝐷2𝜔02𝐷2 + 𝐸2+ − (𝐺 + 𝐹 − 𝑚)2 + 2 (−𝑚𝐺 + 𝐹𝐺 − 𝜔02)(𝐺 + 𝐹 − 𝑚)2 𝜔02 + (−𝑚𝐺 + 𝐹𝐺 − 𝜔02)2̸= 0.

(53)

Theorem 6. Assume𝐴 < 𝑥∗2/(𝐾−2𝑥∗), when 𝜏1 = 0, 𝜏2 > 0;
we have the following conclusions. (1) If −2𝐸𝑚𝐺 − 𝐹2𝐺2 +𝑚2𝐺2+𝐸2 > 0, the positive equilibrium𝐸∗ = (𝑥∗, 𝑦∗) is locally
asymptotically stable. (2)When −2𝐸𝑚𝐺−𝐹2𝐺2+𝑚2𝐺2+𝐸2 <0, if 𝜏2 < 𝜏2, the positive equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is locally
asymptotically stable; if 𝜏2 > 𝜏2, the positive equilibrium is
unstable. (3) Hopf bifurcation occurs when 𝜏2 passes the critical
value𝜏2 = 1𝜔0 arccos 𝜔02 (−𝑚 − 𝐷)𝐹 + 𝐹𝐺 (𝐸 − 𝑚𝐺)−𝜔02𝐹2 − 𝐸2 . (54)

Proof. The characteristic equation is𝜆2 − (𝐺 − 𝑎𝑦∗ + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 + 𝑚) 𝜆 + 𝑚𝐺 − 𝑚𝑎𝑦∗+ 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0 (55)

Next we suppose that 𝜆(𝜏0) = 𝑖𝜔0 is a solution of 𝐻(𝜆) for
some 𝜏 > 0; then we have− 𝜔02 − 𝑖𝜔0 (𝐺 − 𝑎𝑦∗ + 𝑐𝑎𝑥∗𝑒−𝑖𝜔0𝜏2 − 𝑚) − 𝑚𝐺+ 𝑚𝑎𝑦∗ + 𝑐𝑎𝑥∗𝐺𝑒−𝑖𝜔0𝜏2 = 0. (56)

Then − 𝜔02 − 𝑖𝜔0 (𝐺 − 𝐷 + 𝐹𝑒−𝑖𝜔0𝜏2 − 𝑚) − 𝑚𝐺 + 𝐸+ 𝐹𝐺𝑒−𝑖𝜔0𝜏2 = 0. (57)

Where𝐷 = 𝑎𝑦∗, 𝐸 = 𝑚𝑎𝑦∗, 𝐹 = 𝑐𝑎𝑥∗ we know𝑒−𝑖𝜔0𝜏 = cos𝜔0𝜏 − 𝑖 sin𝜔0𝜏. (58)
So we get− 𝜔02 − 𝑖𝜔0𝐺 + 𝑖𝜔0𝐷 − 𝜔0𝐹 sin𝜔0𝜏2 − 𝑖𝜔0𝐹 cos𝜔0𝜏2+ 𝑖𝜔0𝑚 − 𝑚𝐺 + 𝐸 − 𝑖𝐹𝐺 sin𝜔0𝜏2+ 𝐹𝐺 cos𝜔0𝜏2 = 0. (59)

Separate real and imaginary parts− 𝜔02 − 𝜔0𝐹 sin𝜔0𝜏2 − 𝑚𝐺 + 𝐸 + 𝐹𝐺 cos𝜔0𝜏2 = 0− 𝜔0𝐺 + 𝜔0𝐷 − 𝜔0𝐹 cos𝜔0𝜏2 + 𝜔0𝑚 − 𝐹𝐺 sin𝜔0𝜏2= 0 (60)

Then−𝜔0𝐹 sin𝜔0𝜏2 + 𝐹𝐺 cos𝜔0𝜏2 = 𝜔02 − 𝐸 + 𝑚𝐺−𝜔0𝐹 cos𝜔0𝜏2 − 𝐹𝐺 sin𝜔0𝜏2 = 𝜔0𝐺 − 𝜔0𝐷 − 𝜔0𝑚 (61)

