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A fractional Hardy–Sobolev inequality with a magnetic �eld is studied in the present paper. Under appropriate conditions, the 
achievement of the best constant of the fractional magnetic Hardy–Sobolev inequality is established.

1. Introduction

During the last decades, researchers paid more and more 
attention to the study of Sobolev inequalities and Hardy–
Sobolev inequalities, including the fractional case and mag-
netic case, see e.g. [1–9].

It is well known that the sharp constant of the embedding 
�1,2(ℝ�) �→ �2

∗
(ℝ�)  is attained (see [10]), where 2∗ := 2�/(� − 2)

is the Sobolev critical exponent and �1,2(ℝ�) =
{� ∈ �2

∗
(ℝ�) : |∇�| ∈ �2(ℝ�)}. �at is,

is achieved by the so-called Aubin–Talenti instanton (cf. [11, 12]) 
��,�0 ∈ �

1,2(ℝ�) de�ned by

where � > 0, �0 ∈ ℝ�. Moreover, ��,�0 is a positive solution of 
−Δ� = |�|2

∗−2� in ℝ�, 

and {��,�0 : � > 0, �0 ∈ ℝ
�} contains all positive solutions of 

−Δ� = |�|2
∗−2� in ℝ�.

For the best constant of the Hardy–Sobolev inequality

where 0 < � < 2 and 2∗(�) := 2(� − �)/(� − 2) is the Hardy–
Sobolev critical exponent, it follows from [13] that �� is 
achieved by functions of the form

where � > 0. �e function �� is a positive solution of 
−Δ� = |�|2

∗(�)−2�/|�|� in ℝ�, and moreover,

For the fractional Sobolev inequality, consider the Hilbert 
space ��(ℝ�) de�ned as Gagliardo seminorm

where 0 < � < 1, 2∗� := 2�/(� − 2�) is the fractional Sobolev 
critical exponent and the norm

(1)
� := inf

�∈�1,2(ℝ�)
� ̸=0

∫ℝ� |∇�|
2
d�

(∫ℝ� |�|
2∗
d�)2/2

∗

(2)��,�0(�) := (�(� − 2))
(�−2)/4( �

�2 + ����� − �0
����
2)
(�−2)/2

,

(3)∫
ℝ�
�����∇��,�0
�����
2
d� = ∫

ℝ�
�������,�0
�����
2∗
d� = ��/2,

(4)
�� := inf

�∈�1,2(ℝ�)
� ̸=0

∫ℝ� |∇�|
2
d�

(∫ℝ�(|�|
2∗(�)/|�|�)d�)

2/2∗(�) ,

(5)
��(�) := ((� − �)(� − 2))(�−2)/2(2−�)�(�−2)/2(�2−� + |�|2−�)

−(�−2)/(2−�),

(6)∫
ℝ�
����∇��
����
2
d� = ∫

ℝ�

������
����
2∗(�)

|�|�
d� = (��)

(�−�)/(2−�).

(7)��(ℝ�) := {� ∈ �2
∗
� (ℝ�) :

�����(�) − �(�)
����

����� − �
����
(�/2)+� ∈ �

2(ℝ2�)},

(8)‖�‖2�� :=
��,�
2 ∫ℝ2�
�����(�) − �(�)

����
2

����� − �
����
�+2� d�d�
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is induced by the scalar product

Here ��,� is a dimensional constant precisely given by

De�ne the best constant for the fractional Sobolev inequality 
as

From [14–16], we see that �� is achieved by �̃(�) =
�(�2 + |� − �0|)

−(�−2�)/2
, that is, �� = ‖�̃‖2��/|�̃|22∗�. Normali zing 

�̃ by |�̃|2∗�, we get that � = �̃/|�̃|2∗� ful�lls

and � is a positive ground state solution of (−Δ)�� = ��|�|2
∗
� −2�

in ℝ� (see Lemma 2.12 in [17]). Denote

where �̂ = �1/(2
∗
� −2)

� � is a positive ground state solution of 
(−Δ)�� = |�|2

∗
� −2� in ℝ� and

�en, Lemma 2.12 in [17] yields that ��,� solves (−Δ)�� = |�|2
∗
� −2�

in ℝ�. �e fractional Hardy–Sobolev inequality

was considered in [18, 19], where 2∗� (�) := 2(� − �)/(� − 2�)
is the fractional Hardy–Sobolev critical exponent. Marano and 
Mosconi [18] proved that ��,� is achieved by a optimizer 
� ∈ ��(ℝ�), whose asymptotic behavior is

For the magnetic Hardy–Sobolev inequality, we regard the 
range of function as ℂ, that is, � : ℝ� → ℂ, � ≥ 3, 
� = (�1, . . . , ��) : ℝ� → ℝ� is a magnetic vector potential. 
Setting −Δ� := (−�∇ + �)2, ∇� := ∇ + ��, and

then −Δ�� = −Δ� − ��div� − �� ⋅ ∇� + |�|2� and �1,2� (ℝ�,ℂ) is 
the Hilbert space obtained as the closures of �∞� (ℝ�,ℂ) with 
respect to scaler product

(9)⟨�, v⟩�� :=
��,�
2 ∫ℝ2�
(�(�) − �(�))(v(�) − v(�))

����� − �
����
�+2� d�d�.

