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In the current work, a combination between a new integral transform and the homotopy perturbation method is presented. �is 
combination allows to obtain analytic and numerical solutions for linear and nonlinear systems of partial di�erential equations.

1. Introduction

We know that the HPM, proposed �rst by He [1], for solving 
di�erential [2, 3] and integral equations [4], linear and non-
linear, has been the subject of extensive analytical and numer-
ical studies.

�e HPM is applied to singular nonlinear di�erential 
equations [5], nonlinear wave equations [6], nonlinear oscil-
lators [7], bifurcation of delay-di�erential equations [8], 
boundary value problems [9], initial value problems [10], and 
nonlinear coupled equations [5, 11]. Furthermore the HPM 
yields every rapid convergence of the solution series in most 
cases.

On the other hand, the integral transformations played an 
essential role in many �elds of science [12, 13], especially, 
engineering mathematics [14], mathematical physics [15], 
optics [16], image processing [17] and, few others because they 
have been successfully used in solving many problems in those 
�elds. Many of these transforms have been used and applied 
on theory and applications, such as Sumudu [18, 19], Laplace 
[20, 21], Fourier [13], Elzaki et al. [22] and new integral trans-
form [23]. Among these the most widely used is Laplace trans-
form. Here, new integral transform is proposed to avoid the 
complexity of previous transforms [13, 18, 19].

In general, the nonlinear partial di�erential equations 
(NPDEs) have modeled nonlinear complex phenomena in 
various scienti�c �elds [24–35]. �e investigation of analytical, 

approximate, and exact solutions of NPDEs will help better 
understand the complex phynomena.

Our method, which is a coupling of the new integral 
transform and homotopy perturbation technniques, deforms 
continuously to a simple problem which is easily solved. Also 
this presentation has proposed a new method for solving 
NPDEs.

�is article is organized as follows: In Section 2, we intro-
duce some basic de�nitions and proberities for the new inte-
gral transform. In Section 3, we discuss the method used in 
this work. Some applications are given in Section 4 to show 
the accuracy and advantage of the proposed method. Finally, 
numerical results are discussed in Section 5.

2. Basic Definition of the New Integral 
Transform (NT)

In this section, we mention the following basic de�nitions 
and theorems of the new transform used in the present 
paper.

2.1. De�nition of the New Transform. �e transform of a 
function �(�) is de�ned by

(1)�(�) = �{�(�)} = ∫∞0 �−��−��(��)��, � ∈ �.
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Theorem 1. (Sufficient condition). If a function ℎ is 
piecewise continuous on [0, ∞) and of exponential order so, 
then the transform of ℎ exists for � > �0.
Theorem 2. (Linear combination). If transforms �(�) and �(v) of in Equation (1) the functions �, v are well de�ned and �1, �2 are constants, then

Theorem 3. (��ℎ Derivatives). If the functions ��, ���, . . . , ��(�) are well de�ned, � = 1, 2, 3, . . . , then

3. Analysis of the Method

To illustrate the modi�cation algorithm of the NTHPM, we 
consider the following nonlinear partial di�erential equation 
with time derivatives of any order

where, � is linear di�erential operator (� = ��/���), � repre-
sents the general nonlinear di�erential operator and g(�, �) is 
the source term, subject to the initial conditions

In view of the homotopy technique, we can constract the fol-
lowing homotopy

where � ∈ [0, 1]. the homotopy parameter � always changes 
from zero to unity. �e changing process of � is called defor-
mation. When � = 0, Equation (6) becomes

and when � = 1, Equation (6) turns out to the original 
Equation (4). Since �(�, 0) is a function of � only, Equation 
(6) can be rewritten to be in the following form

According to the homotopy technique, the basic assumption 
is that the solution of Equation (8) can be written as a power 
series in � as

where ��(�, �) are unknown functions to be determined. Now, 
taking in mind the initial conditions (2), the NT for Equation 
(8) gives

(2)�{�1� + �2v} = �1�{�} + �2�{v}.

(3)�{��} = ���{�} − �−1∑
�=0
��−��(�)(0).

(4)�(�(�, �)) + �(�(�, �), ��(�, �), ���(�, �)) = g(�, �).

(5)���(�, 0)��� = ℎ�(�), � = 0, 1, 2, . . . , � − 1.