So𝜔04+ (−2𝐸 − 2𝐷𝐺 + 2𝐷𝑚 + 𝐺2 − 𝐹2 + 𝑚2 + 𝐷2) 𝜔02− 2𝐸𝑚𝐺 − 𝐹2𝐺2 + 𝑚2𝐺2 + 𝐸2 = 0 (62)

We assume that𝑊 = 𝜔02𝑊2 + (−2𝐸 − 2𝐷𝐺 + 2𝐷𝑚 + 𝐺2 − 𝐹2 + 𝑚2 + 𝐷2)𝑊− 2𝐸𝑚𝐺 − 𝐹2𝐺2 + 𝑚2𝐺2 + 𝐸2 = 0 (63)

We can easily find−2𝐸 − 2𝐷𝐺 + 2𝐷𝑚 + 𝐺2 − 𝐹2 + 𝑚2 + 𝐷2 > 0. (64)

If −2𝐸𝑚𝐺 − 𝐹2𝐺2 + 𝑚2𝐺2 + 𝐸2 > 0, the positive equilibrium𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically stable,−2𝐸𝑚𝐺−𝐹2𝐺2+𝑚2𝐺2 + 𝐸2 < 0, and the positive equilibrium is unstable. We
have −𝜔0𝐹 sin𝜔0𝜏2 + 𝐹𝐺 cos𝜔0𝜏2 = 𝜔02 − 𝐸 + 𝑚𝐺 (65)

So

sin𝜔0𝜏1 = 𝜔02 − 𝐸 + 𝑚𝐺 − 𝐹𝐺 cos𝜔0𝜏2−𝜔0𝐹 (66)

Then, we get

cos𝜔0𝜏2 = 𝜔02 (−𝑚 − 𝐷)𝐹 − 𝐹𝐺 (−𝐸 + 𝑚𝐺)−𝜔02𝐹2 − 𝐸2 . (67)

It shows that if−2𝐸𝑚𝐺 − 𝐹2𝐺2 + 𝑚2𝐺2 + 𝐸2 < 0,𝜆2 − (𝐺 − 𝑎𝑦∗ + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚) 𝜆 − 𝑚𝐺 + 𝑚𝑎𝑦∗+ 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0 (68)

has a pair of imaginary eigenvalues 𝜆 = ±𝑖𝜔0, 𝜂(𝜏2) = 0
when 𝜏2𝑗± = (1/𝜔0±) arccos((𝜔02(−𝑚 − 𝐷)𝐹 + 𝐹𝐺(𝐸 −𝑚𝐺))/(−𝜔02𝐹2 − 𝐸2)) + 2𝜋𝑗/𝜔0±, 𝑗 = 0, 1, 2, ⋅ ⋅ ⋅ .
Next verify the cross-sectional conditions:(𝑑R𝑒 (𝜆)𝑑𝜏2 )−1 ̸= 0 (69)
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According to𝜆2 − (𝐺 − 𝑎𝑦∗ + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚) 𝜆 − 𝑚𝐺 + 𝑚𝑎𝑦∗+ 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0 (70)

At this time,𝜏2 = 𝜏2, where 𝜏2 is the value of 𝜏2𝑗 at 𝑗 = 0. We
get 2𝜆 𝑑𝜆𝑑𝜏2 − 𝑑𝜆𝑑𝜏2 (𝐺 − 𝐷 + 𝐹𝑒−𝜆𝜏2 − 𝑚)− 𝜆𝐹𝑒−𝜆𝜏2 (−𝜏2 𝑑𝜆𝑑𝜏2 − 𝜆)+ 𝐹𝐺𝑒−𝜆𝜏2 (−𝜏2 𝑑𝜆𝑑𝜏2 − 𝜆) = 0

(71)

Then( 𝑑𝜆𝑑𝜏2)−1= −𝜏2𝜆 − 𝐹𝜆 (𝐺 − 𝜆)+ 2𝜆 − (𝐺 − 𝐷 − 𝑚)𝜆 [𝜆2 − 𝜆 (𝐺 − 𝐷 − 𝑚) − 𝑚𝐺 + 𝐸](𝑑R𝑒 (𝜆)𝑑𝜏2 )−1
= − 𝐹𝜔02 + 𝐺2+ 2 [(−𝑚𝐺 + 𝐸) − 𝜔02] − (𝐺 − 𝐷 − 𝑚)2𝜔02 (𝐺 − 𝐷 − 𝑚)2 + [(−𝑚𝐺 + 𝐸) − 𝜔02]2̸= 0.