(10)��,� = (∫
ℝ�
1 − cos �1
�����
����
�+2� ��)

−1

.

(11)
�� := inf

�∈��(ℝ�)
� ̸=0

‖�‖2��

(∫ℝ� |�|
2∗� d�)2/2

∗
�
.

(12)
�� = inf

�∈��(ℝ�)
(�)2∗� =1

‖�‖2�� = ‖�‖2��

(13)��,�(�) = �−(�−2�)/2�̂(
�
� ),

(14)‖�̂‖2�� = ∫
ℝ�
|�̂|2

∗
� d� = (��)

�/2�.

(15)
��,� := inf

�∈��(ℝ�)
� ̸=0

‖�‖2��

(∫ℝ�(|�|
2∗� (�)/|�|�)d�)

2/2∗� (�)
,

(16)�(�) ≃ |�|2�−� as |�|→ +∞.

(17)�1,2� (ℝ�,ℂ) := {� ∈ �2
∗
(ℝ�,ℂ) : ����∇��

���� ∈ �
2(ℝ�)},

where the bar denotes complex conjugation. De�ne

where 2∗(�) := 2(� − �)/(� − 2) is the Hardy–Sobolev critical 
exponent. �en, by �eorem 1.1 in [20], we see that if 
� ∈ ��

loc
(ℝ�,ℝ�), then ��,� is attained by some � ∈ �1,2�

(ℝ�, ℂ)\{0} if and only if curl � ≡ 0, where curl � is the usual 
curl operator for � = 3 and the � ×� skew-symmetric matrix 
with entries ��� = ���� − ��� � for � ≥ 4.

In our paper, we consider a fractional Hardy–Sobolev ine-
quality with a magnetic �eld. To show our question, we �rst intro-
duce the fractional magnetic Sobolev space ���(ℝ�,ℂ), which is 
the completion of �∞� (ℝ�,ℂ) with respect to the so-called frac-
tional magnetic Gagliardo seminorm [⋅]��� given by

where ��,� is given by (10), � : ℝ� → ℂ, 0 < � < 1,� ≥ 3, and 
� = (�1, . . . , ��) : ℝ� → ℝ� is a magnetic vector potential. 
�e scalar product in ���(ℝ�,ℂ) is

Although [⋅]��� is a seminorm, by fractional magnetic Sobolev 
embeddings (see Lemma 3.5 in [21]), we can view [⋅]��� as a 
norm ‖ ⋅ ‖��� := [⋅]��� in the space ���(ℝ�,ℂ). As in Propositions 
2.1 and 2.2 in [21], we can verify that ���(ℝ�,ℂ) is a Hilbert 
space. ��(ℝ�, d�/|�|�) denotes the space of ��-integrable 
functions with respect to the measure d�/|�|�, endowed with 
norm

�e aim of the present paper is to investigate the following 
fractional magnetic Hardy–Sobolev inequality

where 0 < � < 1, 0 < � < 2� and 2∗� (�) := 2(� − �)/(� − 2�) is 
the fractional Hardy–Sobolev critical exponent. Problem (23) 
relates to the fractional magnetic Laplacian de�ned by

(18)Re(∫
ℝ�
∇�� ⋅ ∇�vd�),

(19)
��,� := inf

�∈�1,2� (ℝ�)
� ̸=0

∫ℝ�
����∇��
����
2
d�

(∫ℝ�(|�|
2∗(�)/|�|�)d�)

2/2∗(�) ,

(20)

[�]2��� :=
��,�
2 ∫ℝ2�

�������
−�(�−�)⋅∫10�((1−�)�+��)d��(�) − �(�)

������
2

����� − �
����
�+2� d�d�,

(21)

⟨�, v⟩��� :=
��,�
2 Re∫ℝ2�

(�−�(�−�)⋅∫
1
0�((1−�)�+��)d��(�) − �(�))
����� − �
����
�+2�

⋅ (�−�(�−�)⋅∫
1
0�((1−�)�+��)d�v(�) − v(�))d�d�.

(22)|�|�,� := (∫
ℝ�
|�|�

|�|�
d�)
1/�

.

(23)
��,�,� := inf

�∈���(ℝ�)
� ̸=0

‖�‖2���
|�|22∗� (�),�
,

(24)
(−Δ)���(�) = ��,� lim�→0+ ∫���(�)

�(�) − ��(�−�)⋅∫
1
0�((1−�)�+��)d��(�)
����� − �
����
�+2� d�, � ∈ ℝ�.
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For � = 3 and with mid-point prescription, the fractional mag-
netic Laplacian was studied in [21]. In particular, d’Avenia and 
Squassina [21] considered the operator

Obviously, (24) can be regarded as an extension of the 
above-mentioned operator involving mid-point prescription. 
�e fractional magnetic Laplacian (−Δ)�� : ���(ℝ�,ℂ)→
�−�� (ℝ�, ℂ) can also be de�ned by duality as

Denote

�en (23) can be characterized as:

Our main result is:

Theorem 1. If � : ℝ� → ℝ� is a continuous function with 
locally bounded gradient, then ��,�,� is achieved by a nonzero 
element ��,�,� ∈ ���(ℝ�, ℂ).