(6)
�(�(�, �), �) = (1 − �)[�(�(�, �)) − �(�(�, 0))]
+ �[�(�(�, �)) + �(�(�, �)) − g(�, �)] = 0,

(7)�(�(�, �)) = �(�(�, 0)),

(8)
���(�, �)��� + �[�(�(�, �)) − g(�, �)] = 0.

(9)�(�, �) = ∞∑
�=0
����(�, �),

(10)���{�(�, �)} − �−1∑
�=0
��−���(�, 0) + ��[� − g] = 0,

again taking the inverse of the NT for Equation (10), we obtain

Substituting from Equation (9) into Equation (11), yields

Equating the identical powers of �, therefore, a¤er doing some 
calculations for the NT and the inverse of NT we get the 
unknown functions �0, �1, �2, . . . A¤er substituting into 
Equation (10) with � = 1, we get the solution of the problem 
(1)–(2).

4. Applications on NTHPM

Our method will be illustrated through examples in one-di-
mension for  linear and nonlinear coupled systems of partial 
di�erential equations.

Example 1. Consider the one-dimensional linear system

subjected to the initial conditions

Assume that the solutions of Equations (13) and (14) can be 
written as a power series as follows

substituting from Equation (17) into Equation (12) for � = 2, � = −��� − (1/4)� − v, � = 0 and g(�, �) = 5/4 and 
using the initial conditions (11), yields

(11)�(�, �) − �−1{�−1∑
�=0

1
�� ��(�, 0)} + �−1{

1����{[� − g]}} = 0.

(12)

∞∑
�=0
����(�, �) − �−1{�−1∑

�=0

1
��(
∞∑
�=0
���(�)� (�, 0))}

+ �−1{ 1����{�(
∞∑
�=0
����(�, �)) − g(�, �)}} = 0.

(13)��� − ��� − 14� − v + 45 = 0,

(14)v�� − v�� − � − 14v + 45 = 0,

(15)�(�, 0) = 1 + ��, ��(�, 0) = ��2 ,
(16)v(�, 0) = 1 − ��, v�(�, 0) = −��2 .

(17)�(�, �) = ∞∑
�=0
����(�, �),

(18)
v(�, �) = ∞∑

�=0
��v�(�, �),

(19)

∞∑
� = 0
����(�, �) − �−1{1 + �� + ��2 }
+ �−1{ 1�2��{−

∞∑
� = 0
���� − 14

∞∑
� = 0
�� − ∞∑
� = 0

v� + 54}} = 0,



3Advances in Mathematical Physics

by a similar way, substituting Equation (18) into Equation (12), 
for � = 2, � = −v�� − (1/4)v − �,� = 0 and g(�, �) = 5/4 and 
using the initial conditions (12), we obtain

On putting the coe¥ecients to the power of � equal to zero in 
Equations (19), (20), we can obtain a series of linear equations, 
which are easy to solve by using Mathematica so¤ware to give

(20)

∞∑
� = 0
��v�(�, �) − �−1{1 − �� + ��2 }
+ �−1{ 1�2��{−

∞∑
� = 0

v��� − 14
∞∑
� = 0

v� − ∞∑
� = 0

v� + 54}} = 0,

(21)�0 = �−1{1 + �� + ��2�} = 1 + �� + �
��2 ,

(22)v0 = �−1{1 − �� − ��2�} = 1 − �� − �
��2 ,

(23)

�1 = �−1{ 1�2�{−
54 + �04 + v0 + �0��}}

= �−1{ 1�2�{
��4 + �

��8 }}
= �−1{��(1 + 2�)8�3 } = ��

( �2)22! + ��
( �2)33! ,

(24)

v1 = �−1{ 1�2�{−
54 + �0 + v04 + v0��}}

= �−1{ 1�2�{−
18��(2 + �)}} = �−1{−�

�(1 + 2�)
8�3 }

= −�� ( �2)
2

2! − ��
( �2)33! ,

(25)
�2 = �−1{ 1�2�{

�14 + v1 + �1��}}
= �−1{ 1�2�{

14(�
��28 + �

��348 )}}
= �−1{��(1 + 2�)32�5 } = ��

( �2)44! + ��
( �2)55! ,

(26)
v2 = �−1{ 1�2�{

�14 + v14 + v1��}}
= �−1{ 1�2�{−

14(�
��28 + �

��348 )}}
= �−1{−��(1 + 2�)32�5 } = −��

( �2)44! − ��
( �2)55! ,

(27)
�3 = �−1{ 1�2�{

�24 + v2 + �2��}}
= �−1{ 1�2�{��(

�4384 + �
5

3840)}}
= �−1{��(1 + 2�)32�5 } = ��

( �2)44! + ��
( �2)55! ,

and so on. Proceeding as before the rest of components were 
obtained, and then the two functions �(�, �) and v(�, �) in the 
closed form are readily found to be