(72)

Theorem 7. Assume𝐴 < 𝑥∗2/(𝐾−2𝑥∗), when 𝜏1 ̸= 0, 𝜏2 ̸= 0;
we have the following conclusions. (1)When and𝐺2−𝐹2+𝑚2−𝐷2+2𝐷𝐹 > 0 and −2𝐸𝐹𝐺−𝐹2𝐺2+𝑚2𝐺2−𝐸2 > 0, the positive
equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically stable. (2)
Hopf bifurcation occurs when 𝜏1 passes the critical value𝜏 = 1𝜔0⋅ arctan (𝜔02 + 𝑚𝐺) (𝜔0𝐷 − 𝜔0𝐹) − 𝜔0 (𝐺 − 𝑚)− (𝜔02 + 𝑚𝐺) (𝐹𝐺 + 𝐸) + 𝜔0 (𝐺 − 𝑚) . (73)

Proof. The characteristic equation is𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚) 𝜆 − 𝑚𝐺+ 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0. (74)

Next we suppose that 𝜆(𝜏0) = 𝑖𝜔0 is a solution of 𝐻(𝜆) for
some 𝜏 > 0; then we have− 𝜔02 − 𝑖𝜔0 (𝐺 − 𝐷𝑒−𝑖𝜔0𝜏1 + 𝐹𝑒−𝑖𝜔0𝜏2 + 𝑚) − 𝑚𝐺+ 𝐸𝑒−𝑖𝜔0𝜏1 + 𝐹𝐺𝑒−𝑖𝜔0𝜏2 = 0. (75)

Where𝐷 = 𝑎𝑦∗, 𝐸 = 𝑚𝑎𝑦∗, 𝐹 = 𝑐𝑎𝑥∗ we know𝑒−𝑖𝜔0𝜏 = cos𝜔0𝜏 − 𝑖 sin𝜔0𝜏. (76)

So we get− 𝜔02 − 𝑖𝜔0𝐺 + 𝑖𝜔0𝐷 cos𝜔0𝜏1 + 𝜔0𝐷 sin𝜔0𝜏1− 𝜔0𝐹 sin𝜔0𝜏2 − 𝑖𝜔0𝐹 cos𝜔0𝜏2 + 𝑖𝜔0𝑚 − 𝑚𝐺+ 𝐸 cos𝜔0𝜏1 − 𝑖𝐸 sin𝜔0𝜏1 − 𝑖𝐹𝐺 sin𝜔0𝜏2+ 𝐹𝐺 cos𝜔0𝜏2 = 0
(77)

Separate real and imaginary parts− 𝜔02 + 𝜔0𝐷 sin𝜔0𝜏1 − 𝜔0𝐹 sin𝜔0𝜏2 − 𝑚𝐺+ 𝐸 cos𝜔0𝜏1 + 𝐹𝐺 cos𝜔0𝜏2 = 0− 𝜔0𝐺 + 𝜔0𝐷 cos𝜔0𝜏1 − 𝜔0𝐹 cos𝜔0𝜏2 + 𝜔0𝑚− 𝐹𝐺 sin𝜔0𝜏2 − 𝐸 sin𝜔0𝜏1 = 0
(78)

Let 𝜏1 = 𝜏2 = 𝜏 > 0. Then𝜔0𝐷 sin𝜔0𝜏 − 𝜔0𝐹 sin𝜔0𝜏 + 𝐸 cos𝜔0𝜏+ 𝐹𝐺 cos𝜔0𝜏 = 𝜔02 + 𝑚𝐺𝜔0𝐷 cos𝜔0𝜏 − 𝜔0𝐹 cos𝜔0𝜏 − 𝐹𝐺 sin𝜔0𝜏− 𝐸 sin𝜔0𝜏 = 𝜔0𝐺 − 𝜔0𝑚
(79)

So 𝜔04 + (𝐺2 − 𝐹2 + 𝑚2 − 𝐷2 + 2𝐷𝐹)𝜔02 − 2𝐸𝐹𝐻− 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 = 0 (80)

