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In this paper, with the help of symbolic computation, three types of rational solutions for the (2 + 1)-dimensional modified
KdV-Calogero-Bogoyavlenkskii-Schiff equation are derived. By means of the truncated Painlevé expansion, we show that the
(2 + 1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-Schiff equation can be written as a trilinear-linear equation, from
which we get explicit representation for rational solutions of the (2 + 1)-dimensional modified KdV-Calogero-Bogoyavlenkskii-
Schiff equation.

1. Introduction

It is an important problem to seek exact solutions in the
study of the nonlinear evolution equations (NLEEs). With
regard to the methods for solving NLEEs, various techniques
and approaches have been proposed, for instance, the Dar-
boux transformation [1], the Lie group method [2–4], and
the Hirota bilinear method [5]. Recently, based on the Hirota
bilinear method, a method for constructing a lump solution
by taking the function f in its bilinear form as a positive qua-
dratic function, proposed by Ma [6], has been used to solve
many NLEEs. By using this method, the phenomenon of
the rogue wave was found in Refs. [7–9]. And then, more
and more integrable soliton equations are found to have
lump solutions and mixed kink-lump solutions [10–23].

In this paper, we focus on the following (2 + 1)-dimen-
sional modified KdV-Calogero-Bogoyavlenkskii-Schiff (KdV-
CBS) equation

ut − 4u2uy − 2ux∂−1x u2
� �

y
+ 2uxxy − 6u2ux + uxxx = 0, ð1Þ

which can be derived from the (2 + 1)-dimensional KdV-CBS
equation [24, 25]

qt + 4qqy − 2qx∂−1x qy + qxxy − 6qqx + qxxx = 0, ð2Þ

by means of the Miura transformation q = u2 − ux [26]. Here,
the subscripts x and y denote the partial derivatives with
respect to x and y, respectively. In order to treat the integral
appearing in equation (1), so that equation (1) can be better
analyzed and solved, let vx = 2uuy; equation (1) is transformed
into the following system:

ut − 4u2uy − 2uxv + uxxy − 6u2ux + uxxx = 0,
2uuy = vx:

ð3Þ

The soliton-cnoidal wave solutions of equation (3) were
obtained in Ref. [27]. Interesting studies on the family of
KdV-type equations have been carried out in the following
papers [28–31]. The aim of this paper is to construct the ratio-
nal solutions of system (3) by solving a trilinear-linear equa-
tion related to its truncated Painlevé expansion.

The outline of this paper is as follows. In Section 2, using
the truncated Painlevé expansion, we convert the original
modified KdV-CBS equation to a trilinear-linear equation.
In Section 3, the first class of rational solutions for the mod-
ified KdV-CBS equation is obtained by taking function f as a
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positive quadratic function. In Section 4, the second class of
rational solutions is obtained by taking function f as a posi-
tive quadratic and an exponential function. In Section 5,
the third class of rational solutions is obtained by taking
function f as a positive quadratic and two exponential func-
tions. The conclusion will be given in Section 6.

2. Trilinear-Linear Equation

Based on the Painlevé analysis proposed in Ref. [32], equa-
tion (3) possesses a truncated Painlevé expansion as follows:

u = u0 +
u1
f
,

v = v0 +
v1
f
+ v2

f 2
,

ð4Þ

with u0, u1, v0, v1, v2, and f being the function of x, y, and
t. We substitute (4) into (3); the results can be obtained
as follows:

v1 = −f xy,
v2 = f x f y,

u0 = −
f xx
2f x

,

u1 = f x,

v0 =
1
2
f t
f x

−
1
2
f xx f xy
f 2x

+ 1
2
f xxy
f x

+ 1
2
f xxx
f x

−
3
4
f 2xx
f 2x

,

ð5Þ

with f satisfying the following trilinear-linear equation:

3f xx f yxx f x − f yxxx f
2
x − f xt f

2
x − f xxxx f

2
x + f xx f t f x

+ 4f xxx f xx f x + f y f xxx f x − 3f 3xx − 3f 2xx f yx = 0:
ð6Þ

By solving the trilinear-linear equation (6), we can get

u = −
1
2
f xx
f x

+ f x
f
, ð7aÞ

v = 1
2
f t
f x

−
1
2
f xx f xy
f 2x

+ 1
2
f yxx
f x

+ 1
2
f xxx
f x

−
3
4
f 2xx
f 2x

−
f 2yx
f

+
f x f y
f 2

:

ð7bÞ
Based on the idea in Refs. [6, 7], we take f as

f = a1x + a2y + a3t + a4ð Þ2 + a5x + a6y + a7t + a8ð Þ2
+ a9 + α exp k1x + k2y + k3t + k4ð Þ
+ β exp − k1x + k2y + k3t + k4ð Þð Þ,

ð8Þ

where ai, k, kj, 1 ≤ i ≤ 9, and 1 ≤ j ≤ 4 are real parameters to be
determined. Substituting (8) into trilinear-linear equation (6),
we get a set of solutions. In the following, we will give three
types of rational solutions of equation (3) via (8).

3. Rational Solutions from the
Quadratic Function

Substitution equation (8) into trilinear-linear equation (6),
we will get the following set of constraining equations for
the parameters

a1 = a1,

a2 = −
a21 + a25 + a5a6

a1
,

a3 = a3,
a4 = a4,
a5 = a5,
a6 = a6,

a7 =
a3a5
a1

,

a8 = a8,
a9 = a9,
α = 0,
β = 0,
k1 = k1,
k2 = k2,
k3 = k3,
k4 = k4,

ð9Þ

where

a1 ≠ 0,
a9 > 0,

ð10Þ

to guarantee that the corresponding f is positive. By
substituting (9) into (8), the function f can be obtained
as follows:

f = a1x −
a21 + a25 + a5a6

a1
y + a3t + a4

� �2

+ a5x + a6y +
a3a5t
a1

+ a8

� �2
+ a9:

ð11Þ

By means of equation (7a) and equation (7b), we get
the solutions of (3):

u = 4 a1g + a5hð Þ2 − 2a21 + 2a25
� �

f

2ga1 + 2ha5ð Þf , ð12aÞ

v = a3 a1g − a5hð Þ
2a1 a1g + a5hð Þ −

a21 + a25
� �2

4 a1g + a5hð Þ2 + 2f a21 + a25
� �2 +N

f 2
,

ð12bÞ
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where

f = g2 + h2 + a9,

g = a1x −
a21 + a25 + a5a6

a1
y + a3t + a4,

h = a5x + a6y +
a3a5
a1

t + a8,

N = −2g a21 + a25 + a5a6
a1

+ 2ha6
� �

a1g + a5hð Þ:

ð13Þ

The solutions of u via (12a) are singular which can be
seen in Figure 1(a); Figure 1(b) is the corresponding density
plot. The solutions of v via (12b) can be seen in Figure 1(c)
and Figure 1(d) is the corresponding density plot.

4. Rational Solutions Obtained by Adding an
Exponential Term to the Quadratic Function

Two types of solutions are obtained in the following.

Case I.

a1 = 0,
a2 = a2,
a3 = 0,
a4 = a4,
a5 = a5,
a6 = −a5,

a7 = −
k3a5
k2

,

a8 = a8,
a9 = a9,
α = 0,
β = β,
k1 = −k2,
k2 = k2,
k3 = k3,
k4 = k4,

ð14Þ

which should satisfy the constraint conditions

k2 ≠ 0,
a9 > 0,
β > 0,

ð15Þ

to ensure that the corresponding f is positive and well
defined. By substituting (14) into (8), the function f reads

f = a2y + a4ð Þ2 + a5x − a6y −
a3a5t
k2

+ a8

� �2

+ β exp k1x + k2y + k3t + k4ð Þ + a9:

ð16Þ

Using equation (7a) and equation (7b), the solutions for
(3) can be obtained:

u = 2 a5h + k2β exp ξð Þð Þ2 − 2a25 + k22
� �

β exp ξð Þf
2 k2β exp ξð Þ + 2ha5ð Þf , ð17aÞ

v = − k3 k2β exp ξð Þ + 2a5hð Þð Þ
k2 k2β exp ξð Þ + 4ha5ð Þ −

B2

4A2 + A 2ga2 − Að Þ + Bf

f 2
,

ð17bÞ
where

f = g2 + h2 + β exp ξð Þ + a9,
g = a2y + a4,

h = a5x − a5y +
k3a5
k2

t + a8,

ξ = k2x − k2y − k3t − k4,
A = k2β exp ξð Þ + 2ha5,
B = k22β exp ξð Þ + 2a25:

ð18Þ

Case II.

a1 = 0,
a2 = a2,
a3 = 0,
a4 = a4,
a5 = a5,
a6 = −a5,

a7 = −
k3a5
k2

,

a8 = a8,
a9 = a9,
α = α,
β = 0,
k1 = k1,
k2 = k2,
k3 = k3,
k4 = k4,
a1 = a3 = 0,
a6 = −a5,

a7 = −
k3a5
k2

,

β = 0,

ð19Þ
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which should satisfy the constraint conditions

k2 ≠ 0,
a9 > 0,
α > 0,

ð20Þ

to guarantee that the corresponding f is positive and well
defined. Substituting (19) into (8), we then have the func-
tion f :

f = a2y + a4ð Þ2 + a5x − a6y −
a3a5t
k2

+ a8

� �2

+ α exp k1x + k2y + k3t + k4ð Þ + a9:

ð21Þ

The solutions of this case are similar to the solutions
of equation (17a) and equation (17b).

5. Rational Solutions Obtained by Adding Two
Exponential Terms to the Quadratic Function

In this section, in order to find interaction solutions of equa-
tion (3), we further add two exponential terms to the qua-
dratic function. Three sets of solutions are obtained as
follows.

Case I.

a1 = a1,

a2 = −
a21 + a25 + a5a6

a1
,

a3 = a3,
a4 = a4,
a5 = a5,
a6 = a6,
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Figure 1: Profiles of the solution u via (12a) and profiles of the solution v via (12b) with a1 = 1, a3 = 1:5, a4 = 0, a5 = 2, a6 = 4, a8 = 0, and
a9 = 1. (a) and (c) are the corresponding 3-dimensional plots; (b) and (d) are the corresponding density plots.
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a7 =
a3a5
a1

,

a8 = a8,

a9 = a9,

α = α,

β = β,

k1 = 0,

k2 = k2,

k3 = 0,

k4 = k4,
ð22Þ

where

a1 ≠ 0,
a9 > 0,
α > 0,
β > 0,

ð23Þ

to ensure that the corresponding f is positive and well
defined. By substituting (22) into (8), we can get

f = a1x −
a21 + a25 + a5a6

a1
y + a3t + a4

� �2

+ a5x + a6y +
a3a5t
a1

a8

� �2
+ a9,

ð24Þ
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Figure 2: Profiles of the solution u via (25a) with a1 = 1, a3 = 1:5, a4 = 0, a5 = 2, a6 = 4, a8 = 0, a9 = 1, α = 1, β = 1, k2 = 1, and k4 = 0. (a) 3-
dimensional plot; (b–d) the corresponding density plots with different times.
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where ai, kj, 1 ≤ i ≤ 9, and 1 ≤ j ≤ 4 are all real parameters to
be determined. Then, the solutions of (3) will be obtained:

u = −
4 a1h + a5gð Þ2 − a21 + a25

� �
f

2f a1h + a5gð Þ , ð25aÞ

v = a1a3h + a3a5g
2a1 a1h + a5gð Þ −

a1 + a5ð Þ2
8a1 a1h + a5gð Þ + D

f 2
, ð25bÞ

with

f = h2 + g2+a9 + α exp ξð Þ + β exp −ξð Þ,

h = a1x −
a21 + a25 + a5a6

a1
y + a3t + a4,

g = a5x + a6y +
a3a5t
a1

+ a8,

ξ = k2y + k4,

ð26Þ

D = 2a6g − 2hðða21 + a25Þ + a5a6/a1Þ + k2ðα exp ðξÞ − β
exp ð−ξÞ + 2ða1h + a5gÞÞ + ð2f ða21 + a25ÞÞ:The solution for
(25a) can be seen in Figure 2(a); Figures 2(b)–2(d) are the
corresponding density plots with different times.

Case II.

a1 = a1,

a2 = −
a21 + a25 + a5a6

a1
,

a3 =
a1k3
k1

,

a4 = a4,
a5 = a5,
a6 = a6,

a7 =
a5k3
k1

,
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Figure 3: Profiles of the solution u via (30a) with a1 = 1, a4 = 0, a5 = 2, a6 = 4, a8 = 0, a9 = 1, α = 1, β = 1, k1 = 1, k2 = 1:5, k3 = 2, and k4 = 0. (a)
3-dimensional plot with the time t = 0; (b–d) the corresponding density plots with different times.
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a8 = a8,

a9 = a9,

α = α,

β = β,

k1 = k1,

k2 = −k1,

k3 = k3,

k4 = k4, ð27Þ

where

a1 ≠ 0,
k1 ≠ 0,
a9 > 0,
α > 0,
β > 0,

ð28Þ

to guarantee that the corresponding f is positive and well
defined. We substitute (27) into (8); hence, we can reinstall
function f as the following formula:

f = a1x −
a21 + a25 + a5a6

a1
y + a1k3t

k1
+ a4

� �2

+ a5x + a6y +
a5k3t
a1

+ a8

� �2
+ a9,

ð29Þ

where ai, kj, 1 ≤ i ≤ 9, and 1 ≤ j ≤ 4 are all real parameters to
be determined. Then, by substituting equation (27) into
(29), and with equation (3), we have

u = −
2B2 − Af

2Bf , ð30aÞ

v = k3
2k1

+ A2

4B2

+ B 2ha6 − 2h a21 + a25 + a5a6
� �

/a1
� �

+ k1 α exp ξð Þ − β exp −ξð Þð Þ −Af
� �

f 2
,

ð30bÞ
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Figure 4: Profiles of the solution v via (30b) with a1 = 1, a4 = 0, a5 = 2, a6 = 4, a8 = 0, a9 = 1, α = 1, β = 1, k1 = 1, k2 = 1:5, k3 = 2, and k4 = 0. (a)
3-dimensional plot with the time t = 0; (b–d) the corresponding density plots with different times.
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where

f = h2 + g2 + α exp ξð Þ + β exp −ξð Þ + a9,

h = a1x −
a21 + a25 + a5a6

a1
y + a1k3t

k1
+ a4,

g = a5x + a6y +
a5k3t
a1

+ a8

� �2
+ a9,

ξ = k1x − k1y + k3t + k4,
A = 2 a21h + a25g

� �
+ k21 α exp ξð Þ + β exp −ξð Þð Þ,

B = 2a1h + a5 + k1 α exp ξð Þ − β exp −ξð Þð Þ:

ð31Þ

The solution for (30a) as a rational solution can be seen in
Figure 3(a) and in Figures 3(b)–3(d) the corresponding
density plots with different times. The solution for (30b) as a
rational solution which is singular can be seen in Figure 4(a)

and in Figures 4(b)–4(d) the corresponding density plots
with different times.