Example 2. We consider the homogenuous form of coupled 
Burgers equations

with the initial conditions

As illustrated in Example 1, substituting from Equations (17) 
and (18) into Equation (12) but in this case for � = 1 and using 
the initial conditions (21) and (22) respectively, we get

(28)
v3 = �−1{ 1�2�{−�2 +

v24 + v2��}}
= �−1{ 1�2�{−��(

�4384 + �
5

3840)}}
= �−1{−��(1 + 2�)32�5 } = −��

( �2)44! − ��
( �2)55! ,

(29)
�4 = �−1{ 1�2�{

�34 + v3 + �3��}}
= �−1{ 1�2�{

14( �
��646080 + �

��7645120)}}
= �−1{��(1 + 2�)512�9 } = ��

( �2)88! + ��
( �2)99! ,

(30)

v4 = �−1{ 1�2�{�3 +
v34 + v3��}}

= �−1{ 1�2�{−
14( �

��646080 + �
��7645120)}}

= �−1{−��(1 + 2�)512�9 } = −��
( �2)88! − ��

( �2)99! ,

(31)�(�, �) = 1 + ��+ �2 ,
(32)v(�, �) = 1 − ��+ �2 .

(33)�� − ��� − 2��� + (�v)� = 0,
(34)

v� − v�� − 2vv� + (�v)� = 0,

(35)�(�, 0) = ����,
(36)v(�, 0) = ����.

(37)

∞∑
� = 0
����(�, �) − �−1{����} − �−1

{1� ��{
∞∑
� = 0
���� + 2 ∞∑

� = 0
�� ∞∑
� = 0
��� + ( ∞∑

� = 0
�� ∞∑
� = 0

v�)
�
}} = 0,

(38)

∞∑
� = 0
��v�(�, �) − �−1{����} − �−1

{1� ��{
∞∑
� = 0

v��� + 2 ∞∑
� = 0

v�

∞∑
� = 0

v�� + ( ∞∑
� = 0
�� ∞∑
� = 0

v�)
�
}} = 0.
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again substituting the functions ��, v�, � = 0, 1, 2, . . . into the 
Equations (17) and (18), we obtain directly

Furthermore, in closed form Equation (48) takes the form

Example 3. Next, we consider the nonlinear Drinfeld 
Sokolov system in the following form

with the initial conditions

By applying the same steps used in Examples (1) and (2), we 
can easily get

(48)�(�, �) = v(�, �) = ����(1 − �1! + �
2

2! − �
3

3! + �
4

4!).

(49)�(�, �) = v(�, �) = �−�cos�.

(50)�� + (v2)� = 1 − 2(� − �),
(51)v� − v��� + (�v)� = 1 − 2�,
(52)�(�, 0) = �, v(�, 0) = −�.

(53)�0 = �−1{�} = �, v0 = �−1{−�} = −�,

(54)
�1(�, �) = �−1{1� �{1 − 2� + 2� − 2v0v0�}}
= �−1{1� �{1 − 2�}} = �−1{1� (1 − 2� )} = � − �2,

(55)

v1(�, �) = �−1{1� �{1 − 2� − v0�0� − �0v0� + v0���}}
= �−1{1� �{1}} = �−1{1� } = �,

(56)

�2(�, �) = �−1{1� �{−2v1v0� − 2v0v1�}} = �−1{1� �{2�}}
= �−1{1� (2� )} = 2�−1{ 1�2 } = �2.

(57)

v2(�, �) = �−1{1� �{−v1�0� − v0�1� − �1v0� − �0v1� + v1���}}
= −�−1{1� �[�2}]} = −�−1{1� (2� )} = −2�−1{ 1�2 } = −

�33 .

(58)

�3(�, �) = �−1{1� �{2v2v0� + 2v1v1� + 2v0v2�}}
= �−1{1� �{−2�

3

3 }} = −�−1{ 4�4 } = −
�46 .

(59)

v3(�, �) = �−1{1� �{v2�0� + v1�1� + v0�2� + �2v0�
+ �1v1� + �0v2� − �2���}}
= �−1{1� �{�2 + �

3

3 }} = �−1{1� (2!�3 +
3!
3�3 )}

= �33 + �
4

12 .