We assume that𝑊 = 𝜔02𝑊2 + (𝐺2 − 𝐹2 + 𝑚2 − 𝐷2 + 2𝐷𝐹)𝑊 − 2𝐸𝐹𝐻− 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 = 0 (81)

If𝐺2−𝐹2+𝑚2−𝐷2+2𝐷𝐹 > 0 and−2𝐸𝐹𝐻−𝐹2𝐺2+𝑚2𝐺2−𝐸2 >0, then all roots of equation have negative real parts for all𝜏1 > 0, 𝜏2 > 0; that is, the equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is locally
asymptotically stable:

𝑊 = −𝑁 ± √𝑁2 − 4 (−2𝐸𝐹𝐻 − 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2)2 (82)
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where 𝑁 = 𝐺2 − 𝐹2 + 𝑚2 − 𝐷2 + 2𝐷𝐹 (83)

If−𝑁 > 0,𝑁2 = 4(−2𝐸𝐹𝐻−𝐹2𝐺2+𝑚2𝐺2−𝐸2), and−2𝐸𝐹𝐻−𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 > 0, there is a unique positive solution;
the equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) is unstable. Also if −𝑁 > 0,𝑁2 > 4(−2𝐸𝐹𝐻 − 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2), and −2𝐸𝐹𝐻 − 𝐹2𝐺2 +𝑚2𝐺2−𝐸2 > 0, then there are two positive solutions.We have𝜔0𝐷 sin𝜔0𝜏 − 𝜔0𝐹 sin𝜔0𝜏 + 𝐸 cos𝜔0𝜏+ 𝐹𝐺 cos𝜔0𝜏 = 𝜔02 + 𝑚𝐺𝜔0𝐷 cos𝜔0𝜏 − 𝜔0𝐹 cos𝜔0𝜏 − 𝐹𝐺 sin𝜔0𝜏− 𝐸 sin𝜔0𝜏 = 𝜔0𝐺 − 𝜔0𝑚

(84)

So

sin𝜔0𝜏 = (𝜔02 + 𝑚𝐺) (𝜔0𝐷 − 𝜔0𝐹) − 𝜔0 (𝐺 − 𝑚)(𝜔0𝐷 − 𝜔0𝐹)2 − (𝐹𝐺 + 𝐸)2
cos𝜔0𝜏 = − (𝜔02 + 𝑚𝐺) (𝐹𝐺 + 𝐸) + 𝜔0 (𝐺 − 𝑚)(𝜔0𝐷 − 𝜔0𝐹)2 − (𝐹𝐺 + 𝐸)2

(85)

Then, we get

tan𝜔0𝜏 = (𝜔02 + 𝑚𝐺) (𝜔0𝐷 − 𝜔0𝐹) − 𝜔0 (𝐺 − 𝑚)− (𝜔02 − 𝑚𝐺) (𝐹𝐺 + 𝐸) + 𝜔0 (𝐺 − 𝑚) . (86)

It shows that if −2𝐸𝐹𝐻 − 𝐹2𝐺2 + 𝑚2𝐺2 − 𝐸2 < 0,𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚)𝜆 − 𝑚𝐺+ 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0 (87)

has a pair of imaginary eigenvalues 𝜆 = ±𝑖𝜔0, 𝜂(𝜏1) = 0
when 𝜏𝑗± = (1/𝜔0±) arctan(((𝜔02 +𝑚𝐺)(𝜔0±𝐷−𝜔0±𝐹) −𝜔0±(𝐺 − 𝑚))/(−(𝜔02 + 𝑚𝐺)(𝐹𝐺 + 𝐸) + 𝜔0±(𝐺 − 𝑚))) +𝜋𝑗/𝜔0±, 𝑗 = 0, 1, 2, ⋅ ⋅ ⋅ .
Next verify the cross-sectional conditions:(𝑑R𝑒 (𝜆)𝑑𝜏 )−1 ̸= 0 (88)

According to𝜆2 − (𝐺 − 𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2 − 𝑚)𝜆 − 𝑚𝐺+ 𝑚𝑎𝑦∗𝑒−𝜆𝜏1 + 𝑐𝑎𝑥∗𝑒−𝜆𝜏2𝐺 = 0 (89)