2. Proof of the Main Result

To prove �eorem 1, we need the following Lemma, which is 
obtained in [22].

Lemma 1 (Diamagnetic inequality). For any � ∈ ���(ℝ�, ℂ), 
we have

and

which means |�| ∈ ��(ℝ�, ℝ).
By the fractional Hardy–Sobolev inequality (15) and 

Lemma 1, we have the following lemma.

Lemma 2 (Fractional magnetic Sobolev embeddings). �e 
embedding

(25)

(−Δ)���(�) = ��,� lim�→0+ ∫���(�)
�(�) − ��(�−�)⋅�((�+�)/2)�(�)

����� − �
����
�+2� d�, � ∈ ℝ3.

(26)

⟨(−Δ)���, v⟩ :=
��,�
2 Re∫ℝ2�

(�−�(�−�)⋅∫
1
0�((1−�)�+��)d��(�) − �(�))
����� − �
����
�+2�

⋅ (�−�(�−�)⋅∫
1
0�((1−�)�+��)d�v(�) − v(�))d�d�

=
��,�
2 Re∫ℝ2�

(�(�) − ��(�−�)⋅∫
1
0�((1−�)�+��)d��(�))
����� − �
����
�+2�

⋅ (v(�) − ��(�−�)⋅∫
1
0�((1−�)�+��)d�v(�))d�d�.

(27)J = {� ∈ ���(ℝ�,ℂ) : |�|2∗� (�),� = 1}.

(28)��,�,� = inf�∈J ‖�‖
2
��� .

(29)

||�(�)| − |�(�)||

≤
�������
−�(�−�)⋅∫10�((1−�)�+��)d��(�) − �(�)

������ ��� �.�. �, � ∈ ℝ
�

(30)‖|�|‖�� ≤ ‖�‖��� ,

is continuous.

Proof of �eorem 1. Since the best constant ��,� of fractional 
Hardy–Sobolev inequality (15) is achievable, we only need 
to show that

In fact, for any � > 0, there exists � ∈ �∞� (ℝ�,ℝ) such that

Similarly to Lemma 4.6 in [21], for any � > 0, consider the 
scaling

Substituting � = �� and � = ��, we derive that

and the following invariance of scaling:

Noticing that |� − v|2 = |�|2 + |v|2 − 2Re(�v) for �, v ∈ ℂ, we 
have

(31)���(ℝ�, ℂ) �→ �2
∗
� (�)(ℝ�, ℂ)

(32)��,�,� = ��,�.

(33)‖�‖2�� ≤ ��,� + � and |�|2∗� (�),� = 1.

(34)��(�) := �(2�−�)/2�(
�
� ), � ∈ ℝ

�.

(35)

����������2��� =
��,�
2 ∫ℝ2�
�������
−�(�−�)⋅∫10�((1−�)�+��)d���(�) − ��(�)

������
2

����� − ������+2�
d�d�

=
��,�
2 ∫ℝ2�
�2�−��������

−��(�−�)⋅∫10�[�((1−�)�+��)]d��(�) − �(�)������
2

��+2�|� − �|�+2�
�2�d�d�

=
��,�
2 ∫ℝ2�
�������
−��(�−�)⋅∫10�[�((1−�)�+��)]d��(�) − �(�)������

2

����� − ������+2�
d�d�

(36)

����������2�� =
��,�
2 ∫ℝ2�
������(�) − ��(�)����2����� − ������+2�

d�d�

=
��,�
2 ∫ℝ2�
�2�−�������(�) − ��(�)����2
��+2�|� − �|�+2�

�2�d�d� = ‖�‖2�� ,

(37)

������
����
2∗� (�)
2∗� (�),�
= ∫
ℝ�
�((2�−�)/2)⋅(2(�−�)/(�−2�))|�(�/�)|2

∗
� (�)

|�|�
d�

= ∫
ℝ�
��−�|�(�)|2

∗
� (�)

��|�|�
��d� = |�|2

∗
� (�)
2∗� (�),�
.

(38)

����������2��� − ‖�‖2��

=
��,�
2 ∫ℝ2�
�������
−��(�−�)⋅∫10�[�((1−�)�+��)]d��(�) − �(�)������

2

����� − ������+2�
d�d�

−
��,�
2 ∫ℝ2�
�����(�) − �(�)����2����� − ������+2�

d�d�

=
��,�
2 ∫ℝ2�
2Re((1 − �−��(�−�)⋅∫10�[�((1−�)�+��)]d�)�(�)�(�))

����� − ������+2�
d�d�

= ��,�∫
ℝ2�

(1 − cos (�(� − �) ⋅ ∫10	[�((1 − �)� + ��)]d�))����� − ������+2�
�(�)�(�)d�d�

=: ��,�∫
ℝ2�
Υ�(�, �)d�d� = ��,�∫

�×�
Υ�(�, �)d�d�,
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