Putting the coe¥cients of the power of � equal to zero in 
Equations (37) and (38), we obtain

(39)�0 = �−1{����} = ����, v0 = �−1{����} = ����,

(40)
�1(�, �) = �−1{1� �{2�0�0� − v0�0� − �0v0� + �0��}}
= �−1{−1� �
��} = −��
��,

(41)v1(�, �) = �−1{1� �{2v0v0� − �0v0� − v0�0� + v0��}}
= �−1{−1� �
��} = −��
���,

(42)
�2(�, �) = �−1{1� �{2�1�0� − v1�0� + 2�0�1� − v0�1�

−�1v0� − �0v1� + �1��}}
= �−1{1� �{�
���}} = �−1{ 1�2 
���} =

�22! 
���,

(43)
v2(�, �) = �−1{ 1��{2v1v0� − �1v0� + 2v0v1� − �0v1�−v1�0� − v0�1� + v1��}}= �−1{ 1��{�����}} = �−1{ 1�2 ����} = �22!����,

(44)

�3(�, �) = �−1{1� �{2�2�0� − v2�0� + 2�1�1� − v1�1�
+ 2�0�2� − v0�2� − �2v0� − �1v1� − �0v2� − �2��}}
= �−1{1� �{�

2

2 �
��}} = �−1{ 1�3 �
��} =
�33! �
��.

(45)

v3(�, �) = �−1{1� �{v2�0� + v1�1� + v0�2� + �2v0� − 2v2v0�
+ �1v1� − 2v1v1� + �0v2� − 2v0v2� + v2��}}
= �−1{1� �{−�

2

2 �
��}} = �−1{−1�3 �
��} =
−�33! �
��.

(46)

�4(�, �) = �−1{1� �{2�3�0� − v3�0� + 2�2�1� − v2�1� + 2�1�2� − v1�2�
+ 2�0�3� − v0�3� − �3v0� − �2v1� − �1v2� − �0v3� + �3��}}
= �−1{1� �{�

3

6 
���}} = �−1{ 1�4 
���} =
�44! 
���.

(47)

v4(�, �) = �−1{1� �{2v3v0� − �3v0� + 2v2v1� − �2v1� + 2v1v2� − �1v2�
+ 2v0v3� − �0v3� − v3�0� − v2�1� − v1�2� − v0�3� + v3��}}
= �−1{1� �{�

3

6 
���}} = �−1{ 1�4 
���} =
�44! 
���.
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Substituting into Equation (17) and (18), we obtain

5. Numerical Results and Discussion

�e numerical behavior of the error between the exact solu-
tion and the solution obtained by NTHPM is shown in 
Figures 1–3. �e numerical results are obtained by using 
fourth order perturbation only from the series formulas (17), 
(18) with � = 1. From these �gures, we achieved a very good 
approximation for the solution of our systems at the small 
values of time �, but at the large values of the time, the error 
can be reduced by adding new terms from the iteration 
formulas.

6. Conclusion

In this work, we have proposed a modi�cation to the homot-
opy perturbation technique by combining it with a new inte-
gral transform. �e aim of this approach is to obtain exact 
solutions of linear as well as nonlinear coupled systems. �e 
e¥ciency and accuracy of the present scheme are validated 

(62)�(�, �) = � + �,

(63)v(�, �) = � − �.

(60)

�4(�, �) = �−1{ 1��{2v3v0� + 2v2v1� + 2v1v2� + 2v0v3�}}= �−1{ 1��{2( �33 + �412)}}= 4�−1{ 1�4 + 1�5 } = �46 + �530 .

(61)
v4(�, �) = �−1{1� �{v3�0� + v2�1� + v1�2� + v0�3�+�3v0� + �2v1� + �1v2� + �0v3� − v3���}}
= −�−1{1� �{ �

3

3� + �
4

4�}}
= −�−1{( 3!3�4 +

4!
4�5 )} = −

�412 − �
5

30 .
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Figure 1: �e �gures explains the surface errors for Example (4.1). 
(a) Error-� = ������ ⋅ � − ��� ⋅ �����. (b) Error-v = ������ ⋅ v − ��� ⋅ v����.
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Figure 3: �e �gures explains the surface errors for Example (4.3). 
(a) Error-� = ������ ⋅ � − ��� ⋅ �����. (b) Error-v = ������ ⋅ v − ��� ⋅ v����.
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