At this time,𝜏 = 𝜏, where 𝜏 is the value of 𝜏𝑗 at 𝑗 = 0. We get2𝜆𝑑𝜆𝑑𝜏 − 𝑑𝜆𝑑𝜏 (𝐺 − 𝐷𝑒−𝜆𝜏 + 𝐹𝑒−𝜆𝜏 − 𝑚)+ 𝜆𝐷𝑒−𝜆𝜏 (−𝜏𝑑𝜆𝑑𝜏 − 𝜆)𝜆− 𝜆𝐹𝑒−𝜆𝜏 (−𝜏𝑑𝜆𝑑𝜏 − 𝜆) + 𝐸𝑒−𝜆𝜏 (−𝜏𝑑𝜆𝑑𝜏 − 𝜆)+ 𝐹𝐺𝑒−𝜆𝜏 (−𝜏𝑑𝜆𝑑𝜏 − 𝜆) = 0
(90)

Then

(𝑑𝜆𝑑𝜏)−1 = −𝜏𝜆 − 𝐹 − 𝐷𝜆 (𝜆𝐷 − 𝜆𝐹 + 𝐸 + 𝐹𝐺)
+ 2𝜆 − (𝐺 − 𝑚)𝜆 [𝜆2 − 𝜆 (𝐺 − 𝑚) − 𝑚𝐺]

(𝑑R𝑒 (𝜆)𝑑𝜏 )−1 = − (𝐹 − 𝐷)2𝜔02 (𝐹 − 𝐷)2 + (𝐹𝐺 + 𝐸)2
+ 2 (−𝑚𝐺 − 𝜔02) − (𝐺 − 𝑚)2𝜔02 (𝐺 − 𝑚)2 + (−𝑚𝐺 − 𝜔02)2̸= 0.

(91)

4. Numerical Simulations

In this section, we present some numerical simulations to
illustrate our theoretical analysis.

First, we theoretically analyze a predator-preymodel with
Allee effect in the article and obtain the stability conditions
of 𝐸1 = (𝐾, 0) and 𝐸∗ = (𝑥∗, 𝑦∗). Secondly, we carry out
numerical simulation and select appropriate the parameters,
which draw the stable positions of the equilibrium points𝐸1 = (𝐾, 0) and 𝐸∗ = (𝑥∗, 𝑦∗), shown in Figures 1 and 2. In
the analysis later in this chapter, we use 𝐴 as the bifurcation
parameter to obtain the critical value of the Hopf bifurcation
generated by themodel (2). By comparing Figures 3 and 4, we
find that as the parameter 𝐴 changes the equilibrium point
changes from a steady state to a limit cycle. To further verify
our point of view, we have made a bifurcation diagram as
shown in Figure 5. We found that the bifurcation parameter
produced a bifurcation at about 100, which coincided with
our previous guess. By the same analysis method, we give a
set of timing diagrams for comparison as shown in Figures 6
and 7; we found that with the increase of the parameter𝐴 the
model (2) is shown in Figure 6 and the population gradually
becomes stable with the increase of time, while Figure 7 is a
periodic change.

Next, we performed a numerical simulation of the model
(3), mainly to study the effect of the time-delay parameter 𝜏
on the stability of the coexistence equilibrium point. Here,
we compare three sets of timing diagrams, which are the
effect of 𝜏1 on the stability of the coexistence equilibrium
point, the influence of 𝜏2 on the stability of the coexistence
equilibrium point, and the influence of 𝜏1 = 𝜏2 = 𝜏 on
the stability of the coexistence equilibrium point. First, by
comparing Figures 8 and 9, we find that when 𝜏1 = 0.1,
the population gradually becomes stable with the increase
of time. When 𝜏1 = 0.25, the population gradually shows
periodicity with the increase of time. By comparing Figures
10 and 11, we find that when 𝜏2 = 0.1, the population gradually
becomes stable with the increase of time. When 𝜏2 = 1.5, the
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Figure 1: The phase portrait of model (2) with weak Allee effect.
The parameters are taken as 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.002,𝑐 = 0.215, and𝑚 = 1.06; 𝐸1 = (𝐾, 0) is locally asymptotically stable.
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Figure 2: The phase portrait of model (2) with weak Allee effect.
The parameters are taken as 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02,𝑐 = 0.215, and 𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically
stable.