Case III.
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a21k

2
3 + a6a7k1k3 + a27k
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Figure 5: Profiles of the solution u via (35a) and profiles of the solution v via (35b) with a1 = 1, a4 = 0, a6 = 2, a7 = 1, a8 = 0, a9 = 1, α = 1, β = 1,
k1 = 1, k3 = 2, and k4 = 0. (a) and (c) are the 3-dimensional plots; (b) and (d) are the corresponding density plots.
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a7 = a7,

a8 =
a4a7k1
k3a1

,

a9 = a9,

α = α,

β = β,

k1 = k1,

k2 = −k1,

k3 = k3,

k4 = k4, ð32Þ

with

k3a1 ≠ 0,
a9 > 0,
α > 0,
β > 0,

ð33Þ

to guarantee that the corresponding f is positive and well
defined. We substitute (32) into (8), then function f reads

f = a1x −
a21k

2
3 + a6a7k1k3 + a27k

2
1

a1k
2
3

y + a1k3t
k1

+ a4

 !2

+ a7k1
k3

x + a6y + a7t +
a4a7k1
k3a1

� �2

+ a9 + α exp k1x − k1y + k3t + k4ð Þ
+ β exp −k1x + k1y − k3t − k4ð Þ,

ð34Þ
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Figure 6: Profiles of the solution u via (17a) with a2 = 1, a4 = 0, a5 = 1, a8 = 0, a9 = 1, beta = 1, k2 = 2, k3 = 1, and k4 = 0. (a) 3-dimensional plot
with the time t = 0; (b–d) the corresponding density plots with different times.
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where ai, kj, 1 ≤ i ≤ 9, and 1 ≤ j ≤ 4 are all real parameters
to be determined. Then, the rational solution of system (3)
can be obtained again:

where

f = h2 + g2 + α exp ξð Þ + β exp −ξð Þ + a9,

h = a1x −
a21 + k23 + a6a7k1k3 + a27k

2
1

a1k
2
3

y + a1k3t
k1

+ a4,

g = a7k1
k3

x + a6y + a7t +
a4a7k1
k3a1

,

ξ = k1x − k1y + k3t + k4,
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Figure 7: Profiles of the solution v via (17b) with a2 = 1, a4 = 0, a5 = 1, a8 = 0, a9 = 1, beta = 1, k2 = 2, k3 = 1, and k4 = 0. (a) 3-dimensional plot
with the time t = 0; (b–d) the corresponding density plots with different times.

u = −
J f − 2D2� �
2Df , ð35aÞ

v = 2a1k3h/k1ð Þ + 2a7g +Nð Þ
2D + J2

4D2 + D Mh + 2a7g +Nð Þ + 2a1 M − 2 a7k1/k3ð Þð Þ + k21 α exp ξð Þ + β exp −ξð Þð Þ
f 2

, ð35bÞ
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D = 2a1h + 2 a7k1
k3

g + k1 α exp ξð Þ − β exp −ξð Þð Þ,

J = 2a21 + 2 a7k1
k3

� �2
+ k21 α exp ξð Þ + β exp −ξð Þð Þ,

M = 2 a21k
2
3 + a6a7k1k3 + a27k

2
1

� �
a1k

2
3

,

N = k3 α exp ξð Þ − β exp −ξð Þð Þ: ð36Þ
The solution for (35a) is rational and can be seen in

Figure 5(a) and Figure 5(b) is the corresponding density plot;
the solution for (35b) is rational and can be seen in
Figure 5(c) and Figure 5(d) is the corresponding density plot.

6. Conclusions

Construction of rational solutions for NLEEs is an important
part in nonlinear science. In this study, based on the trilinear-
linear equation (6), we obtain three classes of rational solu-
tions ((12a), (12b), (17a), (17b), (25a), (25b), (30a), (30b),
(35a), and (35b)) for the (2 + 1)-dimensional modified
KdV-CBS equation (3). Three-dimensional plots and the
corresponding density plots of the three classes of rational
solutions are given, respectively, in Figures 1–7 in this paper.
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