population gradually shows periodicity with the increase of
time; by comparing Figures 12 and 13, we found that when𝜏 = 0.1, the population gradually becomes stable with the
increase of time. When 𝜏 = 0.19, the population gradually
shows periodicity with the increase of time. At the same time,
we selected the appropriate parameters and gave three sets
of phase diagrams for comparison. By comparing Figures 14
and 15, we find that when 𝜏1 increases from 0.1 to 0.25, the
coexistence equilibrium point changes from a steady state to
a limit cycle; by comparing Figures 16 and 17, we find that𝜏2 is increased from 0.1 to 1.5. At this time, the coexistence
equilibrium point changes from a steady state to a limit cycle;
by comparing Figures 18 and 19, we find that when 𝜏 increases
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Figure 3:The phase portrait ofmodel (2) withweakAllee effect.The
parameters are taken as 𝑥(0) = 260, 𝑦(0) = 70, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) is locally
asymptotically stable, with no limit cycle.
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Figure 4:Thephase portrait ofmodel (2) withweakAllee effect.The
parameters are taken as 𝑥(0) = 260, 𝑦(0) = 70, 𝐴 = 150, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) becomes
unstable; a limit cycle is formed.

from 0.1 to 0.19, the coexistence equilibrium point changes
from a steady state to a limit cycle. From this, we can conclude
that the stability of the equilibrium point of the model (3)
changes with the increase of the time lag when the time-delay
parameter is introduced, and the generation of the limit cycle
(periodic solution) is accompanied by this change.

5. Conclusions

In this paper, we establish a predator-prey model with a weak
Allee effect and demonstrate and analyze the boundedness
and stability of the model. We also prove that the model
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Figure 5: Bifurcation diagram with respect to the parameter 𝐴;
other parameter values are 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215,
and𝑚 = 1.06.
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Figure 6: A Time series diagram for prey and predator. The figure
depicts local stability of the interior equilibrium for the model (2),
where the parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01,𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
(2) experiences transcritical bifurcation around the axial
equilibrium and the model (2) undergoes a Hopf bifurcation
at 𝐸∗ = (𝑥∗, 𝑦∗) when 𝐴 = 𝐴0; we also analyzed the
direction and stability of Hopf bifurcation. Immediately after
we introduced the searching delay and digestion delay in the
model (2), a new model was obtained, and the model (3)
was analyzed for stability changes caused by time lag. It is
concluded that the stability of the coexistence equilibrium
point of the model (3) changes as the time lag increases.
Finally, we verify our theoretical derivation by numerical
simulation. First, we select the appropriate parameters to
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Figure 7: A Time series diagram for prey and predator. Existence of
periodic solution around the interior equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) for
themodel (2), where the parameter values are𝑥(0) = 230,𝑦(0) = 95,𝐴 = 150, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
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Figure 8: A Time series diagram for prey and predator. The figure
depicts local stability of the interior equilibrium for the delayed
model (3) with the time delays 𝜏1 = 0.1 and 𝜏2 = 0, where the other
parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
satisfy the stable conditions that we deduced in the article
and obtain the stable phase diagrams of the equilibrium
points 𝐸1 = (𝐾, 0) and 𝐸∗ = (𝑥∗, 𝑦∗). Second, we try
to change the value of parameter 𝐴, the timing diagram,
phase diagram, and bifurcation diagram corresponding to
each parameter drawn. Further verification of our conclusion
is as 𝐴 increases, the model (2) will produce bifurcation. We
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Figure 9: A Time series diagram for prey and predator. Existence of
periodic solution around the interior equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) for
delayed model (3) with the time delays 𝜏1 = 0.25 and 𝜏2 = 0, where
the parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
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Figure 10: A Time series diagram for prey and predator. The figure
depicts local stability of the interior equilibrium for the delayed
model (3) with the time delays 𝜏1 = 0 and 𝜏2 = 0.1, where the other
parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
also carry out a numerical model of themodel (3) and discuss
our numerical results in three groups: at the beginning, let 𝜏1
change, 𝜏2 = 0; we observe the timing diagram corresponding
to the model (3) as 𝜏1 increases. In the change of the phase
diagram, we find that with the increase of 𝜏1 the coexistence
equilibrium point of the model (3) begins to stabilize and
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Figure 11: A Time series diagram for prey and predator. Existence of
periodic solution around the interior equilibrium 𝐸∗ = (𝑥∗, 𝑦∗) for
delayed model (3) with the time delays 𝜏1 = 0 and 𝜏2 = 1.5, where
the parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
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Figure 12: A Time series diagram for prey and predator. The figure
depicts local stability of the interior equilibrium for the delayed
model (3) with the time delay 𝜏1 = 𝜏2 = 0.1, where the other
parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
becomes unstable and is also accompanied by the generation
of the limit cycle (periodic solution); we also change the 𝜏2,𝜏1 = 0; we observe the increase of 𝜏2, corresponding to
the change of the phase diagram of the time series of the
model (3); we find that with the increase of 𝜏2 the coexistence
equilibrium point of the model (3) begins to stabilize and
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Figure 13: A Time series diagram for prey and predator. Existence
of periodic solution around the interior equilibrium 𝐸∗ = (𝑥∗, 𝑦∗)
for delayed model (3) with the time delay 𝜏1 = 𝜏2 = 0.19, where the
parameter values are 𝑥(0) = 230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65,𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06.
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Figure 14: The phase portrait of delayed model (3) with the time
delays 𝜏1 = 0.1 and 𝜏2 = 0. The parameters are taken as 𝑥(0) = 230,𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06;𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically stable, with no limit
cycle.

becomes unstable. At the same time, it is accompanied by
the generation of the limit cycle (periodic solution); the
same we let 𝜏1 = 𝜏2 = 𝜏, so that 𝜏 increases; we also
found similar changes. In this process, we also found an
interesting phenomenon. When 𝜏1 takes a small value, the
stability of the coexistence equilibrium point of the model
changes. However, 𝜏2 requires a larger value than 𝜏1. When𝜏1 = 𝜏2 = 𝜏, 𝜏 only needs to take a small value, and the
stability of the coexistence equilibrium point of the model

92

93

94

95

96

97

98

99

100

pr
ed

at
or

 p
op

ul
at

io
n

235 240 245 250 255 260 265230
prey population

Figure 15: The phase portrait of delayed model (3) with the time
delays 𝜏1 = 0.25 and 𝜏2 = 0. The parameters are taken as 𝑥(0) = 230,𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) becomes unstable; a limit cycle is formed.
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Figure 16: The phase portrait of delayed model (3) with the time
delays 𝜏1 = 0 and 𝜏2 = 0.1. The parameters are taken as 𝑥(0) =230, 𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 =0.215, and 𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically stable,
with no limit cycle.

changes. From a biological point of view, we find that the
introduction of weak Allee effect will change the stability of
the model; that is to say, the stable state between populations
will be broken. Similarly, delays can destroy the stability of
the original predator-preymodel.Moreover, the introduction
of delay and weak Allee effect makes the model closer to
reality andmakes usmore accurately understand the dynamic
changes of interspecific relationships. Therefore, we can find
thatAllee effect anddelay play an important role in describing
population dynamics.



14 Advances in Mathematical Physics

50

60

70

80

90

100

110

120

130

140
pr

ed
at

or
 p

op
ul

at
io

n

150 200 250 300 350 400 450 500100
prey population

Figure 17: The phase portrait of delayed model (3) with the time
delays 𝜏1 = 0 and 𝜏2 = 1.5. The parameters are taken as 𝑥(0) = 230,𝑦(0) = 95, 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and𝑚 = 1.06; 𝐸∗ = (𝑥∗, 𝑦∗) becomes unstable; a limit cycle is formed.
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Figure 18: The phase portrait of delayed model (3) with the time
delay 𝜏1 = 𝜏2 = 0.1. The parameters are taken as 𝑥(0) = 230, 𝑦(0) =95, 𝐴 = 0.01, 𝑟 = 2.65, 𝐾 = 900, 𝑎 = 0.02, 𝑐 = 0.215, and 𝑚 = 1.06;𝐸∗ = (𝑥∗, 𝑦∗) is locally asymptotically stable, with no limit cycle.
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